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Explainable AI (XAI) aims to create AIs that can explain the reason for their prediction.
AIs are quite useful in many situations since they enable processing complex tasks in mas-
sive data requirement. Although in many cases, it is difficult for human to comprehend the
decision process. The mainstream AI nowadays called deep neural network basically lacks in-
terpretability, because the inner process using neuron firings is beyond human-interpretation.
This black-box problem prevents applying AIs on high-stake tasks such as medical diagnosis,
and for an AI-based society with trust, an interpretable model is required. Deriving human-
interpretable symbolic rules is one of the promising ways for people to verify whether the
decision is appropriate or not.

This thesis explores a hybrid crowd-AI approach to develop ML models associated with
human-interpretable symbolic rules, and answers to two research questions: (RQ1) Is it possi-
ble to identify the components of ML models that correspond to predicates for symbolic rules?
(RQ2) If so, what method generates good results?

The proposed method extracts subsets of data instances that activate neurons similarly
from the black-box decision process of trained neural networks to enable human abductive
reasoning. Crowd workers are asked to conduct abductive reasoning to provide semantics of
the extracted data instance subsets in a natural language, which serve as predicates to explain
the data instance subsets. The obtained semantics connects the recognition processes of AI
and humans, in terms of a set of predicates with natural language descriptions that comprise
symbolic rules to define target classes.

In chapter 2, the mainstream of XAIs and the discussion about black-box model inter-
pretability, XAI evaluation, and XAI works using subsets of data instances are shown as
related works. In chapter 3, the proposed method and the crowdsourcing settings are ex-
plained. In chapter 4, experiments using crowdsourcing were conducted to demonstrate the
effectiveness of the system. The interpretability evaluation by crowdsourcing showed that the
system enables obtaining interpretable symbolic rules. In chapter 5, the interpretability of the
obtained rules and explanation is discussed. In chapter 6, contributions and answers to the
two research questions are summarized as a conclusion.

This thesis provides experimental results showing that the proposed approach can obtain
interpretable symbolic rules and explanations based on them.
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Chapter 1

Introduction

Machine learning is an intuitive system successful in many domains, and they are the
mainstream of current artificial intelligence research. However, a well-known drawback is
that black-box models such as neural network models do not explain why they made the
decision.

The lack of explainability in machine learning models prevents the use of AIs in high-
stakes decision-making, and many methods were created to make explainable machine learn-
ing models. Explainable AI (XAI) approaches look at either the inside of the machine learn-
ing model or the input-output relationship of the model, and explanations may be made on
a specific prediction or to the model itself.

The interpretation quality of an explanation by XAI models can be defined by faithful-
ness (how accurately the explanation represents the model behavior) and plausibility (how
reasonable the explanation seems to be) [1, 2, 3]. Jacovi and Goldberg [1] point out that
it is possible to generate a plausible explanation lacking faithfulness and many works on
textual explanation [4, 5] have not guarantee faithfulness.

As some plausible explanations lack faithfulness, some faithful explanations are con-
cerned about their plausibility. For example, the plausibility of explanation using attention
mechanisms [6] is under discussion. There is an opinion that no explanation suitable for
human cognition is obtained from internal model structure analysis [7, 8]. Since black-box
models are essentially not human-interpretable, we should use explainable models instead
if an explanation is necessary [8].

White-box models such as deliberative and reasoned artificial intelligence driven by
knowledge provide explanation interpretable for people, and was one of the most successful
AIs before deep learning arose. One of the approaches for them is to develop expert systems,
based on the expert-generated rules. However, such expert systems are relatively costly since
they require experts in the domain to decide on the knowledge to encode, pushing them
aside from the mainstream nowadays.

In such white-box models, logical rules are the core components. For example, a white
box model concludes that the object is a car if it has four wheels and a handle. The
elements of such logical rules is predicates, which are boolean functions that return true
when a particular condition holds for a given instance. For example, “x has four wheels”
returns true when a taxi is given for x, but it returns false when a bicycle is given for x.

There have been attempts to connect the two models - the data-driven black box
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Figure 1.1: Abduction-based rule generation (ARG): We first exploits crowdworkers’ abductive
reasoning ability to derive predicates that comprises symbolic rules and then uses them to generate
the explanations.

models and the human interpretable predicates. For example, TCAV [9] proposes a method
to explain how a neural network classifier works in terms of a predefined set of predicates to
explain the target classes. However, identifying predicates to be included in the pre-defined
set is not easy especially when there are a large number of target classes.

This thesis addresses the problem of how to identify the set of predicates that explain
the cognitive process of AI models for the target classes. The proposed framework, called the
abduction-based rule generation (ARG), first exploits crowd workers’ abductive reasoning
ability to derive predicates that comprises symbolic rules and then uses them to generate
the explanations. The challenge is how to identify components of the ML model that
correspond to appropriate predicates; for example, the predicate must not be too specific
(i.e., “x has four wheels” instead of “x is a car” for a car classifier), and must be connected
to easy-to-interpret semantics (i.e., “x is red” instead of f1(x) > 0.001).

Figure 1.1 shows the outline of our framework. For each subset of data instances that
activate neurons similarly from the black-box decision process of trained neural networks,
we ask crowd workers to conduct abductive reasoning to provide the semantics for it to
provide predicates. Then, the predicates are aggregated, and the connection between the
predicates and AI’s cognitive process is used to explain the results of AI’s output.

Research Questions. Our research questions are as follows. (RQ1) Is it possible to
identify the components of ML models that corresponds to predicates for symbolic rules?
(RQ2) If so, what method generates good results?

