
This is a repository copy of Unit Test Generation During Software Development: EvoSuite
Plugins for Maven, IntelliJ and Jenkins.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116455/

Version: Accepted Version

Proceedings Paper:
Arcuri, A., Campos, J. and Fraser, G. (2016) Unit Test Generation During Software
Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins. In: 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST). ICST
2016 : IEEE International Conference on Software Testing, Verification and Validation
(ICST) 2016, 10/04/2016-15/04/2016, Chicago, Illinois. Institute of Electrical and
Electronics Engineers , pp. 401-408. ISBN 978-1-5090-1826-0

https://doi.org/10.1109/ICST.2016.44

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Unit Test Generation During Software Development:

EvoSuite Plugins for Maven, IntelliJ and Jenkins

Andrea Arcuri

Scienta, Norway, and

University of Luxembourg, Luxembourg

José Campos, Gordon Fraser

University of Sheffield

Sheffield, UK

Abstract—Different techniques to automatically generate unit
tests for object oriented classes have been proposed, but how
to integrate these tools into the daily activities of software
development is a little investigated question. In this paper, we
report on our experience in supporting industrial partners in
introducing the EVOSUITE automated JUnit test generation tool
in their software development processes. The first step consisted
of providing a plugin to the Apache Maven build infrastructure.
The move from a research-oriented point-and-click tool to an
automated step of the build process has implications on how
developers interact with the tool and generated tests, and there-
fore, we produced a plugin for the popular IntelliJ Integrated
Development Environment (IDE). As build automation is a core
component of Continuous Integration (CI), we provide a further
plugin to the Jenkins CI system, which allows developers to moni-
tor the results of EVOSUITE and integrate generated tests in their
source tree. In this paper, we discuss the resulting architecture of
the plugins, and the challenges arising when building such plugins.
Although the plugins described are targeted for the EVOSUITE

tool, they can be adapted and their architecture can be reused
for other test generation tools as well.

I. INTRODUCTION

The EVOSUITE tool automatically generates JUnit tests

for Java software [1]–[4]. Given a class under test (CUT),

EVOSUITE creates sequences of calls that maximize testing

criteria such as line and branch coverage, while at the same

time generating JUnit assertions to capture the current behavior

of the CUT. Experiments on open-source projects and industrial

systems [5] have shown that EVOSUITE can successfully

achieve good code coverage — but how should it be integrated

in the development process of the software engineers?

In order to answer this question, the interactions between

a test generation tool and a software developer have been

subjected to controlled empirical studies and observations [6]–

[8]. However, the question of integrating test generation into

the development process goes beyond the interactions of an

individual developer with the tool: In an industrial setting,

several developers work on the same, large code base, and a

test generation tool should smoothly integrate into the current

processes and tool chains of the software engineers.

There are different ways to access a test generation tool. The

first option to run EVOSUITE is from the command line. If

the tool is compiled and assembled in a standalone executable

jar (e.g., evosuite.jar), then it can be called on a CUT (e.g.,

org.Foo) as follows:

java -jar evosuite.jar org.Foo

However, in a typical Java project the full classpath needs to

be specified (e.g., as a further command line input). This is

necessary to tell the tool where to find the bytecode of the

CUT and of all of its dependency classes. For example, if the

target project is compiled in a folder called build, then in

EVOSUITE one can use:

java -jar evosuite.jar -class org.Foo -projectCP build

where the option -class is used to specify the CUT, and the

option -projectCP is used for specifying the classpath.

This approach works fine if EVOSUITE is used in a “static”

context, e.g., when the classpath does not change, and a user

tests the same specific set of classes several times. A typical

example of such a scenario is the running of experiments on a

set of benchmarks in an academic context [5] — which is quite

different from an industrial use case. An industrial software

system might have hundreds, if not thousands, of entries in

the classpath, which might frequently change when developers

push new changes to the source repository (e.g., Git, Mercurial

or SVN). Manually specifying long classpaths for every single

submodule is not a viable option.

Usability can be improved by integrating the test generation

tool directly into an IDE. For example, EVOSUITE has an

Eclipse plugin [1] which includes a jar version of EVOSUITE.

Test generation can be activated by the developer by selecting

individual classes, and the classpath is directly derived from the

APIs of the IDE itself. However, this approach does not scale

well to larger projects with many classes and frequent changes.

Furthermore, EVOSUITE requires changes to the build settings

that have to be consistent for all developers of a software

project, as EVOSUITE’s simulation of the environment of the

CUT requires inclusion of a dependency jar file (containing

mocking infrastructure for, e.g., the Java API of the file

system [9] and networking [10]).

To overcome these problems, we have developed a set of

plugins for common software development infrastructure in

industrial Java projects. In particular, in this paper we present a

plugin to control EVOSUITE from Apache Maven1 (Section II),

as well as plugins for IntelliJ IDEA2 (Section III) and Jenkins

CI3 (Section IV) to interact with the Apache Maven plugin.

