
Automata Language Equivalence vs. Simulations for

Model-based Mutant Equivalence:

An Empirical Evaluation

Xavier Devroey∗, Gilles Perrouin∗, Mike Papadakis†, Axel Legay‡, Pierre-Yves Schobbens∗, and Patrick Heymans∗

∗PReCISE Research Center, University of Namur, Belgium, Email: firstname.lastname@unamur.be
†SnT, SERVAL Team, University of Luxembourg, Email: michail.papadakis@uni.lu

‡INRIA Rennes, France, Email: axel.legay@inria.fr

Abstract—Mutation analysis is a popular test assessment
method. It relies on the mutation score, which indicates how many
mutants are revealed by a test suite. Yet, there are mutants whose
behaviour is equivalent to the original system, wasting analysis
resources and preventing the satisfaction of the full (100%)
mutation score. For finite behavioural models, the Equivalent
Mutant Problem (EMP) can be addressed through language
equivalence of non-deterministic finite automata, which is a well-
studied, yet computationally expensive, problem in automata
theory. In this paper, we report on our preliminary assessment
of a state-of-the-art exact language equivalence tool to handle
the EMP against 3 models of size up to 15,000 states on 1170
mutants. We introduce random and mutation-biased simulation
heuristics as baselines for comparison. Results show that the exact
approach is often more than ten times faster in the weak mutation
scenario. For strong mutation, our biased simulations are faster
for models larger than 300 states. They can be up to 1,000 times
faster while limiting the error of misclassifying non-equivalent
mutants as equivalent to 10% on average. We therefore conclude
that the approaches can be combined for improved efficiency.

Index Terms—model-based mutation analysis; automata lan-
guage equivalence; random simulations

I. INTRODUCTION

Mutation analysis is a technique that assess testing robust-

ness by introducing artificial defects, called mutants. Mutants

are typically used for evaluating the effectiveness of test suites

[1], [2] and to support test generation [3], [4]. The technique

is popular as it helps simulating the behaviour of real faults [1]

and reveals more faults than other test criteria [2]. Researchers

also applied the method on models [5], [6] in order to test for

defects related to missing functionality or misinterpreted spec-

ifications [7]. In practice, model-based mutation was proved

to be powerful. As reported by Aichernig et al. [8], model

mutants can lead to tests that reveal implementation faults

that were found neither by manual tests, nor by the actual

operation, of an industrial system.

Despite its potential, mutation analysis faces a number of

challenges that currently prevent wider adoption [9]. One of

them is the Equivalent Mutants Problem (EMP). It concerns

the mutants whose behaviour is identical to the original

artefact (code or model). Such mutants cannot be distinguished

by any test, a situation that raises two issues: (i) they hamper

the use of the criterion as a stopping rule by skewing the

mutation score measurement (the number of detected mutants

divided by the total number of mutants), and (ii) they do not

bring any new value to the test generation techniques as they

attempt to kill mutants that have no chance to be killed.

In this paper, we focus on the model-based formulation

of the EMP, which can be expressed in terms of language

equivalence. Language equivalence has been studied by the

formal verification community who determined its P-SPACE

complexity [10] and derived exact equivalence checking algo-

rithms [11], [12]. While potentially helpful, such tools have,

to our knowledge, never been used to tackle the EMP. This is

the main contribution and novelty of this paper.

In summary, the contributions of this paper are: (i) the

design of two simulation algorithms relying either on random

simulations (RS) or biased simulations (BS) covering infected

states [3] (i.e., exploiting syntactical differences between orig-

inal and mutant models) to improve the chances to distinguish

non-equivalent mutants; (ii) a configurable implementation of

our simulations that benefits from the fact that simulation

can be easily distributed amongst processor cores; (iii) the

definition of an experimental setup to apply an automata

language equivalence tool (ALE) [11] to the EMP: we em-

ployed three models (from nine to 15,000 states), produced

1170 mutants using seven operators, and considered four

mutation orders (one, two, five, ten), according to strong and

weak mutation scenarios; (iv) the assessment of the ALE

tool with respect to our algorithms. We measured the speed

and accuracy of equivalence detection. For weak mutation the

ALE tool is ten times faster than the simulations. However,

biased simulations perform well for strong mutation on models

larger than 300 states as they can be 1,000 times faster.

The ratio of tagging non-equivalent mutants as equivalent

is 8% for biased simulations and 15% for random ones.