Contributions and Key Findings. The contributions and key findings are as follows.
(1) This thesis gives a human-in-the-loop framework for a novel problem of how to

derive white-box symbolic rules from black-box ML models. The key idea is to exploit the
human’s ability for abductive reasoning. To the best of our knowledge, this work is the first
to make natural language explanations based on the idea.
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Figure 1.2: Outline of the Proposed Method

(2) This thesis gives two contrastive methods to identify appropriate components of
ML models for deriving appropriate predicates in the framework. The two methods are
shown as Figure 1.2. The difference between the two methods is shown in the second from
the left box. The first method, which we call the NBDT-based Method, goes through
the upper box process in Figure 1.2. This method uses NBDT [10], which generates a
tree structure classification model from a deep learning multi-class classification model. In
NBDT, each node in the tree structure classification model is a binary classifier. The other
method, which we call the KMeans-based Method, goes through the the lower box process
in Figure 1.2. This method makes neuron clusters using all outputs of neurons in every
layer. NBDT-based Method uses the weights of the last fully-connected layer to make a
hierarchical structure, while the KMeans-based Method uses all outputs of neurons in every
layer. We expect to discover a suitable method for this task by exploring the two contrastive
methods.

(3) This thesis reports the result of an experiment with an open-world data set and real-
world crowd workers. The result shows that a model with both opacity and interpretability
can be achieved by our framework.

(4) The experimental results using crowdsourcing show that ML model components
using all layer output generate helpful abstract predicates, while components using only
layers close to the output lead to predicates too specific.

3



Chapter 2

Related Work

There are various approaches in the Explainable AI (XAI) field, making it difficult to de-
termine the pros and cons of each work [11]. Our proposed method explains the model
in global (the model’s behavior on the whole dataset) and local (the model’s prediction of
a particular instance) and performs high human-interpretation and explainability. Inter-
pretability and explainability are used interchangeably in many cases. In this thesis, we
consider interpretability as the ability to generate a convincing explanation for humans and
explainability as the ability to show the inference process. As interpretability quality can
be divided into faithfulness and plausibility [2, 1], we run evaluation experiments on each
measurement independently.

Rudin [8] argues that the explanation of deep learning models with opaque internal
structure by the attention mechanism is a posterior explanation for the inference. To avoid
generating posterior reasonings as explanation, our approach does not try to explain how
the deep learning model works, but rather performs its own inference by using the extracted
features (predicates).

Our approach can be explained in terms of the dual-process theory [12] in psychology. In
the dual-process theory, human thoughts are modeled by the interaction between black-box
implicit cognition and white-box explicit cognition. The implicit cognition is called System
1; in human decision-making, it is the intuitive answer we get. The explicit cognition is
called System 2, and in human decision-making, it is the logical thought we get after System
1 decisions. In human cognition, System 1 provides predictions and System 2 generates
coherent explanations [13].

In our work, we define a deep learning multi-class classification model as System 1 and
conduct a human-in-the-loop process with System 1 to construct a symbolic logical rules for
System 2. As mentioned in the Introduction, TCAV [9] proposes a method to explain how
a neural network classifier works in terms of a predefined set of predicates given in advance
to explain the target classes. However, identifying the set of predicates for each class is not
practical when there are a large number of target classes, such as in CIFAR100 [14].

Wan et al. [10] proposed a method called Neural-Backed Decision Trees (NBDT) that
generates a tree structure classifier from a pretrained deep learning multi-class classification
model. The inner nodes of the generated tree structure are binary classifiers, and the leaf
nodes are the classification classes. The tree structure is made by hierarchical clustering
of the last fully-connected layer weights of the pretrained deep learning model. After con-

4



structing the tree structure, all inner nodes are trained to perform the same outputs as
the original deep learning model. NBDT can be viewed as a derivation of System 2 from
System 1 since it extracts the interpretable tree structured model from the deep learning
model. However, it is unclear what kind of decision is represented by each node of the
tree structure constructed by NBDT. NBDT names nodes by computing the earliest com-
mon ancestor for all leaves in a subtree using WordNet [15]. As Wan et al. mentioned in
their work [10], WordNet lacks concepts like object attributes and context (e.g., clocks and
plates are circular, clouds and skyscrapers are both in the sky), despite the fact that such
visual information is littered across NBDT. In our work, we incorporate the tree structure
model constructed by the NBDT into human-in-the-loop to extract explainable features for
decision-making. Our work proposes a method to reconstruct a machine learning model into
a model that uses features that can be explained in natural language for decision-making.

NBDT creates a hierarchical model using the last fully-connected layer weights. As
a comparison, we also propose a non-hierarchical model using all the layer weights. The
model we propose uses neuron clusters, resulting from neurons clustered by their firing.
Berry and Tkačik claim that brain neuron activity is organized into discrete clusters [16].
As deep neural networks imitate brain neurons, we assume that neurons of deep network
classifiers function as clusters.
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Chapter 3

Proposed Method

In this chapter, we clarify our design goals, present the framework overview, and describe
two variations of implementation of our framework.

3.1 Problem and Framework Overview

We aim to extract components from deep learning machine and acquire human-interpretable
symbols using human abductive reasoning. We name the human-interpretable symbols
predicates and define them as the following.

Let D = {(x1, y1), . . . , (xN , yN )} be training dataset where xi is an image (data in-
stance) and yi is the corresponding class label. Our problem is to derive a set {Q1, . . . , Qn}
of computable, interpretable, and meaningful predicates.

Computable When a data instance x is provided, we can compute the probability that
Qi(x) is true. We denote this probability by PQi(x).

