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Outline

o Motivations/overview for sparse kernel density estimation

o Proposed sparse kernel density estimator:

m Convert unsupervised density learning into constrained regression

by adopting Parzen window estimate as desired response

m Orthogonal forward regression based on leave-one-out test mean

square error and regularisation to determine structure

m Multiplicative nonnegative quadratic programming to calculate

kernel weights

o Empirical investigation and performance comparison
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Motivations

o For most scientific and engineering problems, understand underlying
probability distributions is the key to fully understand them

Knowing probability density function ⇔ fully understanding problem

o For regression, knowing PDF ⇒ describe underlying process at any op-
erating condition, i.e. completely specify data generating machanism

Least squares approach, for example, is simply based on second-order momnets

or statistics of the PDF

o For classification, knowing class conditional PDFs ⇒ produce optimal
Bayes’ classifier, i.e. achieves minimum classification error rate

Most classification methods can only approximate this optimal classification

solution
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Motivations (continue)

o Specific engineering topic: control

m Various optimal controlls are based on controlling certain moments

m Researchers have realised potential of directly controlling probability
distributions (Prof Wang of University of Manchester)

m If one can control PDF, one can control any moments, i.e. imple-
menting any “optimal” control

o One of my home topics: communication receiver detector

m State-of-the-art is minimum mean square error design, but it is
detection error probability or bit error rate that really matters

m By focusing on PDF of detector’s output, we arrive at minimum bit
error rate optimal design
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Problem Formulation

o PDF estimation: given a realisation sample DN = {xk}N
k=1, drawn

from unknown density p(x), provide an estimate p̂(x) of p(x)

o PDF estimation is difficult

m Unlike regression or classification, this is unsupervised learning,
no teacher to provide desired response yk = p(xk) for estimator

o Density estimation methods can be classified as

m Parametric approach: assume specific known PDF form of p̂(x;γ),
and the problem becomes one of fitting unknown parameters γ

m Non-parametric approach: does not impose any assumption on spe-
cific PDF form ⇒ approach we adopted
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Kernel Density Estimation

o Generic kernel density estimate is formulated as

p̂(x;βN , ρ) =
N∑

k=1

βkKρ(x,xk)

subject to: βk ≥ 0, 1 ≤ k ≤ N , and βT
N1N = 1

o Classic solution Parzen window estimate: minimise divergence crite-
rion between p(x) and p̂(x; βN , ρ) on DN , leads to βk = 1

N , 1 ≤ k ≤ N

m Place a “conditional” unimodal PDF Kρ(x,xk) at each xk and average over

all samples with equal weighting

Kernel width ρPar has to be determined via cross validation

o Remarkably simple and accurate! but computational cost of calcu-
lating a PDF value scales directly with sample size N
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Existing State-of-the-Art

o From full kernel set to make as many kernel weights to (near) zero as
possible based on relevant criteria, yielding a sparse representation

[1] Support vector machine based kernel density estimator
Convert kernels into cumulative distribution functions and use empirical distribution

function calculated on DN as desired response, some hyperparameters to tune

[2] Reduced set kernel density estimator
Minimise integrated squared error on DN , require certain types of kernels

o Orthogonal forward regression to select subset of significant kernels
based on appropriate criteria, yielding a sparse kernel density estimate

[3] OFR minimising training mean square error

[4] OFR minimising leave-one-out mean square error with regularisation
Both [3] and [4] convert kernels into CDFs and use EDFs as desired response, only

select kernels do not cause negative kernel weights and normalise kernel weight vector
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Regression-Based Approach

o View PW estimate as “observation” of true density contaminated by
some “observation noise” and use it as desired response

p̂(x;1N/N, ρPar) =
N∑

k=1

βkKρ(x,xk) + ε(x)

o Let yk = p̂(xk;1N/N, ρPar) at xk ∈ DN , this model is expressed as

yk = ŷk + ε(k) = φT (k)βN + ε(k)

where φ(k) = [Kk,1 Kk,2 · · ·Kk,N ]T with Kk,i = Kρ(xk,xi), ε(k) = ε(xk)

o This is standard regression model, which over DN can be written as

y = ΦβN + ε

where Φ = [φ1 φ2 · · ·φN ] with φk = [K1,k K2,k · · ·KN,k]T , ε =
[ε(1) ε(2) · · · ε(N)]T , y = [y1 y2 · · · yN ]T



9School of ECS, University of Southampton, UKIJCNN 2007

Orthogonal Decomposition

o An orthogonal decomposition of regression matrix is Φ = WA, where

W = [w1 w2 · · ·wN ]

with orthogonal columns satisfying wT
i wj = 0, if i 6= j, and

A =




1 a1,2 · · · a1,N

0 1
. . .