1https://maven.apache.org, accessed January 2016.
2https://www.jetbrains.com/idea, accessed January 2016.
3https://jenkins-ci.org, accessed January 2016.

https://maven.apache.org
https://www.jetbrains.com/idea
https://jenkins-ci.org

II. UNIT TEST GENERATION IN BUILD AUTOMATION

Nowadays, the common standard in industry to compile

and assemble Java software is to use automated build tools.

Maven is perhaps the currently most popular one (an older

one is Ant, whereas the more recent Gradle is currently

gaining momentum). Integrating a unit test generation tool

into an automated build tool consists of supporting execution

of generated tests, as well as generation of new tests.

A. Integrating Generated Tests in Maven

In order to make tests deterministic and isolate them from

the environment, EVOSUITE requires the inclusion of a runtime

library [9]. When using a build tool like Maven, it is easy to

add third-party libraries. For example, the runtime dependency

for the generated tests of EVOSUITE can be easily added (and

automatically downloaded) for example by copy&pasting the

following entry into the pom.xml file defining the build:

1<dependency>

2 <groupId>org.evosuite</groupId>

3 <artifactId>evosuite-standalone-runtime</artifactId>

4 <version>1.0.2</version>

5 <scope>test</scope>

6</dependency>

Once this is set, the generated tests can use this library, which

is now part of the classpath. This is important because, when

a software project is compiled and packaged (e.g., with the

command mvn package), all the test cases are executed as well

to validate the build.

However, when we generated test cases for one of our

industrial partners for the first time, building the target project

turned into mayhem: some generated tests failed, as well

as some of the existing manual tests (i.e, the JUnit tests

manually written by the software engineers), breaking the

build. The reason is due to how classes are instrumented:

The tests generated by EVOSUITE activate a Java Agent to

perform runtime bytecode instrumentation, which is needed

to replace some of the Java API classes with our mocks [9].

The instrumentation is done when the tests are run, and can

only be done when a class is loaded for the first time. On

one hand, if the manual existing tests are run first before the

EVOSUITE ones, the bytecode of the CUTs would be already

loaded, and instrumentation cannot take place, breaking (i.e.,

make them fail) all the generated tests depending on it. On

the other hand, if manual tests are run last, they will use the

instrumented versions, and possibly fail because they do not

have the simulated environment configured for them.

There might be different ways to handle this issue, as

for example forcing those different sets of tests to run on

independently spawned JVMs. However, this might incur some

burden on the software engineers’ side, who would need to

perform the configuration, and adapt (if even possible) all

other tools used to report and visualise the test results (as

we experienced). Our solution is twofold: (1) each of our

mocks has a rollback functionality [10], which is automatically

activated after a test is finished, so running manual tests after

the generated ones is not a problem; (2) we created a listener

for the Maven test executor, which forces the loading and

instrumentation of all CUTs before any test is run, manual

tests included. Given this solution, engineers can run all the

tests in any order, and in the same classloader/JVM. This

is achieved simply by integrating the following entry into

the pom.xml where the Maven test runner is defined (i.e., in

maven-surefire-plugin):

1<property>

2 <name>listener</name>

3 <value>org.evosuite.runtime.InitializingListener</value>

4</property>

B. Generating Tests with Maven

The configuration options discussed so far handle the case of

running generated tests, but there remains the task of generating

these tests in the first place. Although invoking EVOSUITE on

the local machine of a software engineer from an IDE may be

a viable scenario during software development, it is likely not

the best for legacy systems. When using EVOSUITE for the

first time on a large industrial software system with thousands

of classes, it is more reasonable to run EVOSUITE on a remote

dedicated server, as it would be a very time consuming task.

To simplify the configuration of this (e.g., to avoid manually

configuring classpaths on systems with dozens of pom.xml files

in a hierarchy of submodules) and to avoid the need to prepare

scripts to invoke EVOSUITE accordingly, we implemented a

Maven plugin with an embedded version of EVOSUITE. For

example, to generate tests for all classes in a system using 64

cores, a software engineer can simply type:

mvn -Dcores=64 evosuite:generate

To get an overview of all execution goals, the EVOSUITE

Maven plugin can be called as follows:

mvn evosuite:help

or as follows:

mvn evosuite:help -Ddetail=true -Dgoal=generate

to get the list of parameters of, e.g., the generate goal. In

particular, it is possible to configure aspects such as number of

cores used (cores), memory allocated (memoryInMB), or time

spent per class (timeInMinutesPerClass).

