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Abstract—The Spiking Neural Networks (SNNs), renowned
for their bio-inspired operational mechanism and energy effi-
ciency, mirror the human brain’s neural activity. Yet, SNNs
face challenges in balancing energy efficiency with the computa-
tional demands of advanced tasks. Our research introduces the
RTFormer, a novel architecture that embeds Re-parameterized
Temporal Sliding Batch Normalization (TSBN) within the Spik-
ing Transformer framework. This innovation optimizes energy
usage during inference while ensuring robust computational
performance. The crux of RTFormer lies in its integration of re-
parameterized convolutions and TSBN, achieving an equilibrium
between computational prowess and energy conservation. Our
experimental results highlight its effectiveness, with RTFormer
achieving notable accuracy on standard datasets like ImageNet
(80.54%), CIFAR-10 (96.27%), and CIFAR-100 (81.37%), and ex-
celling in neuromorphic datasets such as CIFAR10-DVS (83.6%)
and DVS128 (98.61%). These achievements illustrate RTFormer’s
versatility and establish its potential in the realm of energy-
efficient neural computing.

Index Terms—SNNs, LIF, Transformer, Normalization

I. INTRODUCTION

Inspired by the human brain, deep Artificial Neural Net-
works (ANNs) have garnered significant success, particularly
in areas such as computer vision [1], [2] and nature lan-
guage processing [3]–[6] . However, these accomplishments
come at a considerable computational cost. ANNs consume
approximately 12 times [7] more energy than the human brain,
rendering high-energy models tough to deploy onto resource-
constrained appliances, for example, smartphones and IoT
devices. Utilising the brain’s efficient computational paradigm
to create low-energy neural networks on such platforms holds
significant value.

Why SNN? Spiking Neural Networks (SNNs) present
themselves as paragons of energy efficiency in the com-
putational realm. While structurally echoing the design of
traditional ANNs, SNNs diverge in their unique handling
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of data through discrete binary events. The zero denotes a
dormant state, whereas one signals the firing of a neuron, a
spike that conveys information. This binary data processing
leads to sparse activations within the network, ensuring that
energy is expended only when necessary. Such efficiency is
not merely incidental but a core feature of SNNs, enabling
them to operate with a fraction of the power required by their
ANN counterparts and thus answering the call for sustainable
and energy-conscious computing.

How can we design a structure in which inference is
more energy efficient? Addressing the question of how to
craft a more energy-efficient structure for inference leads us to
the inception of the Spatial-Temporal Core. The Spatial Core
streamlines the convolutional process by employing struc-
turally reparameterized convolutions, significantly reducing
the computational burden during inference without compro-
mising the integrity of learned features. Simultaneously, the
Temporal Core introduces the concept of Temporal Sliding
Batch Normalization (TSBN), which tailors the batch nor-
malization process to the temporal aspects of data, ensuring
that the network remains responsive to the temporal dynamics
inherent in real-world scenarios. Together, these cores form
a robust framework that not only excels in energy efficiency
but also maintains high fidelity in data processing, making
it an ideal candidate for deployment in energy-constrained
environments like neuromorphic hardware.

What’s the meaning of intaking the ST-Core? The
Spatial-Temporal Core is not just a technological innovation;
it’s a conceptual shift towards creating neural networks that
operate with a level of energy efficiency akin to the human
brain. By drawing inspiration from nature’s most sophisticated
computing machine, we aim to bridge the gap between the
computational prowess of deep learning models and the energy
limitations of the devices they run on. This synergy of spatial
efficiency and temporal precision paves the way for the next
generation of neural network models that are both powerful
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and sustainable, ready for deployment in the increasingly
connected and mobile world we live in.

Our contributions are summarized below:
• We introduce the Spatial-Temporal Core, a harmonious

fusion of structurally reparameterized convolutions (Spa-
tial) and dynamic temporal batch normalization (Tempo-
ral) , crafted to deliver enhanced spatial efficiency and
temporal adaptability, thereby elevating neuromorphic
computing to new heights of processing excellence.