Interpretable Each predicate Qi is associated with a natural language description (e.g.,
“x is mainly red”, “x is a flower”) denoted by I(Qi).

Meaningful The set of predicates are meaningful as they explain the process of deriving
the conclusion.

To this end, we propose a framework that extracts predicates from deep neural network
parameters trained by using the target classification dataset D.

Figure 1.2 shows two variations of implementation of our framework. In either variation,
the deep neural network (DNN) is used for evaluating the predicates (i.e., calculating Qi(x))
and for building the crowdsourcing tasks to obtain human-interpretable descriptions (i.e.,
obtaining I(Qi)). Then, we induce symbolic rules that connect the predicates and the
target classes. In this thesis, we apply white-box model analysis such as logistic regression
and decision tree that statistically infers the relationship between the explanatory variables
(predicates) and the target variable (class). We also apply predicate logic that gives logical
rules of predictions. Logical propositions are obtained by converting the decision tree input
to boolean and disassembling the decision tree. In the following sections, we explain the
two methods in more detail.
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Figure 3.1: Crowdsourcing task for Node Annotation in NBDT-based Method

3.2 NBDT-based Method

The first approach to extracting interpretable predicates is to leverage an existing XAI
method called NBDT [10]. NBDT generates a decision tree structure whose each node
corresponds to a boundary in the latent feature space learned by a DNN. The inner nodes
of the generated tree structure are binary classifiers, and the leaf nodes are the classification
classes. As Figure 1.2 (2a. and 2b.) shows, the proposed method first constructs the NBDT
by training on the target dataset D that contains a large number of labeled images.

Our proposed NBDT-based Method attempts to give human-interpretable descriptions
to each node in the NBDT by using crowdsourcing. The node that corresponds to a latent
space boundary is not easy to understand its semantics for humans. Some of the nodes may
even be impossible to interpret for humans, not only just absent of descriptions. Therefore,
the proposed method extracts human-interpretable nodes as predicates by applying the
following two processes: (1) node annotation and (2) node selection.

3.2.1 Node annotation

The basic strategy for obtaining natural language descriptions from crowd workers is instance-
based comparison. Given data instance x and node v, the NBDT can calculate the probabil-
ity of the binary decision pv(x). For the comparison, we choose two sets of data instances as
representative of positive and negative examples regarding the binary decision. The positive
data instances for node v are denoted by Topk,x(pv(x)), which is a set of k instances that
make the probability pv(x) to be highest, where k is a predefined integer that specifies the
number of images to be reviewed by workers. The negative counterpart is Topk,x(−pv(x)).

We collect descriptions of what each node in the NBDT checks by showing the two

7



Figure 3.2: Crowdsourcing task for Node Selection in NBDT-based Method

sets of selected images to crowd workers. Figure 3.1 is an example of the screen shown to
workers in the crowdsourcing process (k = 30). Workers fill in the blanks of the sentence
“Is the image ____?”. We make tasks from all the inner nodes in NBDT. We also make
tasks switching “Yes” and “No” for all tasks. We assign multiple workers to each task to
obtain multiple descriptions for each node and obtain sets of descriptions Av,l,j where v is
the node, l is the “Yes” and “No” switching, and j is the worker number.

3.2.2 Node selection

Some of the descriptions collected from workers may be inappropriate due to both human
errors and uninterpretability of the node. Uninterpretable nodes include nodes that do not
contribute to image classification (nodes not used), nodes representing concepts that cannot
be denoted by English, and nodes representing concepts that don’t correspond to human
cognition. Therefore, we evaluate the collected descriptions using crowdsourcing as well. A
helpful description satisfies the two conditions: it conforms to the actual binary classifier’s
judgment and is human-interpretable.

Figure 3.2 is an example of the screen shown to workers in the crowdsourcing process.
The positive and negative examples of images used in the node annotation Topk,x(pv(x))
and Topk,x(−pv(x)) are randomly placed, and a description Av,l,j is shown on the top of the
screen. For each collected description Av,l,j , we ask workers to choose all pictures that match
the description. We calculate the F1 score of the worker’s selection, where selected images
that come from Topk,x(pv(x)) are true positive cases, selected images from Topk,x(−pv(x))
are false positive cases, non-selected images from Topk,x(pv(x)) are false negative cases,
and non-selected images from Topk,x(−pv(x)) are true negative cases. We defined that
descriptions (e.g., the sentence shown at the top in Figure 3.2) with high F1 scores are
human-interpretable descriptions. In our experiment, we empirically decided the threshold
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Figure 3.3: Converting Neurons to Vectors

of F1 score to be 0.67.

3.2.3 Predicates in NBDT-based Method

Using the F1 scores calculated in the previous section, we define predicates {Q1, . . . , Qn}
as descriptions having F1 scores that are higher than the threshold, 0.67. The evaluation
function for Qi is based on the NBDT’s function. The probability that Qi(x) is true,
denoted by PQi(x), is defined as the probability of the binary decision pv(x) for the node v

that corresponds to Qi. The interpretable description I(Qi) is a set of descriptions having
F1 scores higher than the threshold.

By using the extracted predicates, a new classification model is created. We make a lo-
gistic regression model by using the output probabilities of the inner nodes (PQ1(x), . . . , PQn(x))
as a feature vector. Each feature used in the logistic regression model has a corresponding
natural language annotation, making the inference human-interpretable.
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Figure 3.4: Crowdsourcing Task giving Properties to Neuron Cluster

3.3 KMeans-based Method

Another approach to extracting predicates is to examine the neuron activities in a trained
DNN. While deep networks contain millions of neurons, it is not probable that all the
neurons work differently and play independent roles from each other. Rather, we assume
that there are some groups of neurons that are activated in response to similar visual
features. This consideration motivates us to propose the KMeans-based Method that makes
neuron clusters and treats them as predicates.