To ease reproducibility, our implementation, all our models,

and experimental results are available at https://projects.info.

unamur.be/vibes/mutants-equiv.html.

II. BACKGROUND

A. Transition Systems & Finite Automata

Our research in model-based testing considers transition

systems as a powerful abstract formalism to model system



behaviour. Our definition is adapted from Baier and Katoen’s

book [13], where atomic propositions have been omitted (we

do not consider state internals): a Transition System (TS) is

a tuple (S,Act, trans, i) where S is a set of states, Act is a

set of actions, trans ⊆ S × Act × S is a non-deterministic

transition relation (with (s1, α, s2) ∈ trans sometimes noted

s1
α

−→ s2), and i ∈ S is the initial state. To deal with test

generation activities, where finite behaviours are sought, we

first require that sets S and Act are finite. To mimic weak and

strong mutation scenarios (see Section III-A), we will stop our

executions in specific states. These additional requirements

make our execution semantics equivalent to that of usual

non-deterministic finite automata (NFA), thereby enabling the

comparison of our simulations to ALE tools. In the remainder

of this paper, unless otherwise stated, we will always refer

to TSs with such restrictions so that the term can be used

interchangeably with NFAs. Let ts = (S, Act, trans, i) be a

TS, let t = (α1, . . . , αn) where α1, . . . , αn ∈ Act be a finite

sequence of actions. The trace t is valid iff:

ts
(α1,...,αn)

=⇒ s with s ⊂ S,

where ts
(α1,...,αn)

=⇒ is equivalent to ∃s ∈ S : i
(α1,...,αn)

=⇒ s,

meaning that there exists a non-empty sequence of transitions

labelled (α1, . . . , αn) from i to a state s of the TS.

B. Equivalent Mutant Problem

In this paper, we focus on the model-based instance of the

Equivalent Mutant Problem (EMP). The equivalent mutant

problem is a well-known issue in mutation analysis [9]. It

stems from the fact that two program variants may exhibit

the same behaviour and therefore cannot be distinguished by

test cases. This is particularly problematic with respect to

both generation and assessment of test suites, since 100% of

killed mutants is impossible to reach in case of equivalence

(also the EMP leads to wasting resources spent on assessing

useless mutants). Mutant equivalence can take two forms [9]:

(a) equivalence between mutants and the original system;

(b) equivalence between two mutants (not with the original

system). Mutants of case (a) are called equivalent while

mutants of case (b) are called duplicate. In the context of this

paper, we focus on mutants that are behaviourally equivalent

to the original system, i.e., mutants of case (a).

C. Automata Language Equivalence & EMP

In our context, the EMP corresponds to a classic problem

in automata theory: Automata Language Equivalence (ALE).

The accepted language of an automaton is formed by all the

sequences of actions (words) that can be accepted i.e., starting

in the initial state and ending in a final state. Therefore,

if a mutant m accepts the same language as the original o

(language-equivalent), then there is no trace t that can distin-

guish the mutant from the original: ∀t, t ∈ L(o) ⇔ t ∈ L(m).
There are various forms of relations defined between two

automata that we can compute to determine whether they are

language-equivalent. Among them, we can cite bisimulations

or trace equivalence [13]. In the last years, the verification

community came up with dedicated algorithms such as bisi-

mulations up to congruence [11] or antichains [12] to address

language equivalence.

Although tackling the language equivalence and inclusion

problems from different angles and heuristics, all these tech-

niques may face exponential blow-up since both language

inclusion and equivalence were demonstrated to be P-SPACE

complete [10]. While worst-case complexity can seem dis-

couraging, various heuristics have been proposed to limit the

effects of this complexity in practice. One of the goals of this

paper is to determine the applicability of an exact language

equivalence algorithm to address the EMP [11]. The algorithm

selected due to its availability, reported performance over the

state of the art and ability to handle non-determinism that

mutations may incur. In the next section, we also present two

baseline algorithms that run generated traces to distinguish

original and mutants’ behaviours.