It is further possible to influence how the time is allo-

cated to individual classes using the strategy parameter:

The simple strategy allocates the time specified in the

timeInMinutesPerClass per class. By default, EVOSUITE

will use the budget strategy, which allocates a time-budget

proportional to the complexity of a class. As a proxy to

complexity, EVOSUITE uses the number of branches to

determine whether class A is more complex than class B. That

is, classes with more branches will have more time available to

be tested. First, EVOSUITE determines the maximum and the

minimum time budget available. The minimum time budget is

the minimum time per class (by default 1 minute) multiplied

by the total number of classes. The maximum time budget

is timeInMinutesPerClass multiplied by the total number of

classes. The difference between maximum and minimum time

budget is called extraTime and it is used to give more time to

more complex classes. Assuming there is an extraTime of e,

the time budget per branch will be e

|branches| . Then, each CUT

C, will have a time budget of minTimeBudgetPerClass+
(timePerBranch× |branchesC |).

Further implemented strategies are the experimental seeding

strategy [11], where EVOSUITE tries to test classes in the order

of dependencies to allow re-use of Java objects, and history,

which is explained in Section IV.

To get an overview of tests generated so far, one can use:

mvn evosuite:info

By default, EVOSUITE stores tests in the

.evosuite/evosuite-tests hidden folder. Once the

developer has inspected the tests and decided to integrate them

into the source folder, this can be done using the following

command:

mvn evosuite:export

The export command copies the generated tests to another

folder, which can be set with the targetFolder option (default

value is src/test/java). Tests will only be executed by the

mvn test command once they are in src/test (unless Maven

is configured otherwise).

To enable the EVOSUITE plugin, the software engineer would

just need to copy&paste the following plugin declaration to

the root pom.xml file:

1<plugin>

2 <groupId>org.evosuite.plugins</groupId>

3 <artifactId>evosuite-maven-plugin</artifactId>

4 <version>1.0.2</version>

5 <executions>

6 <execution>

7 <goals>

8 <goal>prepare</goal>

9 </goals>

10 <phase>process-test-classes</phase>

11 </execution>

12 </executions>

13</plugin>

By doing this, there is no further need to do any installation

or manual configuration: Maven will automatically take care

of it. Note: if a plugin is not in the Maven Central Repository4,

one needs to add the URL of the server where the plugin is

stored, but that needs to be done just once (e.g., in a corporate

cache using a repository manager like Nexus5).

Once the EVOSUITE Maven plugin is configured by editing

the pom.xml file (which needs to be done only once), if an

engineer wants to generate tests on a new server, then it is just

a matter of uploading the target system there (e.g., git clone

if Git is used as source repository manager), and then typing

mvn evosuite:generate. That is all that is needed to generate

tests with EVOSUITE’s default configuration (some parameters

can be added to specify the number of cores to use, for how

long to run EVOSUITE, if only a subset of classes should be

tested, etc.).

4http://search.maven.org, accessed January 2016.
5http://www.sonatype.com/nexus/solution-overview, accessed January 2016.

III. IDE INTEGRATION OF UNIT TEST GENERATION

Once the generated unit tests require a runtime dependency

to run, embedding EVOSUITE within an IDE plugin (as in the

past we did for Eclipse) becomes more difficult because of

potential EVOSUITE version mismatches: the IDE plugin could

use version X , whereas the project could have dependency

on Y . Trying to keep those versions aligned is not trivial: a

software engineer might work on different projects at the same

time, each one using a different version; a software engineer

pushing a new version update in the build (e.g., by changing the

dependency version in the pom.xml file and then committing

the change with Git) would break the IDE plugin of all his/her

colleagues, who would be forced to update their IDE plugin

manually; etc.

Our solution is to keep the IDE plugin as lightweight as

possible, and rely on the build itself to generate the tests.

For example, the IDE plugin would just be used to select

which are the CUTs, and what parameters to use (e.g., how

long the search should last). Then, when tests need to be

generated, the IDE plugin just spawns a process that calls mvn

evosuite:generate. By doing this, it does not matter what

version of EVOSUITE the target project is configured with, and

updating it will be transparent to the user. Furthermore, every

time a new version of EVOSUITE is released, there is no need

to update the IDE plugin, just the pom.xml file (which needs

to be done only once and just by one engineer).

However, to achieve this, the interfaces between the IDE

plugin and the Maven plugin need to be stable. This is not really

a problem in automated test data generation, where in general

there are only few parameters a user is really interested into:

for what CUTs should tests be generated for, what resources

to use (memory, CPU cores, and time).

This approach worked well for some of our industrial

partners, but not for all of them: For example, some use Gradle

to build their software rather than Maven. Furthermore, relying

on a build tool does not work when no build tool is used, e.g.

when a new project is created directly in the IDE. To cope with

the issue of handling build tools for which we have no plugin

(yet), or handling cases of no build tool at all, we also found

it necessary to have the option of using an external command

line EVOSUITE executable, which the IDE plugin calls on a

separate spawned process. As the corresponding jar file does

not need to be part of the build, it can be simply added directly

to the source repository (e.g., Git) without needing to change

anything regarding how the system is built. In this way, all

developers in the same project will use the same version, and

do not need to download and configure it manually.