In this method, we first train a DNN with training data D as Figure 1.2 (1.) shows.
(In our experiment, we used a pretrained ResNet50 [17] and fine-tuned it with D.) Then,
we make neuron clusters by using the trained DNN. Assuming that each neuron cluster
represents an image feature, we make neuron vectors from all neuron firings when the whole
dataset passed the network.

Figure 3.3 shows the process to compute neuron vectors.

1. Run inference and obtain neuron firings on the whole dataset.

2. Split the neuron firings into three sections by the network layers; top layers, which
are close to the input; middle layers, which come next to the top layers; and bottom
layers, close to the output.

3. Defining neurons firing above certain levels as fired neurons, convert each input data
in each layer section to a list of fired neurons. The strength of the firing orders the
neurons listed.
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4. Considering each neuron as words and neuron lists as documents, use the Word2Vec
[18] algorithm to convert neurons to vectors.

5. Run k-means clustering on neuron vectors.

We set k = 100 for clustering, meaning that 3 (number of layer sections) ×100 (number of
clusters per layer sections) = 300 neuron clusters are made.

3.3.1 Collecting Predicates

We collect the properties of the image using crowdsourcing. Figure 3.4 is an example of the
screen shown to workers in the crowdsourcing process.

Images in the center represent the target neuron cluster in which we want workers to
write properties. Images on the left side represent neuron clusters close to the target image
cluster, and images on the right side represent neuron clusters far from the target neuron
cluster.

3.3.2 Aggregating Predicates

Each description collected in crowdsourcing corresponds to a neuron cluster, although the
predicate may not be unique to a neuron cluster. Figure 1.1 shows an example of predicate
“green” corresponding to multiple neuron clusters.

By embedding the descriptions by pretrained BERT [19], we calculate cosine similarity
between every description. The description pairs with cosine similarity above a threshold
are connected as similar descriptions, and descriptions connected with at least one path are
grouped as a predicate. Figure 3.5 shows how descriptions are aggregated to predicates.

Figure 3.5: Aggregating Descriptions

3.3.3 Dual Process Model

In this section, we explain how we exercise the predicates and extract logical rules.

Decision Tree Model

Using crowdsourcing results, we make a new model combining System 1 and System 2
architecture. The input of this new model is the firing of neuron clusters when an image
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is given to deep neural network model (System 1). We standardized the neuron firings,
and defined neurons with firing above the threshold as fired neurons. From the predicate
aggregation process, each neuron cluster is attached to one or more predicates. Using the
list of neuron cluster firings, we obtain predicate firings. The input of the new model is
made by the following steps.

1. Obtain a list of neurons li fired by passing data xi to the deep neural network.

2. Convert the neuron IDs in the list of fired neurons li to the corresponding neuron
cluster IDs.

3. Make neuron cluster firing vector vi from the number of times each neuron cluster
appeared in list li. The size of vi is the number of neuron clusters, and each element
is the number of each neuron cluster that appeared in the list.

4. Using the correspondence of neuron clusters and predicates, aggregate vi by predicates
and make predicate activation vector pi. The size of pi is the number of predicates,
and each element is the number of each predicate that appeared in vi.

The tree decision model uses pi, the firing of predicates as the input feature (System 2). Each
feature used in the tree decision model has a corresponding natural language annotation,
making the inference human-interpretable. We also made a tree decision model using neuron
cluster vector vi as the input vector as a comparison of human-interpretability and machine
interpretability.

Logic Model

By converting the input of the decision tree model to a boolean and disassembling the
decision tree to a logical proposition, we make a logic model. As the decision tree model,
the input of this new model is the firing of predicates when an image is given to deep neural
network model (System 1). Each neuron cluster is attached to one or more predicates, so
using the list of neuron cluster firings, we obtain predicate firings. We convert the predicate
firing to boolean by rounding up the predicate firing above a threshold as True Predicates
and others as False Predicates.

The input of the new model is made by the following steps.

1. Obtain neuron firings ni by passing data xi to the deep neural network.

2. Apply standardization on elements of ni by each neuron layer to make each layer of
ni follow a normal distribution.

3. Make vector pi by aggregating the list of neurons ni to predicate firings using the
correspondence of neuron clusters and predicates. The size of pi is the number of
predicates, and each element is the aggregated firing of predicates.

4. Convert pi to binary predicate activation vector bi by rounding up the firing of each
element in pi to 1 if the amount of the aggregated firing is above 0.6 and otherwise to
0. The size of bi is the number of predicates, and each element is the aggregated firing
of predicates in boolean.

12



The logic model uses bi, the firing of predicates in boolean as the input feature (System 2).
A tree decision model using bi is made to obtain the relationships between class predictions
and bi. As each element in bi represents a predicate, and predicates correspond to concepts
in natural language, the relationships between bi and the predicted class is compatible with
predicate logic.
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Chapter 4

Experiments

We conducted an experiment to compare the methods in terms of meaningfulness and inter-
pretability of the extracted predicates. In evaluating the results, we divided the evaluation
measurements in human-interpretability.

4.1 Experiment Settings

We used the CIFAR100 dataset [14] in our experiment because we expected that it would
generate not a few number of predicates. CIFAR100 dataset is a set of 32×32 color images
in 100 classes. We first used the training data of CIFAR100 for extracting predicates and
generate the models with the extracted predicates, and compared the performance with its
test data.

