Road pollution estimation using static cameras and neural networks
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Abstract—This paper presents a methodology for estimating
pollution on roads by analyzing traffic video sequences. The
objective is to take advantage of the huge network of static
cameras which is possible to find in the road system of any state
or country to estimate the pollution on each area. This proposal
uses deep learning neural networks for the object detection,
and a pollution estimation model based on the frequency of
vehicles and their speed. The experiments show promising
results which suggest that the system can be used alone or
combined with existing systems for measuring pollution on
roads.

1. Introduction

Currently, the latest advances in research related to the
field of traffic video surveillance, have allowed to study
other very interesting factors from the analysis and detec-
tion of vehicles along a road. In addition, the rise in the
implementation and use of IP cameras, mainly for security
reasons, is generating such a large amount of information
that we could use to analyze the normal behavior of vehi-
cles, detect anomalous patterns (for example, driving in the
opposite direction) or estimate the air pollution in the traffic
environment.

The assessment of air pollution caused by vehicle emis-
sions and forecasting of air quality have been managed
from different points of view [1]. One of approaches consist
to measure the air concentration produced by traffic with
monitoring sensors, although it is not highly suitable for
monitoring large areas due to the cost of sensor installation
and application. In [2] the authors manage to determine
traffic pollution at road intersections using hybrid models
that combine wavelet neural network and genetic algorithms.
Additionally, in [3] a comparison between two different
emission and dispersion models is analyzed.

Unlike other models that estimate traffic pollution based
on air quality sensors, environmental sensors and sensors
that determine traffic density, only the static cameras present
on the roads are used in this work. Our proposal tries to
optimistically estimate the level of traffic pollution from the
vehicle motion analysis on the highways. To do this, on

each sequence frame, the number of vehicles circulating and
their speed is detected. With this information, it is possible
to estimate the pollution level produced in each instant of
time.

The propose methodology begins with a phase of detec-
tion of the vehicles that appear in the scene [4]. Due to the
improvement in the power of the hardware devices, the re-
cent development of deep learning techniques (which allow
to tackle complex tasks such as the recognition of objects) is
being progressively incorporated in the field of traffic video
surveillance [5]. In fact, many traditional techniques for the
detection of foreground objects (Gaussian mixture [6], sta-
tistical background modeling [7], etc.) are being replaced by
deep neural networks, which provide much higher success
rates in the identification and detection of objects [8]. In this
work we will use the Faster-RCNN network to recognize the
vehicles in the scene [9]. Subsequently, a tracking phase is
considered in order to obtain the partial trajectories along
the road [10].

The perspective of the camera makes difficult the com-
putation of the speed of each vehicle. A self-organized
neuronal network which model the distribution of the ve-
hicles and their size, is applied to correct this perspective.
Using the calculated speed and the number of vehicles, it
is possible to estimate the pollution in each frame, and
consequently, in the whole scene.

The remaining of the paper is structured as follows.
Section 2 presents the architecture of our approach, where
each subsection describes each part in detail. Section 3 out-
lines the experimental results carried out, whereas Section
4 summarizes the conclusions.

2. System architecture

The developed proposal can be described as it is exhib-
ited in Figure 1. A frame of a video sequence is provided
to the system, which is composed by three modules. The
first one is a vehicle detection and tracking process, when
we select the desired objects (vehicles in this case) from
the remaining objects (people, plants or others). The second
one is a speed estimation module in order to calculate the



) FRAME .
o !
o) %

Vehicle detection &
tracking

Faster-RCNN

+~—— Kalman model

AN
& Object list .
Trained
SOM
Speed estimation .<$>
0\
& Object and
@ speed list Pollution
model

Pollution estimation

Gy

Figure 1. Schema of the operation of the developed approach.
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velocity of each detected vehicle. And finally, we can esti-
mate the contamination produced by each detected vehicle
considering its speed with a pollution estimation module.

2.1. Vehicle detection and tracking

The Vehicle detection and tracking module is composed
by two steps. The first one is an object detection and
classification process, and after that, we have a tracking
process in order to manage the trajectories of the detected
vehicles.

The object detection and classification process is based
on a deep learning architecture. In this case, we have used
the Faster-RCNN model [11], which employs Convolutional
Neural Networks and provides the area and the class of the
detected objects. We have considered a pretrained model to
detect the 20 objects included in the PASCAL VOC 2007
dataset [12].