Regarding the runtime dependency for the generated tests,

this is not a problem for build tools like Ant/Ivy and Gradle,

as they can make use of Maven repositories. However, when

no build tool is employed, the runtime dependency needs to be

added and configured manually (as for any other third-party

dependency). Note: the EVOSUITE executable could be used

as runtime dependency as well (it is a superset of it), but it

would bring many new third-party libraries in the build. This

http://search.maven.org
http://www.sonatype.com/nexus/solution-overview

Fig. 1. Screenshot of the EVOSUITE plugin for IntelliJ IDEA, when applied
on the code example from [10].

might lead to version mismatch problems if some of these

libraries are already used in the project.

This architecture is different from what we originally had

for our Eclipse plugin. To experiment with it, we started a new

plugin for a different IDE, namely IntelliJ IDEA. This was

also driven by the fact that most of our industrial partners use

IntelliJ and not Eclipse. Figure 1 shows a screenshot of applying

EVOSUITE to generate tests for the motivating example used

in [10]. A user can select one or more classes or packages

in the project view, right click on them, and start the action

Run EvoSuite. This will show a popup dialog, in which some

settings (e.g., for how long to run EVOSUITE) can be chosen

before starting the test data generation. Progress is shown in a

tool window view.

One of the first things we found out by working on the

IntelliJ plugin is that, in general, embedding and executing a

test data generation tool on the same JVM of the plugin (as we

did with Eclipse) is not a viable option. If you are compiling

a project with Java 8, for example, that does not mean that the

IDE itself is running on Java 8 (recall that IDEs like IntelliJ,

Eclipse and NetBeans are written in Java and execute in a

JVM). For example, up to version 14, IntelliJ for Mac used

Java 6, although IntelliJ can be used to develop software for

Java 8. The reason is due to some major performance GUI

issues in the JVM for Mac in both Java 7 and Java 8. An IDE

plugin will run in the same JVM of the IDE, and so needs to

be compiled with a non-higher version of Java. In our case, as

EVOSUITE is currently developed/compiled for Java 8, calling

it directly for the IDE plugin would crash it due to bytecode

version mismatch. The test data generation tool has to be called

on a spawned process using its own JVM.

IV. CONTINOUS TEST GENERATION

Although generating tests on demand (e.g., by directly

invoking the Maven/IntelliJ plugins) on a developer machine is

feasible, there can be many reasons for running test generation

on a remote server. In particular, running EVOSUITE on

many classes repeatedly after source code changes might

be cumbersome. To address this problem, we introduced the

concept of Continous Test Generation [11], [12] (CTG), where

Continous Integration (CI) (e.g., Jenkins and Bamboo) is

extended with automated test generation. In a nutshell, a remote

server will run EVOSUITE at each new code commit using

the EVOSUITE Maven plugin. Only the new tests that improve

upon the existing regression suites will be sent to the users

using a plugin to the Jenkins CI system.

A. Invoking EvoSuite in the Context of CTG

During CTG, EVOSUITE will be invoked on the same

software project repeatedly using the Maven plugin, by setting

the strategy to history. This strategy changes the budget

allocation such that more time is spent on new or modified

classes than old classes, under the assumption that new or

modified code is more likely to be faulty [13]. Furthermore,

instead of starting each test generation from scratch, the

history strategy re-uses previously generated test suites as

a seed when generating the initial population of the Genetic

Algorithm, to start test generation with some code coverage,

instead of trying to cover goals already covered by a previous

execution of CTG.

The Maven plugin creates a directory called .evosuite

under the project directory where all the files generated and/or

used during test generation are kept. To be independent of any

Source Control Management (SCM), we have implemented a

very simple system to check which classes (i.e., Java files) have

changed from one commit to another one. Under .evosuite,

CTG creates two files: hash_file and history_file. Both

files are based on a two column format, and are automatically

created by the EVOSUITE Maven plugin. The first one contains

as many rows as there are Java files in the Maven project,

and each row is composed of the full path of each Java file

and its hash. The hash value allows EVOSUITE to determine

whether a Java file has been changed. Although this precisely

identifies which Java files (i.e., classes) have been changed, it

does not take into account whether the change was in fact a

source change or just, for example, a JavaDoc change. Future

work should try to improve this feature using, for example, a

diff parser, or comparing the AST of the previous Java file and

the current one. The second file (history_file) just keeps

the list of new/modified classes. A class is considered new if

there is no record of that class on the hash_file. A class is

considered as modified, if its current hash value is different

from the value on hash_file. Similar to Git output, the first

column of history_file is the status of the Java file: “A”

means added, and “M” means modified. The second column

is the full path of the Java file.