III. MUTANT EQUIVALENCE ANALYSIS

A. Strong and Weak Mutation

Our simulations detect an incorrect state if a trace that is

valid with respect to the original TS is invalid on the mutant

TS, and vice-versa. Indeed, when executed, a trace induces

one or more runs (alternating sequences of states and actions),

depending on the presence of non-determinism. If such a run

does not contain all the actions of the trace (i.e, the run is

incomplete), it is because of the presence of an incorrect state

preventing the subsequent actions to be fired. If all runs are

complete, the original and the mutant are assumed equivalent

for this trace. Mutants affect the final states of these runs. For

weak mutation, these states can map to any state of the TS. For

strong mutation, we need to account for the fact that TSs have

no final states. A frequent example is the modelling of user

sessions in which, after a legitimate sequence of actions, the

system returns to its initial state to welcome a new user. This

occurs in two thirds of the systems we analyse in Section IV-1.

This is why we model strong mutation by generating traces

whose runs start and end in the same initial state.

The ALE approach uses automata that have explicit initial

and final states. For weak mutation, we generate automata in

which all states are final, and for strong mutation the initial

state is the only final state.

B. Automata Language Equivalence (ALE)

The ALE approach we selected for comparison is developed

by Bonchi and Pous [11]. It can be thought of an extension

to non-deterministic TSs of the Hopcroft-Karp algorithm. In

particular, they introduce a new bisimulation relation called

up to congruence that requires to explore less states than

the original algorithm. This approach also avoids to build the

complete deterministic finite TS and performs determinisation

on-the-fly. This makes such an approach particularly relevant:

(i) non-determinism may be introduced locally by mutations

(our original models are deterministic), thereby limiting de-

terminisation scope, and (ii) between 0% and 15.5% of our

mutants are non-deterministic (see Section IV-1).



Algorithm 1 Generic simulation

Require: o : TS {the original system}
m : TS {the mutant to compare to o}
N {total number of traces to generate}
k {trace length}

Ensure: returns a positive or negative trace differentiating m from
o or a special value (none) if m is equivalent to o.

1: traceset← select(o,
N

2
, k)

2: for all t ∈ tracetset do

3: if ¬(m
t

=⇒) then
4: return pos(t)
5: end if
6: end for

7: traceset← select(m,
N

2
, k)

8: for all t ∈ traceset do

9: if ¬(o
t

=⇒) then
10: return neg(t)
11: end if
12: end for
13: return none

C. Random and Biased Simulation

Our randomized approach to equivalence analysis is

straightforward: we generate random traces from the original

model and run them on the mutant model and reciprocally. If

a trace fails to execute on one of the models, it serves as a

counterexample and disproves equivalence. If all runs succeed,

then the mutant is considered probably equivalent and testers

have to decide if they want to perform more simulations or

switch to an exact method. Algorithm 1 presents our generic

simulation approach: N traces are selected (resp.) from the

original model (line 1) and the mutant model (line 7), and

executed (resp.) on the mutant model (line 3) and the original

model (line 9). In case of non deterministic behaviour, all the

possible paths are considered for the execution of the trace. If

one execution fails, the algorithm stops and returns a positive

trace such as (o
t

=⇒) ∧ ¬(m
t

=⇒) (line 4) or a negative

trace such as ¬(o
t

=⇒) ∧ (m
t

=⇒) (line 10) . This generic

simulation algorithm is instantiated through two strategies for

trace generation (lines 1 and 7): Random Simulation (RS) and

Biased Simulation (BS). The parameter N is computed using

the Chernoff-Hoeffding bound as explained hereafter.

1) Random Simulation (RS): Random simulation (RS) as-

sumes a uniform distribution of traces over the model, that is,

such traces are selected randomly (select call on lines 1 and

7 in Algorithm 1) by accumulating the actions αi triggered

by a random walk of a given length ≤ k in the TS. For weak

mutation (WM RS), the only constraint is to start the random

walk from the initial state i. Strong mutation (SM RS) requires

a random walk starting from and ending in i: after few tries,

this method (i.e., using a random walk until the initial state

i is reached) showed very poor results on our largest models

(we set a timeout of one hour for one equivalence detection)

and is therefore not further discussed in this paper.

2) Biased Simulation (BS): The biased simulation (BS)

approach exploits the basic characteristics of mutation testing:

mutations are localised and they create (most of the time)

behavioural differences. It assumes that those differences are

detected by a trace t which, when executed on the original TS

o or on its mutant m, goes through one of the states affected

by the mutation. For instance, the transition missing (TMI in

Table II) operator produces a mutant by removing a transition

a
αi

−→ b from the original TS. The BS approach generates

traces in o and m, such that their executions m
t

=⇒ or o
t

=⇒
cover a or b. Such states, called infected states, have been

shown to help identifying equivalent mutants at the code level

and to speed up mutation analysis [14]. This motivates us to

adopt this strategy in our biased simulation.