Given an image corresponding to the frame ¢ of a video,
the output of the model is a set of detected objects, with their
area and their probabilities of belonging to each possible

class. Let ¢ be one of the detected objects in the frame ¢,
the output of the object detection module is:

hi ¢ = (his, hitos hits, hica) € R? 1

Qi = (Git 1y Git, i) € RS )

where (h;¢1,hi+2) are the upper-left corner location
of the bounding box corresponding to the i-th detected
object in the current frame and (h; 3, h; ) are the width
and height, respectively, of this bounding box, expressed in
pixels. Associated to each detection there is a probability
of belonging to each object class, ¢; ¢ € [0,1], where
Cj € Classes and the possible number of object classes
is K. In this case, K = 20.

After that, in a frame ¢ we have applied a threshold 7
and we just consider those objects with g; ; ; higher than
these threshold, in order to consider only the vehicles that
appear in the frame.

When we have the detected vehicles, a tracking stage
is required in order to obtain their partial trajectories. This
information is crucial to determine the speed and pollution
in each frame. The Kalman filter is applied to perform a
correspondence among the detected objects in a frame and
the tracked objects. This technique is based on a prediction -
correction scheme of the object centroids along the sequence
[13].

2.2. Speed estimation

Most of the cameras located on highways capture the
images with perspective, which causes that there is no
homogeneity in the distances in each part of the frame. Thus,
in order to estimate the real distances in the scenario and the
speed of the vehicles, a Self-Organizing Map (SOM) model
is considered [14]. A feature vector z € RP is extracted
from each detected object where D is the number of chosen
features. In this case, geometric information represented by
the area and the height and width of its bounding box is
sufficient to estimate the distances in pixels of each vehicle.
These values form the feature vector. Thus, the aim of the
network is to learn a smooth function:

F:R? = RP y=F(x) 3)

where x is a pixel location in the video frame.

The M units of the self-organizing map, which are
arranged in a rectangular topology of size a x b, are repre-
sented by two prototypes, one for input vectors w € R?
(pixel coordinates) and one for output vectors v € RP
(typical object features at pixel coordinates w). The input
prototype is used to compute the winning unit, whereas the
output prototype is used to estimate the smooth function F.
Therefore, the vehicles that are associated with the neuron
¢ will use the output v; to estimate the speed at which they
are driving at that moment, and whose location within the
frame will be close to wj.

The training of the SOM is based on the size of the mo-
torcycles, since the are very similar between them according
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Figure 2. Schema of the training SOM process.

to their aspect ratio. In the case of a car, it exists a higher
difference between the shortest and the largest car.

First of all, in order to generate a training SOM dataset,
we have carried out the object detection and classification
module with a video from the selected scenario. For each
frame, we have obtained the list of the detected object with
their classes and bounding box (area and position), and we
have just considered those object indicated as motorcycle
and with a high probability to belong to the motorcycle
class. So that, the object ¢ in the frame ¢ will be considered
to belong to the training dataset if:

VE € K(qit 6 < dit,m)NQie.m > T)A(Cy = motoreycle)
“)
In addition, if a side of the bounding box corresponds
to a border of the image, we have discarded this vehicle.
After that, with the bounding box of each detected
motorcycle we have trained a SOM model, considering a
standard weight of a motorcycle. In order to estimate this
value, we can select the number of licensed motorcycles by
engine size. Then, choosing the most licensed known model

nowadays with this engine size and taking the weight of it.
Additionally, the height of a person driving a motorcyle is
also considered. Thus, we can estimate in each area of the
frame the correspondence between meters and pixels.

A schema of the training SOM process is shown in
Figure 2.

2.3. Pollution estimation

We have considered an estimation of the pollution based
on the emission factor (EF), which is a measure in units of
g/km for PM;o and litre/100km for fuel consumption. The
model to estimate the emission factor is based on the curves
from the Production of Updated Emission Curves for Use
in the National Transport Model report, which is available
in its website'. This curves are defined by the following
equation:

a+ bz + cx? 4+ dx® 4 ex* + fab + gab
x

y(r) =

)

where x is the speed in kph.