Table 4.1: The Number of Crowd Workers for each Task
Method Task Type The Number of Workers
NBDT-based Node Annotation 7
NBDT-based Node Selection 3
KMeans-based Collect Neuron Property 7

The crowdsourcing platform we used in this experiment is Amazon Mechanical Turk1.
Table 4.1 summarises the number of crowd workers who perform each task in the experiment.
Since the total number of tasks and workers depends on the method, we will show them
in the following sections. We paid 0.2 USD to each worker for each task. We set 3 layer
sections and 100 clusters per layer section in neuron clustering.

Table 4.2: The Number of Crowd Workers: Evaluation Tasks
Method Evaluation Measurement The Number of Workers
NBDT-based Human-Interpretation 3
KMeans-based Human-Interpretation 3
Logic-model Faithfulness 3
Logic-model Plausibility 3

In evaluating the faithfulness of predicates processed in Logic-model, we showed crowd
workers the predicate (natural language annotations) and group of images that return large

1https://www.mturk.com/mturk
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Figure 4.1: Crowdsourcing Experiment for Evaluating Predicates

pi value. We asked the workers if the predicate fits the group of images.
Table 4.2 summarises the number of crowd workers who perform each task in the

experiment. Figure 4.1 is an example of the screen shown to workers in the crowdsourcing
process. In evaluating the plausibility of logic processed in Logic-model, we selected two
classes (“rose” and “tulip”) in CIFAR100 since explanations are relative and the generated
logic becomes too redundant for workers to evaluate the plausibility. Figure 4.2 is an
example of the screen shown to workers in the crowdsourcing process.

Figure 4.2: Crowdsourcing Experiment for Evaluating Logic

4.2 Results

4.2.1 Accuracy of the Obtained Models with Extracted Predicates

Table 4.3 shows the accuracy of each result of the original neural network models and the
generated predicate-based models (we put the circle in the Explainable column to denote
it is the generated model using the extracted predicates) for the test data. For the models,
higher accuracy means having more meaningful predicates.

In the NBDT-based Method, the accuracy of the classifier using human-interpretable
nodes was 66.64%, which is about 11 points lower than NBDT scores. In the KMeans-
based Method, the accuracy of the classifier differed by the number of predicates. When
aggregating the 2100 semantics annotating the 300 neuron clusters to bigger groups such
as 100 predicates, the classifier accuracy decreased to 55.70%, which is over 25 points lower
than the base DL model. Although, the classifier accuracy is 78.53%, which is only 3 points
lower than the base DL model, when aggregating the semantics to 500 predicates. The
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Table 4.3: Test Data Accuracy in CIFAR100
Method Explainable Accuracy
NBDT (deep tree structure) △ 77.09
NBDT-based (all nodes) △ 73.83
NBDT-based (interpretable) ◦ 66.64
KMeans-based (DL model) × 81.83
KMeans-based (100 predicates) ◦ 55.70
KMeans-based (200 predicates) ◦ 61.88
KMeans-based (300 predicates) ◦ 71.78
KMeans-based (400 predicates) ◦ 76.45
KMeans-based (500 predicates) ◦ 78.53
KMeans-based (neuron clusters) △ 77.97

result using 500 predicates is 0.56 points higher than the KMeans-based Method using the
original non-aggregated 300 neuron clusters as an input, meaning human annotations are
informative not only for humans but also for AI classification.

Table 4.4: Accuracy in 2 Class Classification(“rose” and “tulip”)
Data type Max tree depth Accuracy
train data 5 67.5
train data 12 90.4
test data 5 60.2
test data 12 73.5

Table 4.4 shows the accuracy of each result of the logic generating KMeans-based
models for the training data and test data. The max tree depth column shows the number
of nodes along the longest path from the root of the tree to its farthest leaf node. A
large max depth amount makes large trees and enables sensitive sorting of the given data
set. Although, this leads to generating an overfitted model, which cannot predict well on
unknown data. Considering human-interpretability, logic generated from large tree model
becomes long and difficult to comprehend.

On the training data, the accuracy of the classifier set to max tree depth 5 was 67.5%
and the accuracy of the classifier set to max tree depth 12 was 90.4%. On the test data,
the accuracy of the classifier set to max tree depth 5 was 60.2% and the accuracy of the
classifier set to max tree depth 12 was 73.5%.

The scores on the classifier set to max tree depth 12 were higher than those of the
classifier set to max tree depth 5, but the difference in the accuracy was smaller on test
data. This means that generalization ability is not so high on the classifier set to max tree
depth 12.

16



Figure 4.3: Distribution of F1 scores in Node Selection Experiment

Figure 4.4: Human-interpretable Nodes in NBDT

4.2.2 Crowdsourcing Cost

Table 4.5 shows the crowdsourcing costs. NBDT-based Method, taking 2 steps in obtaining
explainable annotations was costly in both time and money. Table 4.6 shows the time taken
when an expert (the author) worked on the tasks. Note that the task aims to acquire a
widely accepted explanation. We do not mean to say that an expert can give always give
the best answer; Cognition such as color category boundaries may differ by culture and
biological differences. The overall time for the whole task is estimated from the average of
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the time taken to finish 20 tasks. The overall time is slightly shorter when an expert does
the whole task.