Each CTG call also creates a temporary directory

(under the .evosuite folder) named with the format

tmp_year_month_day_hour_minutes_seconds. All files (such

as .log, .csv, .java files, etc) generated by EVOSUITE during

each test generation will be saved in this temporary directory.

At the end of each test generation, the best test suites will

be copied to a folder called best-tests. This folder will only

contain test suites that improve over already existing tests.

For this, it is necessary to measure the coverage achieved

by the existing tests, which can be done using the following

command:

mvn evosuite:coverage

This command instruments all classes under src/main/java

(for typical Maven projects) and runs all test cases from

src/test/java. EVOSUITE executes all test cases using the

JUnit API on all classes, and determines the coverage achieved

on all of EVOSUITE’s target code coverage criteria. Future

improvements of this option will try to re-use maven-surefire
6

plugin to run the test cases instead of directly using the JUnit

API.

In order to be copied to best-tests, a test suite for a CUT

needs to either be (a) generated for a class that has been

added or modified, (b) achieve a higher code coverage than

the existing tests, or (c) cover at least one additional coverage

goal that is not covered by the existing tests.

B. Accessing Generated Tests from Jenkins

Once CTG is part of the build process (e.g., through the

Maven plugin), then integrating it in a CI system becomes

easier. We have developed a plugin for the Jenkins CI system

which allows developers to:

• Visualize code coverage and time spent on test generation;

• Get statistic values like coverage per criterion, number

of testable classes, number of generated test cases, total

time spent on test generation per project, module, build,

or class;

• View the source-code of the generated test suites per class;

• Commit and push the new generated test suites to a specific

branch7.

The Jenkins plugins relies on information produced by

the underlying Maven plugin, which generates a file

project_info.xml with detailed information. Consequently,

reproducing the functionality of the Jenkins plugin for other

CI platforms should be straightforward.

Currently, the EVOSUITE Jenkins plugin is available for

download on our webpage at www.evosuite.org/downloads.

To install it, Jenkins provides an “Upload Plugin” option in the

“Manage Jenkins” menu, where the evosuite.hpi file can be

uploaded and installed. Once installed, the EVOSUITE Jenkins

plugin runs as a “post-build” step, in which the output of the

EVOSUITE Maven plugin is displayed on the CI web interface.

This is exactly the same type of architecture used by Emma8

(a widely used Java tool for code coverage): the Emma Maven

plugin needs to be added to the pom.xml project descriptor,

and then it needs to be called as part of the CI build. To enable

the Jenkins plugin, users just have to access the “configure”

page of their project and add EVOSUITE as one of the “post-

build” actions. As shown in Figure 2, there are three options

to configure EVOSUITE:

6The Maven Surefire plugin is used during the test phase of a maven project
to execute all unit tests.

7Currently, EVOSUITE just supports Git repositories.
8https://wiki.jenkins-ci.org/display/JENKINS/Emma+Plugin, accessed January
2016.

Fig. 2. Configuring the EVOSUITE Jenkins plugin.

Fig. 3. Jenkins dashboard with EVOSUITE plugin applied on Apache Commons
Lang project.

• Automatic commits: The plugin can be configured to

automatically commit newly generated test suites to the Git

repository. If this option is deactivated, then the generated

test suites will remain on the CI system and users can

still use the CI web interface to access the generated test

suites of each class.

• Automatic push: The plugin can be configured to auto-

matically push commits of generated tests to a remote

repository.

• Branch name: To minimize interference with mainstream

development, it is possible to let the plugin push to a

specific branch of the repository.

Consequently, when the development team of a project is

already running a CI server like Jenkins and is using a build

tool like Maven, then adding and configuring the EVOSUITE

Jenkins plugin is a matter of a few minutes. Once configured,

and after the first execution of CTG on the project under test,

a coverage plot will be shown on the main page of the project

(as shown in Figure 3).

https://wiki.jenkins-ci.org/display/JENKINS/Emma+Plugin

Fig. 4. Jenkins build dashboard with EVOSUITE statistics like, for example,
number of testable classes, or overall coverage.

Fig. 5. EVOSUITE statistics such as overall and coverage achieved by each

criterion, and time spend on generation of a project.

In the plot shown in Figure 3, the x-axis represents the

commits, and y-axis represents the coverage achieved by each

criterion. The plot is clickable and redirects users to the selected

build (see Figure 4). The commit and push steps are executed

after the end of the CTG phase, and all test cases under the

directory .evosuite/best-tests (which just keeps the best

generated test suites so far, as explained in the previous section)

will be committed and pushed.