In practice, the set of infected states Sinfect is computed

by checking syntactic differences between the original and

mutant TSs. It will include: (i) connected states (i.e, states

accessible from the initial state) from one model which are

not present in the other, and (ii) states with differences in

their input/output transitions: in number of transitions or in

action names, considering any pair of states < so, sm > where

so is a state in the original TS, sm a state in the mutant

TS, such that their names are identical. An alternative is to

instrument the mutant generator to keep track of the list of

infected states while generating the mutants. Our goal is to

be able to apply this strategy without any information on how

the mutants are generated (e.g., generated by other frameworks

than ours) and to fairly compare with an exact approach that

makes no assumption on the locality of differences. Once the

set of infected states Sinfect is obtained (by any means), the

second step is to generate traces that cover such infected states.

For weak mutation (WM BS), a trace t is selected (select

call on lines 1 and 7 in algorithm 1) by concatenating the

actions of (i) the shortest walk from the initial state i to

a randomly chosen state a ∈ Sinfect and (ii) a random

walk starting from a. To proceed, the first step during trace

generation is to compute the shortest distance (i.e., the number

of transitions) between each state of the original TS o (or its

mutant m resp.) and the initial state i of o (or m resp.) using

a standard breadth-first search. For strong mutation (SM BS),

instead of a random walk starting from a, the algorithm will

consider the actions of a path starting from a and returning to

i using the computed shortest distance: the distance from a to

i will (not strictly) decrease each time a transition is taken in

the path.
3) Estimating the Number of Required Runs: An important

parameter for simulation is the number of runs N . Herault et

al. [15] suggested to use the Chernoff-Hoeffding bound to es-

timate the number N of required runs to limit the equivalence

probability depending on the approximation parameter ǫ > 0
and a confidence parameter δ < 1, for traces that are uniformly

distributed. Adapted to our two-way simulation, we have:

N = 8 log(2/δ)
ǫ2 . In the context of biased simulations, trace

distribution is not uniform as the infected states “force” traces

to explore only given portions of the model, viz. where the

mutations are. We therefore do neither interpret δ and ǫ values

nor an equivalence probability. There are just a convenient

means to compute N in our experiments.



TABLE I
MODELS CHARACTERISTICS

Model States Trans. Act. Avg.

deg.

BFS

height

Back

lvl tr.

Minepump 25 41 23 4.64 15 9

AGE-RR 772 6,639 772 8.60 328 408

Random 15,000 20,488 300 1.37 11,865 4,899

TABLE II
TRANSITION SYSTEM MUTATION OPERATORS

SMI State Missing operator removes a state (other than the initial state)
and all its incoming/outgoing transitions.

WIS Wrong Initial State operator changes the initial state.
AEX Action Exchange operator replaces the action linked to a given

transition by another action.
AMI Action Missing operator removes an action from a transition.
TMI Transition Missing operator removes a transition.
TAD Transition Add operator adds a transition between two states.
TDE Transition Destination Exchange operator modifies the destina-

tion of a transition.

IV. EMPIRICAL ASSESSMENT

This section presents our empirical assessment of the ALE,

RS, and BS approaches. We define the following research

questions: RQ1 How many non-equivalent mutants are ef-

fectively detected by the RS and BS approaches? RQ2 What

are the worst case execution times for the ALE and BS/RS

approaches?

To answer these RQs, we consider several models of dif-

ferent kinds of systems and apply the following procedure to

each of them: (i) we generate a set of mutants from the model

using the operators presented in Table II for orders 1, 2, 5, and

10; (ii) for each order, we sample 100 non-equivalent mutants

(using the ALE algorithm to guarantee non-equivalence) to

form the mutant set M ; (iii) for each mutant in M , we measure

the execution time and result of: 3 executions of weak mutation

random and biased search (WM RS/BS), and 3 executions of

strong mutation-biased search (SM BS) algorithms1 with 4

different values of δ and ǫ; and the executions of the ALE

algorithm. In the following we detail the different steps of the

procedure. The assessment has been performed on a Debian

3.16.7 x86 64 GNU/Linux running on a 16 cores, 2.2 GHz,

16Gb RAM virtual machine.