Table 4.5: Crowdsourcing Cost Summary
Method Step Time Money
NBDT-based Collecting Annotations 3.25 hours $504.00
NBDT-based Selecting Annotations 7.57 hours $141.12
NBDT-based Overall 10.82 hours $645.12
KMeans-based Collecting Annotations 4.03 hours $216.00

Table 4.6: Time Cost: An Expert Annotating
Method Step Number of Tasks Time(20 tasks) Estimated Time
NBDT-based Collecting Annotation 196 8.1 minutes 1.32 hours
NBDT-based Selecting Annotation 1372 5.7 minutes 6.48 hours
NBDT-based Overall 8.78 hours
KMeans-based Collecting Annotation 300 14.1 minutes 3.53 hours

4.2.3 Detailed Analysis

We then show the detail of how NBDT-based Method, KMeans-based Method, and the
logic generation using KMeans-based Method worked and how interpretable the extracted
predicates and logic are. Since the annotation is done by crowdsourcing, the predicates may
include grammatical mistakes or may not make sense due to human error and spammers.

NBDT-based Method

The number of inner nodes (binary classifiers) in the tree structure generated by NBDT was
98, and 98×2 (for each Yes/No) ×7 (number of workers per task) = 1, 372 annotations were
collected through crowdsourcing. 29 inner nodes with an F1 value of 0.67 or higher were
used as features in the human-interpretable logistic regression model. Figure 4.3 shows
the distribution of F1 scores in the node selection experiment. Figure 4.4 shows the 29
human-interpretable nodes in NBDT. Figure 4.4 shows that although the extracted nodes
were only those at the fourth level or lower, within the lower levels, the extracted nodes are
not concentrated on specific classes.
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Table 4.7: Example of weights in NBDT-based Method (The weights use answers from crowd-
sourcing and may include grammatical mistakes)

Class Explanation Weight
tulip top weights flowers 0.2456

—————————————– ————
contains green color 0.0858
—————————————– ————
in trees 0.0800
—————————————– ————

bottom weights mainly pink -0.2934
—————————————– ————
fruits -0.1102
—————————————– ————
yellow round -0.0946

rose top weights flowers 0.1382
—————————————– ————
in a chairs 0.1309
—————————————– ————
mainly pink 0.1161
—————————————– ————

bottom weights fruits -0.1707
—————————————– ————
a piece of living room furniture -0.1251
—————————————– ————
blurred -0.1040

Figure 4.5: Example of Decision Tree using Predicates (Due to the limited space, only the most
frequent words in the predicate is shown in the figure)

As an example of what the logistic regression model learned, we show the top 3 and
bottom 3 weights of the “tulip” class and the “rose” class in Table 4.7. Tulip and rose are
relatively close classes in CIFAR100 dataset, and they both have description “flowers” as
their most considerable weight. The second largest weight in rose is “in a chairs”, which
probably comes from the fact that rose include pictures of cut flowers taken indoors. The
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Table 4.8: Example of weights in KMeans-based Method (The collected properties use answers
from crowdsourcing and may include grammatical mistakes)

Class Collected properties Weight
tulip top weights Mainly warm coloring 0.1937

with a green background.
—————————————– ————
greenish; in forest; 0.1791
—————————————– ————
Mostly cool shades of grey; 0.0840
green; blue and brown.
—————————————– ————

bottom weights Predominant gray colors -0.0658
—————————————– ————
Mostly focusing vehicles. -0.0528
—————————————– ————
glass and curved -0.0474

rose top weights mainly red; 0.2609
—————————————– ————
Outdoor and greenish background. 0.1088
—————————————– ————
Mainly focusing Furniture. 0.0886
—————————————– ————

bottom weights in the jungle; green backdrop; -0.0308
—————————————– ————
Mostly focusing vehicles. -0.0305
—————————————– ————
Mainly brown; contains animals. -0.0277

second largest weight in tulip is “contains green color”, which can be assumed as a result of
large number of tulip pictures taken in gardens. The weights learned also show that “mainly
pink” is positive weight in rose but negative in tulip, also showing that classifiers focus on
colors when distinguishing rose and tulip.

KMeans-based Method

We collected 3 (layer sections) ×100 (neuron clusters) ×7 (number of workers per task)
= 2100 annotations were collected through crowdsourcing.

We made a logistic regression model using neuron cluster firings. As an example of
what the logistic regression model learned, we show the top 3 and bottom 3 weights of
the “tulip” class and the “rose” class in Table 4.8. The “Collected properties” are answers
from crowdsourcing. We instructed workers to write a sentence or a word, but we did not
give strict rules in the annotation task. Some answers from workers include grammatical
mistakes. Unlike results in Table 4.7, tulip and rose did not have common neuron clusters
in top 3 weights. Although, the fact that brown and green is helpful in distinguishing tulip,
and looking for red colors and furniture in distinguishing rose seem to be shared in both
NBDT-based Method and KMeans-based Method.

Figure 4.5 shows a part of the decision tree model using aggregated predicates. Due
to the limited space, only the most frequent words in the predicate are shown in the figure.
The “tulip” class and the “rose” class are divided by the sensitivity of predicate represented
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by words such as (“animal”, “greenish”, “mainly”, “circle”) and (“shape”, “round”, “in”,
“square”). By using decision tree model and human-interpretable predicates, we can extract
symbolic rules such as:

• (“animal”, “greenish”, “mainly”, “circle”) ∧ (“shape”, “round”, “in”, “square”) →
tulip

• (“animal”, “greenish”, “mainly”, “circle”) ∨ not (“shape”, “round”, “in”, “square”) →
rose

Each set of words in parentheses corresponds to a single predicate. The words are the most
frequent words in the set of workers’ descriptions given to the predicate.

Logic Model

We collected 173 predicates by aggregating the 2100 annotations given from crowd workers.
The predicates may include some grammatical mistakes since they are answers directly
from crowdsourcing. We made a logistic tree decision model using predicates and neuron
firings corresponding to the predicates. By disassembling the decision tree, we obtained
logic showing the path to predict the classification class.