On the project dashboard, users also have access to a button

called “EvoSuite Project Statistics” where the overall coverage,

the coverage per criterion, and the time spent on test generations

is reported (see Figure 5). Similar, on the build and module

pages (and in addition to coverage values) is also reported the

number of test cases generated. On the class page (see Figure 6)

users could also view the source-code of the generated test

suite.

V. LESSONS LEARNT

While developing the plugins for Maven, IntelliJ IDEA and

Jenkins, we learned several important lessons, which we discuss

in this section.

Fig. 6. EVOSUITE statistics of a class and the source code of the generated
test suite.

A. Industry Collaboration

Applying test data generation techniques in industry showed

us9 new problems and contexts we did not think about before.

An example is the mixed execution of already existing and

newly created tests, as discussed in Section II. We also came

to know new tools which we did not hear about before, like

for example IntelliJ IDEA and Gradle. In industry there is a

large set of commonly used tools, which shape the software

development processes. Technology transfer from academic

research to industry practice has to take those tools into account,

and how a new research technique could be integrated with

them. This can only be achieved with close collaboration with

industry, and by applying techniques resulting from research

on real systems.

B. Lightweight Plugins

Developing a plugin is usually a very time consuming and

tedious task — not necessarily because of specific technical

challenges, but rather due to a systematic lack of documentation.

Most tools we analysed provide some tutorials on how to write

plugins, but these are very basic. API documentation in form of

JavaDocs is usually very scarce, if it exists at all. For example,

at the time of writing this paper, IntelliJ IDEA does not even

have browsable JavaDoc documentation. The “recommended”

way to learn how to develop plugins for IntelliJ IDEA is to

check out its source code, and also to study other already

existing open-source plugins for it. The same happened during

the development of the Jenkins plugin: Although there are more

than 1300 Jenkins plugins (at the time of writing this paper)

9One of the authors of this paper is a software consultant working in industry.
Many of the architectural choices were based on feedback throughout the years
on applying EVOSUITE in gas & oil exploration companies like WesternGeco,
and telecoms like Telenor. Disclaimer: This paper only expresses the personal
opinions of the authors, and is not an official statement made by these
companies.

and the documentation to setup the IDE (Eclipse or IntelliJ

IDEA) to develop and build a Jenkins plugin is very complete,

the documentation of, for example, how to keep data from one

build to another is very poor. To our surprise, Jenkins does not

read several files to build all the web interface every time a

page is loaded. Instead, it serializes all data of a build after

finishing it. This is of course a feature that speed up Jenkins,

but it took us a while to understand it and properly use it, due

to the lack of documentation.

Often, adding even some very basic functionalities requires

hours if not days of first studying the source code of those

tools, or asking questions on their developers’ forums (in

this regard, IntelliJ’s forum was very useful). To complicate

matters even more, the APIs of these tools are not really meant

for maintainability (e.g., backward compatibility to previous

versions, as usually done for widely used libraries), and can

drastically change from release to release.

The lesson here is that plugins should be as lightweight as

possible, where most of the functionalities should rather be in

the test data generation tools. A plugin should be just used

to start the test data generation with some parameters, and

provide feedback on when the generation is finished, or issue

warnings in case of errors.

Another lesson learnt is that, at least in our cases, it pays off

to run the test data generation tools in a separated JVM. This is

not only for Java version mismatch issues (recall Section III),

but also for other technical details. The first is related to

the handling of classloaders: EVOSUITE heavily relies on

classloaders, for example to load and instrument CUTs, and

also to infer the classpath of the JVM that started EVOSUITE

automatically (this is needed when EVOSUITE spawns client

processes). When run from command line, the classloader

used to load EVOSUITE’s entry point would be the system

classloader, which usually is an instance of URLClassLoader.

A URLClassLoader can be queried to obtain the classpath of

the JVM (e.g., to find out which version of Java was used, and

its URL on the local file system). However, this is practically

never the case in plugins, where classes are usually loaded with

custom classloaders. If a tool relies on the system classloader,

then running it inside a plugin will simply fail (as it was in

our case with EVOSUITE).

Furthermore, there are more subtle corner cases we encoun-

tered: During a demonstration of EVOSUITE with the Eclipse

plugin, we decided to switch off the wifi connection just a

minute before the demo started, in order to avoid possible

annoying popups, like for example an incoming Skype call.

Unfortunately, to the amusement of the audience, this had the

side effect of making the EVOSUITE Eclipse plugin not working

any more, although running EVOSUITE from command line was

perfectly fine. Following debugging investigations led to us to

the culprit: the localhost host name resolution. EVOSUITE uses

RMI to control its spawn client processes. This implies opening

a registry TCP port on the local host, which resulted in the IP

address of the wifi network card. This mapping was cached in

the JVM when Eclipse started. Switching off the wifi did not

update the cache, and then EVOSUITE, which was running in

the same JVM of Eclipse, was using this no longer valid IP

address. This problem would not have happened if EVOSUITE

was started in its own JVM. (Note, however, that a simple fix

to this issue was to hardcode the address 127.0.0.1 instead

of leaving the default resolution of the localhost variable).