• We introduce the TSBN, an ingenious mechanism that
aligns batch normalization with the temporal dimension
of data, allowing for precise, context-sensitive normal-
ization across sequential inputs, thereby bolstering the
temporal coherence and predictive performance of neural
networks.

• Extensive experiments confirming the proposed architec-
ture’s superiority over state-of-the-art SNNs on neuro-
morphic and non-neuromorphic datasets, underlining its
practical significance in advancing Spatial-Temporal data
processing.

II. RELATED WORKS

A. SNN Learning Methods
Spiking Neural Networks (SNNs) are heralded as the third

generation of neural network models due to their biological
fidelity, intrinsic event-driven computation, and energy effi-
ciency on neuromorphic platforms [8]. These characteristics
have catalyzed a surge in SNN research, positioning them
as formidable contenders to their Artificial Neural Networks
(ANNs) counterparts.

The fundamental divergence between SNNs and ANNs
stems from the employment of spiking neurons as the funda-
mental computational unit, which facilitates biological inter-
pretability and adeptness in processing temporal information
[9]–[13]. ANNs, with their robust gradient backpropagation
training frameworks, contrast with SNNs, which predomi-
nantly utilize two training paradigms: ANN-to-SNN conver-
sion and direct training with surrogate gradients. The con-
version approach [14]–[16] entails substituting a pre-trained
ANN’s ReLU layers with spiking neurons, necessitating fine-
tuning of hyperparameters to retain accuracy. Nevertheless,
this technique is limited by extended conversion time-steps
and the architectural rigidity of the source ANN. To cir-
cumvent these limitations, [9] employs surrogate gradients to
facilitate direct SNN training, yielding high accuracy within
minimal temporal intervals. Methodologies have facilitated
breakthroughs across domains, with Spiking-Yolo [17] and
EMS-yolo [18] paving the way in object detection, Spiking-
UNet [19] advancing semantic segmentation, SpikingGPT
[20], and SpikingBert [21] emerging in language modeling,
and SpikingGAN [22] introducing generative capabilities. For
graph-based learning, SpikingGCN [23] and SpikingGAT [24]
have shown promise. The advent of neuromorphic chips such
as TrueNorth [25], Loihi [26], and Tianjic [27] further under-
scores the potential of SNNs to become prevalent in near-term
computational ecosystems.

B. Transformer Architecture In SNNs

Thanks to the well-established and effective network archi-
tectures in ANNs, SNNs can utilise them to construct high-
performance models, such as [7], [28]–[30]. The attention
mechanism, currently the most efficient method in ANNs, has
also been integrated into SNNs, including the implementation
of the Transformer, its most classic network architecture.
Spikformer [31] is the initial directly-trained Transformer
within SNNs. It adopts a new spike-form self-attention named
Spiking Self Attention (SSA). However, the current con-
figuration of the Spikformer, which includes residual [32]
connections, still involves non-spike computation. Therefore,
the Spike-Driven [33] Transformer presents novel structures
for preserving the spike computation. The issue of non-spike
computation is resolved by Spike-Driven Transformer through
introducing Spike-Driven Self-Attention (SDSA). The integra-
tion of attention mechanisms within SNNs has facilitated the
adaptation of Transformer architectures to the SNN paradigm.
However, previous implementations have not adequately ad-
dressed constraints encountered during inference. To this end,
we propose RTFormer, which leverages a reparameterization
strategy to ensure that SNNs benefit from reduced parameter
complexity during inference, thereby enhancing deployment
efficiency.