...
...

. . . . . . aN−1,N

0 · · · 0 1




o Regression model can alternatively be expressed as

y = WgN + ε

where new weight vector gN = [g1 g2 · · · gN ]T satisfies AβN = gN
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Proposed Algorithm

o Use OFR algorithm based on leave-one-out mean square error and regu-
larisation to automatically select Ns significant kernels ΦNs

o Associated kernel weight vector βNs
is calculated using multiplicative

nonnegative quadratic programming to solve constrained nonnega-
tive quadratic programming

min
βNs

{1
2βT

Ns
BNsβNs

− vT
Ns

βNs
}

s.t. βT
Ns

1Ns = 1 and βi ≥ 0, 1 ≤ i ≤ Ns,

where BNs = ΦT
Ns

ΦNs is selected subset design matrix, vNs = ΦT
Ns

y

o Since Ns ¿ N , MNQP algorithm requires little extra computation and
it may set some kernel weights to (near) zero, further reduce model size
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Simulation Set Up

o For density estimation, data set of N samples was used to construct
kernel density estimate, and separate test data set of Ntest = 10, 000
samples was used to calculate L1 test error for resulting estimate

L1 =
1

Ntest

Ntest∑

k=1

∣∣p(xk)− p̂(xk;βNs
, ρ)

∣∣

Experiment was repeated Nrun random runs

o For two-class classification, p̂(x;βNs
, ρ|C0) and p̂(x; βNs

, ρ|C1), two
class conditional PDF estimates, were estimated, and Bayes’ decision

if p̂(x; βNs
, ρ|C0) ≥ p̂(x;βNs

, ρ|C1), x ∈ C0

else, x ∈ C1





was then applied to test data set
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One-Dimension Example

o Density to be estimated was mixture of Gaussian and Laplacian distri-
butions

p(x) =
1

2
√

2π
e−

(x−2)2

2 +
0.7
4

e−0.7|x+2|

N = 100 and Nrun = 200

o Performance comparison in terms of L1 test error and number of kernels
required, quoted as mean ± standard deviation over 200 runs

method L1 test error kernel number

PW estimator (1.9503± 0.5881)× 10−2 100± 0

SKD estimator [4] (2.1785± 0.7468)× 10−2 4.8± 0.9

proposed SKD estimator (1.9436± 0.6208)× 10−2 5.1± 1.3
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One-D Example (continue)

True density (dashed), (a) a PW estimate (solid) and (b) a proposed SKD estimate

(solid)

(a) (b)
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Two-Class Two-Dimension Example

o http://www.stats.ox.ac.uk/PRNN/: two-class classification problem
in two-dimensional feature space

o Training set contained 250 samples with 125 points for each class, test
set had 1000 points with 500 samples for each class, and optimal Bayes
test error rate based on true probability distribution was 8%

o Performance comparison in terms of test error rate and number of kernels
required

method p̂(•|C0) p̂(•|C1) test error rate

PW estimate 125 kernels 125 kernels 8.0%

SKD estimate [4] 5 kernels 4 kernels 8.3%

proposed SKD estimate 6 kernels 5 kernels 8.0%
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Two-class Two-D Example (continue)

Decision boundary of (a) PW estimate, and (b) proposed SKD estimate, where

circles and crosses represent class-1 and class-0 training data, respectively

(a) (b)
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Six-Dimension Example

o Density to be estimated was mixture of three Gaussian distributions

p(x) =
1

3

3∑
i=1

1

(2π)6/2

1

det1/2 |Γi|
e−

1
2 (x−µi)

T Γ−1
i (x−µi)

µ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T , Γ1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0}
µ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T , Γ2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}
µ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T , Γ3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

o N = 600, performance comparison in terms of L1 test error and number of

kernels required, quoted as mean ± standard deviation over Nrun = 100 runs

method L1 test error kernel number

PW estimator (3.5195± 0.1616)× 10−5 600± 0

SKD estimator [4] (4.4781± 1.2292)× 10−5 14.9± 2.1

proposed SKD estimator (3.1134± 0.5335)× 10−5 9.4± 1.9
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Conclusions

o A regression-based sparse kernel density estimator has

been proposed

m Density learning is converted into constrained regres-

sion using Parzen window estimate as desired response

m Orthogonal forward regression based on leave-one-out

test mean square error and regularisation is employed to

determine structure of kernel density estimate

m Multiplicative nonnegative quadratic programming

is used to calculate associated kernel weights

o Effectiveness of proposed sparse kernel density estimator has

been demonstrated using simulation
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THANK YOU.
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