1) Models: We carry out the assessment on 3 different

models coming from different sources and with varying size

detailed in Table I. The different characteristics considered

are: the number of states (St.); the number of transitions (Tr.);

the number of actions (Act.); the number of incoming plus

outgoing transitions per state (Avg. deg.); the maximal number

of states between the initial state and any other state when

traversing the TS in breadth-first search (BFS h.); the number

of transitions whose source state has a higher BFS h. value than

its destination state (Back lvl tr.). The models are: the mine

pump (Minepump) [16]; WordPress model (AGE-RR) that

represent the navigational usages of a real WordPress instance

1As explained in section III-C1, SM RS is not considered for the assessment
due to the poor results during our initial attempts.

(reverse-engineered using a 2-gram inference method [17]).

The random model (Random) generated to have properties

which are likely to represent real system [18].

2) Mutant Generation and Sampling: First-order mutants

are generated using the operators presented in Table II. Each

operator is applied (arbitrarily) 10 times on the Minepump

model. Due to the small size of the model, applying the

same mutation operator more than 10 times is not relevant.

Operators are also applied (arbitrarily) 500 times on the other

models. In the same way, N-order mutants (with N equal to

2, 5, or 10 in our case) are generated by applying the same

operators 10/500 times (depending on the model) on (N − 1)-

order mutants. After the generation, we perform a random

sampling of 100 mutants (when available) for orders 1, 2, 5,

and 10, giving us a set M with 370 mutants for the Minepump

models, and 400 mutants for the other models. To ease mutant

generation, we use our compact representation [5].

3) Non-determinism: We checked all the 1170 mutants and

found that only 4.11% of them are non-deterministic. Never-

theless, there is a great disparity amongst models as the non-

determinism rate varies from 0.25% for AGE-RR to 11.35%

for Minepump. Higher-order mutation greatly influenced non-

determinism rates: the sole order 10 is responsible for 43% of

all non-deterministic mutants.

4) Algorithm Execution: To run the language equivalence

algorithms (for WM and SM), we use the HKC library [19], an

OCaml implementation of the ALE algorithm [11] compiled

using OCamlbuild. This tool handles non-deterministic TSs

using different strategies: the automata may be processed

either forward of backwards, and the exploration strategy may

be breadth-first or depth-first. For each mutant, we execute the

HKC library using each of the 4 possible configurations.
The random and biased simulation algorithms are imple-

mented in Java using multi-threading to parallelize trace
selection and execution as described in Algorithm 1 (lines 1,
3, 7, and 9). In our experiments, we set up the algorithm
with 4 threads and run 4 instances in parallel on our virtual
machine with 16 cores. We run the simulation algorithms with
4 different values of δ and ǫ determining the number of traces
selected and executed (N in Algorithm 1):

• RS1/BS1: (δ = 1e− 10, ǫ = 0.01, N = 1, 897, 519);
• RS2/BS2: (δ = 1e− 10, ǫ = 0.1, N = 18, 975);
• RS3/BS3: (δ = 1e− 5, ǫ = 0.1, N = 9, 764);
• RS4/BS4: (δ = 1e− 1, ǫ = 0.1, N = 2, 396).

For all the simulation configurations and all models, we

fixed the trace length k to 3,000, which was our compromise

between performance and non-equivalence detection: setting k

to BFS height led to crashes in some cases. In order to answer

RQ2, we also run each algorithm (RS1/BS1 to RS4/BS4, plus

the 4 possible ALE configurations) with the model itself as

the “mutant”. Those (unrealistic) equivalent detection runs

between the model and itself are only used to approximate

the worst computation time of the different algorithms.

A. Results and Discussion

1) Non-equivalent mutant detection - Answering RQ1: To

answer RQ1, we compute the non-equivalent mutant classi-

fication recall of the BS/RS algorithms (in Figure 2), i.e.,



●●

●

●●
●

●●

●
●●●●●●

●

●
●

●●

●

●
●

●●
●

●

●●●
●
●●●

●

●
●

●●

●

●
●

●
●●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●
●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●●
●