C. BatchNormalization In SNNs

In the realm of SNNs, the integration of Batch Normaliza-
tion (BN) techniques has been pivotal in mitigating challenges
associated with training dynamics, such as the vanishing or
exploding gradient problem. One innovative approach, termed
Batch Normalization Through Time (BNTT), was proposed by
[34]. BNTT uniquely calculates BN statistics and parameters
independently at each time-step, enhancing the network’s
adaptability to instantaneous changes. However, this method
may not fully account for the temporal correlations present
in input spike sequences, potentially overlooking crucial se-
quential information. To address this limitation, [35] intro-
duced the threshold-dependent Batch Normalization (tdBN)
methodology. This technique consolidates BN statistics and
parameters across the temporal dimension, thus maintaining
the conventional BN’s benefits while accommodating the
temporal structure inherent in SNNs. By aggregating data
temporally, tdBN circumvents the instability often encountered
in gradients during SNN training. Further expanding upon
these developments, the Temporal Effects Batch Normalization
(TEBN) method, conceived by [36], has refined the approach
by merging data along the temporal axis for shared BN
statistics. TEBN then introduces temporal dynamics into the
BN process by applying distinct scaling weights. This method
captures the essential temporal dynamics, thereby providing a
more nuanced normalization process that aligns with the tem-
poral nature of SNNs. We introdece the TSBN to selectively
leverage the accumulated pre-synaptic inputs in the temporal
domain, consistent with the properties of LIF neurons.



1x1 Conv

xN

1x1 Conv

1x1 Conv

TSBN

1x1
DW-Conv

TSBN

3x3
DW-Conv

TSBN

1x3
DW-Conv

TSBN

3x1
DW-Conv

TSBN

+ ++

Training

1x1 Conv

3x3
DW-Conv

Inference

TSBN

Fig. 1. Illustration of the structural reparameterization and simplification
from a complex multi-branch system to a streamlined model. The top dashed
box represents the parameters of the TSBN incorporated into Conv3, and the
bottom dashed box represents the parameters of the TSBN incorporated into
the trainable threshold.

III. METHOD

We introduce the RTFormer, a novel fusion of the Trans-
former architecture with the Re-parameter and Temporal
Sliding Batch Normalization(TSBN). This section will begin
by providing a concise overview of spike neurons’ working
principles, followed by an in-depth exploration of the Spatial-
Temporal Core and the Spiking Guided Attention (SGA)
module. Finally, we will discuss the energy consumption
aspect.

A. Preliminaries

In SNNs, spike neurons control the release of spikes based
on a threshold. In this paper we use LIF [37] neurons, which
work in the following way:

U [t] = V [t− 1] +
1

kτ
(X[t]− (V [t− 1]− Vreset)) (1)

S[t] = H(U [t]− Vth) (2)
V [t] = U [t] (1− S[t]) + VresetS[t] (3)

where kτ , Vth, and Vreset represent the decay factor, firing
threshold, and reset membrane potential, respectively, which
are pre-set to default values. The notation X[t] refers to
the input at time step t, while U [t] denotes the membrane
potential. The function H(·) represents the Heaviside step
function. The spike output, denoted by S[t], is calculated based
on the membrane potential and the threshold. Additionally,
V [t] and V [t− 1] signify the temporal output at time t.

In our study, we employ the spikingjelly [38], utilizing
default values for kτ , Vth, and Vreset, specifically set to 2.0,
1.0, and 0, respectively.

B. Spatial-Temporal Core

In the exploration of SNNs, our innovative design, termed
the ”Spatial-Temporal Core,” shown in Fig.III-A, addresses
the nuanced realms of spatial and temporal processing. This
sophisticated framework divides the architecture into two
synergistic components: the ”Spatial Core” and the ”Temporal

Core.” Each core is uniquely adapted to manage distinct
aspects of data processing - the former concentrating on spatial
features and the latter on temporal dynamics.

Spatial Core. The ”Spatial Core” echoes the principles of
structural reparameterization, akin to approaches seen in Ar-
tificial Neural Networks (ANNs). Here, we utilize depthwise
convolutions (DW-Conv) that are strategically reparameterized
to reduce the complexity of the model during inference.
This innovative arrangement entails parallel DW-Conv layers
with diverse kernel sizes, notably 1x1 and 3x3, enhancing
spatial feature extraction efficiency. The transformation from
four consecutive 3x3 layers to a trio of ”Spatial Core” units
signifies a leap in spatial detail capture, all while maintaining
a lean model structure.