Examples of the logic generated are shown in Table 4.9. Since the logic is based on tree
decision model, all logic generated from the same decision tree start from the same predicate.
As results in Table 4.7 and Table 4.8 show, tulip and rose seem to be distinguished by colors.
As the top 2 predicates in the original decision trees are “green color in nature and used
for many purpose” and “dark grey, light brown animals, in the jungle, green backdrop,
nature scene, brown dirt, in the fores”, which seems to represent green and brown, the fact
that brown and green helps distinguish tulip does seem to be shared in the logic model.
Although, generated logic shows rose may contain green and brown in some cases.

21



Table 4.9: Generated Logic (The predicates use answers from crowdsourcing and may include
grammatical mistakes)

Predicted Class max tree depth Logic
tulip 5 green color in nature and used for many purpose

dark grey, light brown animals, in the jungle, green
backdrop, nature scene, brown dirt, in the fores
————
not black
————
not leg
————
not white rectangular

——————— ————————
12 green color in nature and used for many purpose

dark grey, light brown animals, in the jungle, green
backdrop, nature scene, brown dirt, in the fores
————
black
————
not citrus fruits
————
not in a jungle

rose 5 green color in nature and used for many purpose
————
dark grey, light brown animals, in the jungle, green
backdrop, nature scene, brown dirt, in the fores
————
black
————
not citrus fruits
————
not brown, squared shaped objects

——————— ————————
12 green color in nature and used for many purpose

————
dark grey, light brown animals, in the jungle, green
backdrop, nature scene, brown dirt, in the fores
————
black
————
not citrus fruits
————
in a jungle
————
insects and animals
————
dark background object in the center
————
lives in australian continent
————
poisonous venom
————
rounded shapes with lines
————
tallest buildings
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4.3 Interpretability Evaluation

Figure 4.6: Crowdsourcing Experiment for Evaluating Annotations

We ran a crowdsourcing task to evaluate the human-interpretability of annotations associ-
ated to the predicates.

Figure 4.6 is an example of the evaluation task of annotation interpretability. A set of
images and annotations are shown, and workers select all annotations out of seven annota-
tions that suites the sets of images. Each set of images is shown to 3 workers, and we define
the annotation as interpretable when at least one worker selects it.

Table 4.10: Ratio of approved Predicates
Interpretable predicates(%)

NBDT-based Method 64.72
KMeans-based Method 68.14

Figure 4.7: Predicate similarity in each tasks

Table 4.10 shows the result of the evaluation task. The interpretable predicates score
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Figure 4.8: The Number of Predicates each worker approved

shows the ratio of sets of images having at least one interpretable predicate.
Figure 4.7 shows the similarity of the predicates in each tasks. KMeans was successful

than NBDT in gathering predicates in variation. Figure 4.8 shows the number of pred-
icates each worker approved. Although each worker were able to approve at most seven
annotations, most workers approved only one predicate (Figure 4.8 ). In the results of
both NBDT-based Method and KMeans-based Method, most sets of images had at least
one human-interpretable annotation for the predicates, showing the effectiveness of our
methods in extracting human interpretable predicates.

Figure 4.9 is an example of the evaluation task of predicate interpretability. A set of
images and predicate is shown, and workers select the degree of the fitness of predicate and
images from 4 options, “All words fit most pictures”, “All words fit some pictures”, “Some
words fit most pictures”, “Some words fit some pictures”, “The words and pictures are not
relevant at all”, and “The words are incomprehensible”. This task evaluates the faithfulness
of the predicates. Each set of images is shown to 3 workers.

Figure 4.9: Crowdsourcing Experiment for Evaluating Predicates

Figure 4.10 shows the result of the faithfulness evaluation task. About half of the
workers answered that all or some words in the predicate fit most pictures, and nearly
90% of the workers answered that all or some words fit at least some pictures. Although,
considering the fact that predicates are generated by human annotations, this result does
not seem surprising.

Table 4.11 shows the results of aggregating answers of each 3 workers on the same task.
Defining the 6 answers, “All words fit most pictures”, “All words fit some pictures”, “Some
words fit most pictures”, and “Some words fit some pictures” as “fit” answers and “The
words and pictures are not relevant at all” and “The words are incomprehensible” as “not
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Figure 4.10: Result of Predicate Evaluation

Table 4.11: Predicate evaluation: Aggregated answers
3/3 workers answering fit 70.5%

3/3 workers answering not fit 2.9%
mixed answers 26.6%

fit” answers, majority of the predicates seem to be fitting the images, although the degree
of the fitness differs within the workers. It is also shown that some predicates definitely do
not fit the images, which is a result of spam answers.
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Figure 4.11: Good Predicate (An annotation given from worker): “animal in sea”

Figure 4.12: Bad Predicate (An annotation given from worker): “dolphin”
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Figure 4.13: Bad Predicate (An annotation given from worker): “I am going the ocean that time
I am see the tiger and men. A colour is bule.”

Figure 4.11, 4.12 and 4.13 show examples of good and bad predicates. The predicates
are crowdsourced and may include grammatical mistakes. All 3 workers answered Figure
4.11 as “All words fit most pictures”, all 3 workers answered Figure 4.12 as “The words and
pictures are not relevant at all”, and all 3 workers answered Figure 4.13 as “The words are
incomprehensible”. Predicate “dolphin”, which is shown as Figure 4.12 is aggregation of 4
neuron clusters, and 3 out of 4 neuron clusters included few dolphin images. Since the set of
images corresponding to predicates was made by choosing random images from the related
neuron clusters, dolphin images included in the original neuron clusters were excluded by
chance. A neuron cluster without any dolphin image is likely to be caused by a spammer
giving random annotations.