Another benefit of running a test data generation tool on

a separate process is revealed when there are problems, like

a crash or hanging due to an infinite loop or deadlock. If

such problems happen in a spawned process, then that will

not have any major side effects on the IDE, and the software

engineers will not need to restart it to continue coding. As

generating tests is a time consuming activity (minutes or even

hours, depending on the number of CUTs), a couple of seconds

of overhead due to a new JVM launch should be negligible.

C. Compile Once, Test Everywhere

Java is a very portable language. Thanks to Java, we have

been able to apply EVOSUITE and its plugins on all major

operating systems, including Mac OS X, Linux, Solaris and

Windows. However, this was not straightforward.

Among academics, Mac and Linux systems are very common.

This latter is particularly the case because clusters of Linux

computers are often used for research experiments. However,

in industry Windows systems are not uncommon, and when

applying EVOSUITE it turned out that initially our plugins did

not work for that operating system.

A common issue is the handling of file paths, where

Mac/Linux uses “/” as path delimiter, whereas Windows uses

“\”. However, this issue is simple to fix in Java by simply using

the constant File.separator when creating path variables.

Another minor issues is the visualisation of the GUI: for

example, we noticed some small differences between Mac

and Windows in the IntelliJ plugin pop-up dialogs. To resolve

this problem one needs to open the plugin on both operating

systems, and perform layout modifications until the pop-up

dialogs are satisfactory in both systems.

However, there were also some more complex problems. In

particular, Windows has limitations when it comes to start new

processes: Process cannot take large inputs as parameter (e.g.,

typically max 8191 characters). In test data generation, large

inputs are common, for example to specify the full classpath

of the CUT, and the lists of CUTs to test. A workaround is to

write such data on disk, and use the name and path of this file

as input to the process; the process will then read from this file

and apply its configurations. However, this approach does not

work for the classpath, as that is an input to the JVM process,

and not the Java program the JVM is running. Fortunately, this

is a problem faced by all Java developers working on Windows,

and there are many forums/blogs discussing workarounds. The

solution we chose in EVOSUITE is that, when we need to spawn

a process using a classpath C, we rather create a “pathing jar”

on the fly. A pathing jar is a jar file with no data but a manifest

configuration file, where the property Class-Path is set to

C (after properly escaping it). Then, instead of using C as

classpath when spawning a new process, the classpath will just

point to the generated pathing jar.

Another major issues we faced when running EVOSUITE on

Windows is the termination of spawned processes, although

this might simply be a limitation of the JVM: Commands like

Process.destroy (to kill a spawned process) and System.exit

(to terminate the execution of the current process) do not

work reliably on Windows, resulting in processes that are

kept on running indefinitely. This is challenging to debug,

but fortunately, as it affects all Java programmers working on

Windows, there are plenty of forums/blogs discussing it. In

particular, in Windows one has to make sure that all streams

(in, out and err) between a parent and a spawned process are

closed before attempting a destroy or a exit call.

To be on the safe side and to avoid the possibility of

EVOSUITE leaving orphan processes, the entry point of

EVOSUITE (e.g., IntelliJ or Maven plugins) starts a TCP server,

and gives its port number as input to all the spawned processes.

Each spawned process will connect to the entry point, and check

if the connection is on every few seconds. If the connection

goes down for any reason, then the spawned process will

terminate itself. This approach ensures that, when a user stops

EVOSUITE, no spawned process can be left hanging, as the

TCP server in the entry point will not exist any more. The

benefit of this approach is that it is operating system agnostic,

as it does not rely on any adhoc operating-sytem specific

method to make sure that no spawned process is left hanging.

VI. CONCLUSIONS

In this paper, we presented three plugins we developed for

EVOSUITE to make it usable from Maven, IntelliJ IDEA and

Jenkins. This was done in order to improve the integration of

EVOSUITE into the development process for large industrial

software projects. We discussed the motivations for our

architectural choices, based on our experience in starting to

apply EVOSUITE among our industrial partners, and presented

technical details and lessons learnt.

The architecture of our plugins is not specific to EVOSUITE,

and could in principle be reused for other test data generation

tools as well, like for example Randoop [14], jTExpert [15],

GRT [16] and T3i [17]. However, to this end we would need

to formalize the names of the input parameters (e.g., how to

specify the classes to test and how many cores could be used

at most) that are passed to those tools, and they would then

need to be updated to use this information.

Further future work is required to support also other IDEs and

build tools. For example, we will update our current Eclipse

plugin to have the same architecture as our IntelliJ plugin.