In the innovative architecture depicted in Fig.III-A, the
STCore is structured with five concurrent branches, each
contributing unique convolutional parameters to the network’s
composite function. Notably, one of these branches—the iden-
tity branch—functions effectively as a 1 × 1 convolution,
utilizing an identity matrix as its kernel. This integration
ensures that each branch’s convolutional characteristics are
distinctly represented. The fusion of these diverse convolu-
tional influences is succinctly captured in Eq.4:

y =

n∑
i=1

TSBNi(x ∗W (i), µi, σi, γi, βi) (4)

Here, the index i extends over n distinct branches, with
this work specifically focusing on n = 5. The variable x
symbolizes the input, while y represents the resultant output.
The operator ” ∗ ” denotes the convolution operation, and
(i) signifies the convolutional kernelassociated with the ith
branch. The parameters µ, σ, γ, β correspond to the accumu-
lated mean, standard deviation, as well as the learned scaling
factor and bias, respectively, derived from the BN layer that
follows each convolutional operation. These parameters are
crucial for the TSBN process, which refines the data at each
branch, ensuring a harmonized and effective integration of the
temporal dynamics into the network’s overall learning process.

Temporal Core. Conversely, the ”Temporal Core” inte-
grates Temporal Sliding Batch Normalization (TSBN) with the
adjustable thresholds of spiking neurons. This integration is a
pivotal aspect of our approach, aligning with the innate dynam-
ics of temporal information processing inherent in SNNs. By
incorporating the TSBN parameters directly into the neurons’
thresholding mechanism (denoted as Vth), our model gains a
robustness in handling temporal sequences, which is essential
for cognitive functions.

In practice, a sliding window mechanism judiciously con-
trols the extent of Batch Normalization across time, allowing
for refined data processing at each stage. Diverging from
traditional BN methods like tdBN and BNTT, our focus is on
data closer to the current timestep, ensuring a more context-
sensitive normalization approach. This methodology enhances
the network’s capability to adeptly respond to dynamic tem-
poral shifts, as captured in Eq.5.



y[t−w:t] = γ(t)
x[t−w:t] − µ[t−w:t]√

σ2
[t−w:t] + ϵ

+ β(t) (5)

Here, x[t−w:t] and y[t−w:t] signify the input and output,
respectively, spanning a temporal window of width w. The
variable t specifies the current timestep, anchoring the win-
dow’s position within the sequence. γ(t) and β(t) serve as the
scale and shift factors at each specific timestep t. µ[t−w:t] and
σ[t−w:t] are the statistical core of this equation, representing
the mean and variance computed over the inputs within the
sliding window from t−w to t, ϵ is a small number to avoid
dividing zero .

Moreover, we fold the TSBN into the neuron’s threshold
, enabling an efficient integration of temporal normalization
into the spiking mechanism of the neurons. This folding
process is encapsulated in Eq.7, transforming Vth into a
trainable parameter , which dynamically adapts to the temporal
normalization.

s(t) =

1 if γ(t)x[t−w:t]−µ[t−w:t]√
σ2
[t−w:t]

+ϵ
+ β(t) > Vth

0 otherwise
. (6)

Ṽth =
(Vth − β(t))

√
σ2
[t−w:t]

γ(t)
+ µ[t−w:t] (7)

Here, Vth is the threshold of spiking neuron, Ṽth is its
trainable counterpart in this work. s(t) is the spiking output
matrix at timestep t.

The ”Spatial-Temporal Core” stands as a hallmark of in-
novation in SNN architecture. Its ability to fluidly navigate
both spatial and temporal dimensions positions it as a vital
development towards emulating the sophisticated computa-
tional capabilities of the human brain. This structure not only
ensures model efficiency but also accentuates the biological
resemblance and pulse-like nature of SNNs, underscoring its
potential for real-world applications where both performance
and biologically-inspired functionality are paramount.

C. Analyse Of Energy Consumption

In ANNs, computational demands largely stem from
Floating-point Operations (FLOPs), predominantly due to
Multiply and Accumulate (MAC) operations. SNNs, however,
primarily rely on Accumulate (AC) operations, which reduces
the need for MAC operations. This shift not only cuts down
on FLOPs but also aligns with SNNs’ energy-efficient ethos
by reducing power usage.