Predicate “I am going the ocean that time I am see the tiger and men. A colour is
bule.”, shown as Figure 4.13 is aggregation of 6 neuron clusters. The annotation is from a
single crowd worker, doubtless to be a spammer giving annotations irrelevant to the task.

Figure 4.14: Crowdsourcing experiment for Evaluating Logic
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Figure 4.15: Result of Logic Evaluation

Figure 4.14 is an example of the evaluation task of logic interpretability. The generated
logic is shown, and workers select the degree of plausibility of the logic from 3 options,
“Yes, the explanation is reasonable and close to human decisions.”, “Yes, the explanation is
reasonable although it is not like human decisions.”, “No, the explanation is not reasonable.”.
Each logic is shown to 3 workers.

Figure 4.15 shows the result of the plausibility evaluation task. The ratio of the answers
did not greatly differ by experimental settings, and in all experimental settings, most workers
answered that the logic is reasonable and close to humans.
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Chapter 5

Discussion

As results shown in Table 4.3 and Table 4.10, we succeeded in appropriately identifying
components of ML models to derive predicates for symbolic rules, which answers yes to the
research question RQ1.

The second research question was about discovering methods that generate good results
in human computation. Quantitative evaluation of good results in this case is difficult, but
we conclude that KMeans-based Method performs better for this task.

Figure 5.1 shows an example of sets of images made by NBDT-based Method and
predicates collected by crowdsourcing. The left set of images seems to show clocks and
the right seems to show plates. Since NBDT-based Method makes image sets from binary
classifier results, many image sets appeared to be a mix of 2 classification classes, making
it challenging for the workers to come up with abstract predicates.

Figure 5.2, shows an example of image groups made in KMeans-based Method and
predicates collected by crowdsourcing. Considering “Dissimilar Group” plain cold-colored
images and “Similar Group” being a mix of warm-colored images and images showing circles,
the target group in the center seems to react to circles and warm colors images. Compared to
the NBDT-based Method, KMeans-based Method seemed to show abstract features. Deep
learning is said to capture features by learning the features step-by-step in the deep neural
network layers. We assume that abstract properties such as colors and shapes are caught
in the deep learning model’s top to middle layers. The reason for KMeans-based Method
successfully capturing abstract features is presumably because it uses all layers’ outputs.

In both methods, we asked workers to provide visual descriptions such as “warm colors”
and “triangle-shaped.” However, most workers gave predicates based on human knowledge,
such as “Things to measure time” and “Large vehicle.” which is not a helpful rule in image
classification. Considering the dual-process theory, we can say that answering the names
of things shown in an image is a System 1 process, and seeking for properties shown in the
image is a System 2 process for workers. Since System 2 process is more costly in time, it
seems reasonable for workers to give names of object instead of abstract properties.

The results of crowdsourcing showed that most of the logic generated is somewhat
plausible but they do not seem clear and convincing enough as human-made explanations.
The predicate, “green color in nature and used for many purpose” is the root node in dis-
tinguishing class “rose” and “tulip”. Figure 5.3 and 5.4 are set of images of a neuron cluster
attached to the predicate, “green color in nature and used for many purpose”. Referring to
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Figure 5.1: Example of Crowd sourcing results in NBDT-based Method

Figure 5.2: Example of Crowd sourcing results in KMeans-based Method

the images corresponding to the predicate, it seems that the predicate “green color in na-
ture and used for many purpose” represents the green of grasses. Since there are predicates
representing other greens such as snakes and pears, it can be assumed that this predicate
is firing to the green leaves and stems of rose and tulip.

Although, grasping the concept that the predicate represents is quite difficult from
the annotations obtained in this experiment. In the proposed method, the predicates are
independent of the classification process. Therefore, the predicates seem to be missing some
essential points or redundant for explanations, since they exclude the context.
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Figure 5.3: A Neuron Cluster showing images of Trees

Figure 5.4: A Neuron Cluster showing images of Lawnmowers
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Chapter 6

Conclusion

This thesis explored a hybrid crowd-AI approach to develop ML models associated with
human-interpretable symbolic rules. The proposed method extracts subsets of data in-
stances that activate neurons similarly from the black-box decision process of trained neural
networks to enable human abductive reasoning. Crowd workers are asked to conduct ab-
ductive reasoning to provide semantics of the extracted data instance subsets in a natural
language, which serve as predicates to explain the data instance subsets.

We conducted experiments using crowdsoucing platforms on 2 methods (the NBDT-
based Method and KMeans-based Method) and evaluation tasks.

This thesis provided experimental results showing that the proposed approach can
obtain interpretable and meaningful symbolic rules and explanations based on them.

The answer to the first research question, “Is it possible to identify the components
of ML models that corresponds to predicates for symbolic rules?” is yes considering the
experimental results. The second research question was about the method generating good
symbolic rules. Evaluation of symbolic rules, in this case, is difficult, but from the results
showing KMeans-based Method to extract abstract features, we conclude that KMeans-
based Method performs better than NBDT-based Method in this task setting.

Since workers tend to give annotations of object names in images, there were difficul-
ties in obtaining abstract properties from crowdsourcing while properties require deliberate
thinking.

In Logic Model, the results of crowdsourcing showed that most of the logic generated
is somewhat plausible. Although, the predicates seemed to lack the context of explanation
such as the counterpart classes of the classification.

Our future work includes generating minimal set of rules and exploration of other
frameworks to obtain context-aware annotations to the neural network elements.

This research was approved by IRB of the organization the author belong to.
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