●

●●
●

●

●●
●

●●● ●

●●

●

●

●

●●●●●●

●

●

●●●●

●

●

●●

●

●

●

●●●●●●

●●

●●●●

●

●

●●

●

●

●●●●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●
●
●●●●●●

●

●●●●●●●

●

●

●●

●

●●●●
●
●●●●●●
●●

●

●●●●
●●●●●

●

●
●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●
●●

●

●●

●

●●●●●●●
●●●●●●●
●
●●●●
●

●
●

●

●
●
●●●●

●

●●●●●
●●●
●
●●
●●●

● ●
●●
●
●●●

●●
●

●
●

●

●

●

●

●●
●●
●
●
●
●
●

●
●●

●
●
●●
●
●
●
●●●●●●

●
●●●
●●●
●●●●●●●●
●●●●

●
●

●

●

●

●●

●

●
●

●

●

●
●
●

● ●●
●

●

●

●
●

●●●●
●●

●

●●●●

●

●
●

●

●

●

●
●
●●●
●●
●

●

●

●

●●

●●●
●
●●

●

●●●●

●

●●

●

●

●

●●●●
●●●

●

●

●

●

●●

●●●
●
●
●

●

●●●●

●

●
●

●

●

●

●●
●
●●●●

●

●

●

●

●●

●●●●
●
●

●

●●
●●

●

●
●

●

●

●

●
●●●●●●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●
●

●

●
●●●●
●

●

●
●●
●
●●●●
●

●

●●●●
●
●

●●●●

●
●

●●

●

●

●

●●
●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●
●
●●

●

●
●●●●●●

●

●●●
●
●

●
●●●●●●
●

●
●

●

●●

●

●●
●
●
●
●●
●●

●

●
●●●●●●●●●

●

●
●●
●
●
●
●

●●●
●
●●●●●

●
●

●●
●

●
●
●●●
●

●

●

●

●

●●

●

●
●
●●

●

●
●
●●
●
●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●
●

●

●
●

●

●●

●●●

●

●

●

●●

●

●●●

●●

●

●●●

●

●●

●

●

●

●●
●
●●

●

●
●

●

●
●

●

●●

●●●

●

●

●

●
●

●

●●●

●
●

●

●●●

●

●●

●

●

●

●●●
●●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●●

●

●●●

●●

●

●●●

●

●
●

●

●

●

●●
●
●●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●●

●

●
●●

●
●

●

●●●

●

●●

●

●

●●●●●

●

●
●●●●

●

●
●●●
●

●

●●●●●

●
●
●●●●

●

●
● ●

●

●●

●

●
●
●
●
●●

●

●●●

●

●
●
●

●

●

●●
●

●
●
●

●
●

●●
●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●●
●
●

●

●

●●
●●
●
●
●●

●

●

●
●●

●

● ●●

●
●●

●

●

●

●

●●

●●

●

●

●

●
●●●
●●
●

●

●
●●
●●

●

●
●

●

●
●●
●
●
●

●

●
●
●●●
●●●●●

●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
●●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●
●

●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

Minepump AGE−RR Random

1e−02

1e+00

1e+02

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Fig. 1. Execution time of the equivalent mutant detection

0.92

0.96

1.00

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

R
e

c
a

ll

Fig. 2. Recall

the percentage of non-equivalent mutants detected by the

BS/RS amongst the selected mutants. By construction, the

ALE algorithm has a recall of 100%, it is therefore not shown

here. It is also noted that the precision is 100% since all

the non-equivalent mutants detected are indeed killable, by

construction of our mutant set.

All our simulations obtain a recall higher than 90%, with

a clear advantage for biased simulations which never achieve

worse than 98% for the weak mutation scenario. As for time,

deviation in the recall is smaller for biased simulations thus

making the approach more predictable in addition of being

more reliable. We also observe that the random simulations

are more sensitive to the number of runs: we need more of

them to discover discrepancies by luck. This effect cannot be

observed for biased simulations. A possible explanation is that

the number of runs required to cover infected states with traces

is lower than the number we provided.

For strong mutation, the BS approach’s recall decreases to

around 90% (recall = 90%, σ = 1%): amongst the 1615 non-

equivalent mutant non-detections (over a total of 21688 non-

equivalent mutant evaluations), 570 (35%) were TAD mutants,

570 (35%) were WIS mutants, 167 (10%) were TDE mutants,

and 189 (11%) were 2nd-order TAD mutants (i.e., TAD-TAD

mutants); the rest of non-equivalent mutants not detected is

distributed amongst different operators with less than 2% for

each. This decrease may be due to the difficulty to find a path

to the initial state: for strong mutation, the BS trace selection

algorithm will consider traces starting from, and ending in,

the initial state. This means that mutations creating (TAD) or

modifying (TDE) a back-level transition will not be detected

using SM BS. Concerning WIS mutants, we believe that, as

the WIS operator only changes the initial state of the TS, the

set of infected states (Sinfect) is empty, which is equivalent

in our implementation to considering all the states infected.