Yet, MAC operations remain a factor in the initial stages of
data processing, where raw images are converted into spike-
encoded formats. To gauge energy use, an assessment of MAC
and AC operations throughout the network’s computational
processes is essential.

The total energy consumption (E) can be expressed as
follows:

E = EMAC × FLconv + EAC× (8)
(FLSTCore + FLSGA + FLSTMLP )

Here, EMAC and EAC represent the energy consumption
associated with MAC and AC operations, respectively. Exper-
imental measurements have determined EMAC to be approx-
imately 4.6 picojoules (pJ), and EAC to be approximately
0.9 picojoules (pJ), based on testing conducted on 45nm
technology [42], FL· denotes the float number of the specific
layer.

Calculating energy consumption offers an accurate measure
of the computational and energy efficiency enhancements
delivered by our framework, considering the interplay of both
MAC and AC operations across the processing pipeline.

IV. EXPERIMENTS

Our experimental evaluation encompasses both non-
neuromorphic datasets like CIFAR10, CIFAR100, and Ima-
geNet, as well as neuromorphic datasets such as CIFAR10-
DVS and DVS128 Gesture. The visualizations of these results
are presented in Fig.IV-A1, with ImageNet findings detailed in
Tab.I. Results for other datasets are compiled in Tab.II, while
the outcomes of our ablation studies are summarized in Tab.III.
Additionally, visual representations of these ablation studies
can be found in Fig.IV-A2.

A. Non-neuromorphic Datasets Classification

1) ImageNet: Dataset Description. The ImageNet dataset,
a cornerstone in the field of computer vision, consists of
approximately 1.3 million images spanning 1,000 classes for
training, alongside 50,000 validation images.

Fig. 2. Display of a comparative visualization across four columns for
a series of images. Visualization comprises original images, Grad-CAM
representations, Attention Maps , and Spiking Fire Rate (SFR) maps.



TABLE I
EXPERIMENTS ON IMAGENET. ’T’ DENOTES THE TIMESTEP. THE ARCHITECTURE ABBREVIATIONS ’S-V,’ ’S-R,’ AND ’S-T’ CORRESPOND TO SPIKING

VGG, SPIKING RESNET, AND SPIKING TRANSFORMER, RESPECTIVELY.

Dataset Methods Type Architecture T Param(M) Acc(%) Energy(mJ)

ImageNet

RMP [39] ANN2SNN S-V-16 4096 138.4 73.09 49.86
Calibration [40] ANN2SNN S-V-16 2048 138.4 75.32 25.98
SEW-ResNet [29] SNN training S-R-152 4 60.19 69.26 12.89
MS-ResNet [30] SNN training S-R-104 4 77.28 76.02 10.19
Att-MS-ResNet [7] SNN training S-R-104 4 78.37 77.08 7.3

tdBN [35] SNN training S-R-34 6 21.79 63.72 6.39
TEBN [36] SNN training S-R-34 4 21.79 64.29 7.05
MPBN [41] SNN training S-R-34 4 21.79 64.71 6.56

spikformer [31] SNN training S-T-8-768 4 66.34 74.81 21.47
spike-driven [33] SNN training S-T-8-768* 4 66.34 77.07 6.09

This work SNN training S-T-8-768 4 58.86 80.54 5.59

RTFormer’s performance. As shown in Table I, the
RTFormer model with TSBN and structurally reparameter-
ized DW-conv achieves remarkable accuracy. Specifically, the
Spikformer-8-768 model, equipped with 58.86M parameters,
attains a top-1 accuracy of 80.54%, which is a notable en-
hancement over previous SNN models like SEW-ResNet and
MS-ResNet. This leap in performance is also accompanied by
a reduction in energy consumption, underlining the efficiency
of the model’s transformer architecture and optimized compo-
nents.