In order to estimate the pollution produced by a car,
because we cannot assure its fuel type, we have considered
the proportion of car by fuel type (petrol or diesel) on
motorway roads. Thus, the emission factor produced by a
car, considering the emission curves for the petrol and diesel
fuel vehicle type (y, and yg, respectively), is defined as
follow:

EF(x) = petrol_car_proportion * y,(z) ©)

+ diesel_car_proportion * yq(x)

1. https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/662795/updated-emission-curves-ntm.pdf
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Figure 3. Emission factor curves for petrol and diesel car types correspond-
ing to the pollution estimation module.



TABLE 1. CONSIDERED PARAMETER VALUES.

Method
Faster RCNN

Parameters

threshold 7 = 0.50

model_dir = faster_rcnn_VOC0712_vgg_16layers
per_nms_topN = 6000

nms_overlap_thres = 0.7

after_nms_topN = 300

test_scales = 600

SOM num_steps = 100000
num_steps_per_epoch = 10000
num_neurons = 25
num_rows_map = 4
num_cols_map = 4
initial_learning_rate = 0.4
maz_radius = sqrt(num_neurons)/8
convergence_learning_rate = 0.01
convergence_radius = 1
usual_moto_lenght = 2.080
usual_person_driving_moto_lenght = 1.700

EF petrol_car_proportion = 0.29
diesel_car_proportion = 0.71
a_petrol = 0.01185628
b_petrol = 0.00034047
c_petrol = 1.2576 E — 06
d_petrol = 1.0462F — 07
e_petrol = —7.216E — 10
f_petrol = 6.0976 E — 12
g_petrol =0
a_diesel = 0.02918783
b_diesel = 0.0013909
c_diesel = 2.8984F — 05
d_diesel = 6.175FE — 07
e_diesel = 9.9971F — 09
f_diesel = —7.31E — 11
g_diesel = 2.1786 FE — 13

3. Experimental Results

The computational experiments that we have carried out
and their results are shown in this section. First of all,
Subsection 3.1 exhibits the software and hardware that have
been used. Then, in Subsection 3.2, we have specified the
tested video sequences. The tuned parameters of the soft-
ware can be observed in Subsection 3.3. Finally, the obtained
results from the experiments are described in Subsection 3.4.

3.1. Methods

Our implementation of the system is written in Matlab.
The speed estimation and the pollution estimation modules
are implemented by our group, while the vehicle detection
module is based on the Faster R-CNN library, which can be
accesible in its website?.

The reported experiments have been carried out on a 64-
bit Personal Computer with an eight-core Intel i7 3.60 GHz
CPU, 32 GB RAM and a Titan X GPU.

2. https://github.com/ShaoqingRen/faster_rcnn

Figure 4. Training data and trained SOM with them shown on a frame of the
background of the selected video. The red points are the training samples,
the blue circles are the prototypes of the SOM and the lines between the
prototypes are the connections between them. It can be observed that the
prototypes closer to the camera are larger than other prototypes, which
means that a higher number of pixels corresponds to one real meter.

3.2. Sequences

We have considered an specific scenario, which is avail-
able on the camaras viales website?, in order to carry out the
experiments. The selected scenario is camara-guadalupe,
where a camera is recording a road 24 hours a day*. We
have taken a video from this scenario, and it is composed
by 36005 frames with a size of 1080x1920 pixels. This video
can be downloaded from our website’.

3.3. Parameters selection

The configuration of the parameters of the different
modules that compose our system are described in this
subsection.

First of all, the values of the parameters of the Faster-
RCNN module are those that their authors recommend as
default values. We only have changed the threshold in order
to recognize the more possible number of cars.

On the other hand, the most important parameter of the
SOM module is the number of neurons and it is selected
to cover the regions of the video with more activity. Ad-
ditionally, in the motorcycle detection process in order to
obtain the training SOM dataset, we have employed a Faster-
RCNN threshold with 7 = 0.90 due to achieve a robust
training data. In addition, in order to estimate the value of
the standard weight of a motorcycle, we have chosen the
number of licensed motorcycles by engine size in UK® and it
is said that the average engine size is approximately 600 cc.
After that, we have selected the most licensed known model
nowadays with this engine size’ and it corresponds to the

3. https://www.camarasviales.com

4. https://www.camarasviales.com/camara-guadalupe

5. https://www.lcc.uma.es/~miguelangel/resources/fixed_camera/
camarasviales-guadalupe_2018-01-18_23-30-00.mp4

6. https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/608185/veh0306.0ds

7. https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/666910/veh0120.0ds
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Figure 5. Graphical description of the operation of the proposed method. From left to right, the columns show a frame of a sequence, the objects detected
on it provided by the Faster-RCNN module, and the detected cars with the trajectory given by the Kalman model, and speed and pollution estimation
information. The rows show frames 698, 1000, 1651 and 2563 of camara-guadalupe. Note that the red bounding boxes correspond to undesired object
detected and the green bounding boxes correspond to the objects which belong to the car class.