2) Worst case scenario (execution time) - Answering RQ2:

Figure 3 presents a compact view of the worst execution time

of the different algorithms (RQ2). As expected, the RS/BS

execution time is directly correlated to the δ and ǫ values: a

lower number of traces selected and executed (N ) takes less

time. Overall, the time of the ALE executions grows with the

size of the model, reaching 5660 seconds (more than one and

a half hour) for the worst WM ALE execution time on the

Random model.

B. Lessons Learned

From our experiment we draw the following lessons. (i) Re-

garding weak mutation and independently of the size or nature

of the models, the ALE approach provides faster and exact

answers. This indicates that state-of-the-art language equiv-

alence algorithms can be used successfully for such a task.

(ii) Regarding strong mutation, biased random simulations are

of interest for the web and the random models, and gains

increase with the size (from one to three orders of magnitude).

Recalls of 90% and above allow to use such simulations

as reasonably reliable fast filters to discard non-equivalent

mutants, leaving to ALE algorithms difficult cases so as to

accelerate the analysis of large mutants bases. (iii) Biased

simulations are more predictable in terms of execution time

and recall. Additionally, drastically increasing the number of

runs does not affect their performance as opposed to random

simulations. (iv) The configuration of the ALE algorithm

(forward/backward processing, or breadth-first or depth-first

exploration) has very little influence on the total execution

time (regarding equivalent mutant detection). This may be

explained by the fact that mutations occur randomly and

therefore do not privilege any graph traversal strategy.

V. RELATED WORK

Monte Carlo simulations have been used to devise statisti-

cal model-checking techniques [15], [20] that alleviate state

explosion. Poulding and Feldt [21] used Nested Monte-Carlo

Search, to generate random data structures to be used for

testing.All these methods are related to ours since they use

Monte-Carlo but, none of them aims at modelling mutants or

tackling the equivalent mutant problem.

Walkinshaw and Bogdanov [22] advocate that using random

selection to compare automata languages may be biased due

to the impossibility to obtain a representative sample of

the language. In their work, they use a model-based testing

approach to compare two automata from the accepted language

perspective, and a diff algorithm to compare them with respect

to their transition structures (which is a more elaborate version



●

Minepump AGE−RR Random

1e−02

1e+00

1e+02

1e+04

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

W
M

 R
S

1

W
M

 R
S

2

W
M

 R
S

3

W
M

 R
S

4

W
M

 B
S

1

W
M

 B
S

2

W
M

 B
S

3

W
M

 B
S

4

W
M

 A
L

E

S
M

 B
S

1

S
M

 B
S

2

S
M

 B
S

3

S
M

 B
S

4

S
M

 A
L

E

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Fig. 3. Worst execution time of the equivalent mutant detection using the model itself as mutant

of our heuristic used to compute the set of infected states

Sinfect). In contrast, we look for difference instead of simi-

larity, which motivates the choice of easier-to-compute random

heuristics as baselines to compare with an ALE approach.

Code-based equivalent mutants can be identified using

compiler optimizations [9], program slicing [23] and formal

verification [14]. Although promising, these techniques are not

applicable to model mutants.

Non-determinism complicates equivalence detection both

at the code [24] and model levels [25]. Patel and Hierons

[24] associate predictions from pairs of inputs and outputs

of the mutant program and check whether these predictions

can be discarded by the original program, hence showing

non-equivalence. This is not applicable to our case since

our models do not have outputs. Aichernig and Jöbstl [25]

also encode the semantics of the action models in terms of

constraints and use refinement to check conformance in the

context of non-determinism. In our case, RS/BS manage non

determinism in the TSs by considering all the possible runs.

Regarding behavioural models, Aichernig et al. [8] de-

veloped a mutation-based test generation technique for state

machines. Belli et al. [26] compare mutation-testing strategies

when applied on event-based and state-based models, and

found that both had similar effectiveness.