Furthermore, as Gradle is gaining momentum in industry, we

are planning to support it as well. In this paper we presented

the first prototype version of the EVOSUITE Jenkins plugin,

and although it is usable, there is much potential for additional

functionalities: For example, although coverage of existing tests

is measured, this is not yet used in coverage visualizations. In

particular, it would be helpful to see in detail which parts of all

CUTs are covered by existing tests, which parts are covered by

newly generated tests, and which parts are not yet covered at

all. Furthermore, support to other SCMs would be beneficial.

EVOSUITE and its plugins are freely available for download.

Their source code is released under the LGPL open-source

license, and it is hosted on GitHub. For more information, visit

our webpage at: www.evosuite.org.

Acknowledgments. Supported by the National Research Fund,

Luxembourg (FNR/P10/03) and the EPSRC project “EXOGEN”

(EP/K030353/1).

REFERENCES

[1] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation for
Object-oriented Software,” in Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of

Software Engineering, ser. ESEC/FSE ’11, 2011, pp. 416–419.
[2] ——, “EvoSuite: On the Challenges of Test Case Generation in the Real

World,” in Proceedings of the 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation, ser. ICST ’13, 2013,
pp. 362–369.

[3] ——, “Whole test suite generation,” IEEE Transactions on Software

Engineering, vol. 39, no. 2, pp. 276–291, 2013.
[4] ——, “1600 Faults in 100 Projects: Automatically Finding Faults

While Achieving High Coverage with EvoSuite,” Empirical Software

Engineering, pp. 1–29, 2013.
[5] ——, “A Large-Scale Evaluation of Automated Unit Test Generation

Using EvoSuite,” ACM Transactions on Software Engineering and

Methodology, vol. 24, no. 2, pp. 8:1–8:42, Dec. 2014.
[6] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated Unit Test Generation

During Software Development: A Controlled Experiment and Think-
aloud Observations,” in Proceedings of the 2015 International Symposium

on Software Testing and Analysis, ser. ISSTA 2015, 2015, pp. 338–349.
[7] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does

Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study,” ACM Transactions on Software Engineering

and Methodology, vol. 24, no. 4, pp. 23:1–23:49, Sep. 2015.
[8] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella,

“Do Automatically Generated Test Cases Make Debugging Easier? An
Experimental Assessment of Debugging Effectiveness and Efficiency,”
ACM Transactions on Software Engineering and Methodology, vol. 25,
no. 1, pp. 5:1–5:38, Dec. 2015.

[9] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated Unit Test Generation
for Classes with Environment Dependencies,” in Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering,
ser. ASE ’14, 2014, pp. 79–90.

[10] ——, “Generating TCP/UDP Network Data for Automated Unit Test Gen-
eration,” in Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering, ser. ESEC/FSE 2015, 2015, pp. 155–165.
[11] J. Campos, A. Arcuri, G. Fraser, and R. Abreu, “Continuous Test

Generation: Enhancing Continuous Integration with Automated Test
Generation,” in Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering, ser. ASE ’14, pp. 55–66.
[12] J. Campos, G. Fraser, A. Arcuri, and R. Abreu, “Continuous Test

Generation on Guava,” in Search-Based Software Engineering, ser.
Lecture Notes in Computer Science, M. Barros and Y. Labiche, Eds.,
2015, vol. 9275, pp. 228–234.

[13] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Transactions on

Software Engineering, vol. 26, no. 7, pp. 653–661, Jul. 2000.
[14] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed Random

Testing for Java,” in Companion to the 22nd ACM SIGPLAN Conference

on Object-oriented Programming Systems and Applications Companion,
ser. OOPSLA ’07, 2007, pp. 815–816.

[15] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance Generator and
Problem Representation to Improve Object Oriented Code Coverage,”
IEEE Transactions on Software Engineering, vol. 41, no. 3, 2015.

[16] L. Ma, C. Artho, C. Zhang, H. Sato, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “GRT at the SBST 2015 Tool Competition,” in Proceedings of

the Eighth International Workshop on Search-Based Software Testing,
ser. SBST ’15, 2015, pp. 48–51.

[17] I. S. W. B. Prasetya, “T3i: A Tool for Generating and Querying Test
Suites for Java,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, ser. ESEC/FSE 2015, 2015.

	I Introduction
	II Unit Test Generation in Build Automation
	II-A Integrating Generated Tests in Maven
	II-B Generating Tests with Maven

	III IDE Integration of Unit Test Generation
	IV Continous Test Generation
	IV-A Invoking EvoSuite in the Context of CTG
	IV-B Accessing Generated Tests from Jenkins

	V Lessons Learnt
	V-A Industry Collaboration
	V-B Lightweight Plugins
	V-C Compile Once, Test Everywhere

	VI Conclusions
	References