YAMAHA FZS 600. Finally, we have taken the weight of
the YAMAHA FZS 600, and it is 2080 mm (2.080 meters)3.
In addition, we have considered the height of a person
driving a motorcyle and we have estimated is with a value
of 1700 mm (1.70 meters).

Finally, the parameter values we have used in the pollu-
tion estimation module are those obtained from the Produc-
tion of Updated Emission Curves for Use in the National
Transport Model report, which is available in its website
 and we have selected those configuration corresponding
to the year 2020. In addition, according to these report,
the emission curves are suitable for speed values between
5 and 120 kph. Figure 3 exhibits the considered emission
curves for the petrol and diesel fuel vehicle type (y, and yq,
respectively).

The value of all the parameters are shown in Table 1.

8. https://en.wikipedia.org/wiki/Yamaha_FZS600_Fazer
9. https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/662795/updated-emission-curves-ntm.pdf

3.4. Results

In order to test the suitability of our developed approach,
we have studied the obtained result from a qualitative and
a quantitative point of view.

We have used the same camara-guadalupe sequence in
the training SOM step and the pollution estimation process.

First of all, we have carried out the training SOM process
in order to obtain the SOM model which will provide an
estimation of the pixel-meter relationship in each area of
the frame. The trained SOM and the training dataset can be
observed in Figure 4.

After that, we have carried out our proposal in order
to estimate the pollution in the selected video. From a
qualitative point of view, the operation of our system can be
observed in Figure 5. It shows some random frames (first
column) and their corresponding output after the application
of the Faster-RCNN network (second column) and Kalman
model with the estimated pollution and speed (third col-
umn). As we can see, given a frame of the sequence as
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(a) Emission factor per frame between frames 7800 and 8100. The blue
line indicates the emission factor per frame and the red line exhibits it by

applying the sliding window.

(b) Frames 7800, 7948 and 8048 with the output information provided by the proposal: the trajectory of the detected vehicles and their speed and

pollution estimations in these frames.

input, the output with the information obtained from the
Faster-RCNN' (second column) corresponds to the object
detection and classification step, inside of the vehicle detec-
tion and tracking module, and it produces several undesired
detections (red bounding box) and we only choose those
corresponding to the car class (green bounding box). Finally,
considering this information, the system produces the output
corresponding to the input frame providing the information
of the trajectory of each detected vehicle and its speed and
pollution estimation (third column).

On the other hand, the quantitative analysis is shown
in Figure 6 (a), which exhibits the emission factor per
several selected frames of the chosen sequence. As it can be
observed, our proposal estimates the pollution of each frame
and with this information we can obtain those moments with
a high or low traffic level, as we can see in Figure 6 (b).
Another important point to be highlighted is the ups and
downs of the estimation, which corresponds to the blue line
from (a). This is because if the bounding box corresponding
to the vehicle ¢ returned as output by the Faster-RCNN
network in the frame ¢ is not practically the same than the
previous frame ¢ — 1, this error produces a bad calculation
of each centroid, and in most of cases both centroids will
be far away, so the system will provide a high speed for this
vehicle ¢. Thus, in order to avoid this ups and downs, we
have employed a sliding window with a size of 5 frames

to show the smoothed emission factor per frame, which is
represented by a red line in (b).

4. Conclusion

This work has presented a methodology for estimating
road pollution using static traffic cameras. Initially it was
necessary to detect the vehicles present on the road (using
the Faster RCNN network) to later estimate their speed
and pollution level. Because practically all scenes have a
perspective view, a self-organized neural model has been
used to correct and homogenize the correspondence between
physical distance and number of pixels in each region of the
image.

Experiments show that there is a clear correlation be-
tween the pollution estimation on each frame and the num-
ber of vehicles displayed, as can be seen in Figure 6. These
promising results allow us to make more extensive compara-
tive studies with other existing techniques. It is also possible
to study the feasibility of using this proposal combined with
other types of sensors that increase its effectiveness.
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