VI. CONCLUSION

We investigated the relevance of an exact language equiva-

lence approach to tackle the equivalent mutant problem at the

model level. We offered two baseline algorithms using ran-

dom simulation, and compared them to language equivalence

under weak and strong mutation scenarios. Our experiments

demonstrated the efficiency of the exact approach for the weak

mutation scenario. However, for strong mutation, our biased

simulations are efficient (up to 1,000 times faster) on models

that contain more than 300 states, with detection errors of

8%. Thus, our results suggest that equivalence analysis can be

significantly accelerated by our simulations.

REFERENCES

[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria,” IEEE TSE, vol. 32, no. 8, pp. 608–624, 2006.

[2] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An empir-
ical study on mutation, statement and branch coverage fault revelation
that avoids the unreliable clean program assumption,” in ICSE, 2017.

[3] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in ISSRE, 2010, pp. 121–130.

[4] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation
of whole test suites,” Empirical Software Engineering, pp. 1–30, 2014.

[5] X. Devroey, G. Perrouin, M. Papadakis, P.-Y. Schobbens, and P. Hey-
mans, “Featured Model-based Mutation Analysis,” in ICSE, 2016.

[6] S. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero, “Mutation
testing applied to validate specifications based on statecharts,” in ISSRE,
1999, pp. 210–219.

[7] T. A. Budd and A. S. Gopal, “Program testing by specification mutation,”
Computer Languages, vol. 10, no. 1, pp. 63–73, Jan. 1985.

[8] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick,
and B. V. Schmidt, “Model-based mutation testing of an industrial
measurement device,” in TAP, 2014, pp. 1–19.

[9] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple fast and effective
equivalent mutant detection technique,” in ICSE, 2015, pp. 936–946.

[10] O. Kupferman and M. Y. Vardi, “Verification of fair transition systems,”
in Computer Aided Verification. Springer, 1996, pp. 372–382.

[11] F. Bonchi and D. Pous, “Checking NFA equivalence with bisimulations
up to congruence,” in POPL, 2013, pp. 457–468.

[12] L. Doyen and J. Raskin, “Antichain algorithms for finite automata,” in
TACAS, 2010, pp. 2–22.

[13] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[14] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. Le

Traon, and J. Marion, “Sound and quasi-complete detection of infeasible
test requirements,” in ICST, 2015, pp. 1–10.

[15] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate
probabilistic model checking,” in VMCAI, 2004, pp. 73–84.

[16] A. Classen, “Modelling with FTS: a Collection of Illustrative Examples,”
PReCISE, University of Namur, Namur, Belgium, Tech. Rep. P-CS-TR
SPLMC-00000001, 2010.

[17] S. E. Sprenkle, L. L. Pollock, and L. M. Simko, “Configuring effective
navigation models and abstract test cases for web applications by
analysing user behaviour,” STVR, vol. 23, no. 6, pp. 439–464, 2013.

[18] R. Pelánek, “Properties of state spaces and their applications,” STTT,
vol. 10, no. 5, pp. 443–454, 2008.

[19] F. Bonchi and D. Pous, “HKC Library v. 1.0,” https://perso.ens-lyon.fr/
damien.pous/hknt/, 2013.

[20] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of
discrete event systems using acceptance sampling,” in CAV. Springer,
2002, pp. 223–235.

[21] S. M. Poulding and R. Feldt, “Generating structured test data with
specific properties using nested monte-carlo search,” in GECCO, 2014,
pp. 1279–1286.

[22] N. Walkinshaw and K. Bogdanov, “Automated Comparison of State-
Based Software Models in Terms of Their Language and Structure,”
TOSEM, vol. 22, no. 2, pp. 1–37, 2013.

[23] R. M. Hierons, M. Harman, and S. Danicic, “Using program slicing to
assist in the detection of equivalent mutants,” STVR, vol. 9, no. 4, pp.
233–262, 1999.

[24] K. Patel and R. M. Hierons, “Resolving the equivalent mutant problem
in the presence of non-determinism and conicidental correctness,” in
ICTSS, 2016, pp. 123–138.

[25] B. K. Aichernig and E. Jobstl, “Towards symbolic model-based mutation
testing: Pitfalls in expressing semantics as constraints,” in ICST, 2012,
pp. 752–757.

[26] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong,
“Model-based mutation testing - approach and case studies,” Science of

Computer Programming, vol. 120, pp. 25–48, 2016.