Comparision with BN methods in SNNs. RTFormer
significantly surpasses the tdBN method, achieving a higher
accuracy rate of 80.54% compared to 64.29% obtained by
tdBN. This stark difference in performance indicates the effec-
tiveness of the architectural and BN improvements. Moreover,
the energy consumption of ”This work” is lower (5.59mJ)
compared to tdBN (7.05mJ), highlighting improved efficiency.
Similarly, RTFormer showcases superior accuracy over TEBN,
with a 13.87% increase in top-1 accuracy. RTFormer achieves
an accuracy rate that is 13.45% higher than that of the MPBN
method. The energy savings are also notable, with RTFormer
consuming less energy, thereby presenting a strong case for
the enhancements brought by the TSBN and Re-parameter
Transformer architecture.

Comparision with Transformers in SNN. The Spikformer
shows competitive performance, achieving a 74.81% accuracy
rate. However, RTFormer outperforms Spikformer by 3.35%,
which is a significant margin in the realm of deep learning
models. The Spike-Driven Transformer model, another variant
of the Spiking Transformer, achieves a 77.07% accuracy rate,
which is commendable. Nonetheless, RTFormer has a slight
edge with an accuracy of 78.16%. The energy efficiency of
our architecture is notably better, with an energy consumption
of 5.59mJ compared to the spike-driven model’s 6.09mJ,
showcasing that the model’s improvements do not come at
the cost of increased energy usage.

2) CIFAR: Dataset Description. The CIFAR-10 dataset is
a well-known collection of 60,000 32x32 color images split
into 10 classes, with each class represented by 6,000 images.

The CIFAR-100 dataset, while similar in structure to CIFAR-
10, offers a more challenging task with its 100 classes, each
comprising 600 images, also totaling 60,000. Both datasets,
developed by the Canadian Institute for Advanced Research,
serve as fundamental benchmarks for machine learning and
computer vision, facilitating the development and validation
of innovative image classification models.

Comparision with previous works. Firstly, as shown
in Tab.II when benchmarked against previous SNN models
like RMP and others, RTFormer demonstrates superior per-
formance. While traditional SNNs like RMP and Calibration
have laid the groundwork in the field, RTFormer capitalizes
on their foundation and pushes the boundaries further. For
instance, on CIFAR-100, RTFormer achieves an accuracy of
81.37%, which is a substantial improvement over the 70.93%
and 77.87% accuracy rates achieved by RMP and Calibration,
respectively. This leap in performance can be attributed to
RTFormer’s more sophisticated temporal dynamics capturing
capabilities and its optimized training methodologies.

Comparision with BN methods in SNN. Secondly, in
comparison with other SNN models employing various BN
techniques, RTFormer stands out for its effective use of TSBN.
This technique provides RTFormer with an edge, allowing for
better normalization of the neuron’s output across different
timesteps, which is crucial for datasets with a high degree
of intra-class variability like CIFAR-100. The improvement
in normalization contributes to more stable and faster conver-
gence during training, as evidenced by the higher accuracy
rates when compared to the tdBN, TEBN, and MPBN meth-
ods.

Comparision with Transformers in SNN. Thirdly, against
the backdrop of Spike Transformer architectures, RTFormer’s
refined approach shines through. RTFormer’s innovative BN
approach, coupled with structurally reparameterized depthwise
convolutions (DWconv), significantly boosts its performance.
While Spikformer and spike-driven models have shown the
viability of Transformer architectures in SNNs, RTFormer
optimizes these designs, achieving an impressive 96.27% on
CIFAR-10 and 81.37% on CIFAR-100. This represents not



TABLE II
EXPERIMENTS ON BOTH STATIC AND DVS DATASETS. IN THIS TABLE, ’TS’ REFERS TO THE TIMESTEP FOR STATIC DATASETS, WHILE ’TD’ INDICATES

THE TIMESTEP FOR NEUROMORPHIC (DVS) DATASETS. THE ARCHITECTURE ABBREVIATIONS ’S-V,’ ’S-R,’ AND ’S-T’ CORRESPOND TO SPIKING VGG,
SPIKING RESNET, AND SPIKING TRANSFORMER, RESPECTIVELY. ASTERISKED RESULTS (*) REPRESENT OUTCOMES FROM OUR IMPLEMENTATIONS OF

THESE METHODS. DETAILED HYPERPARAMETERS USED IN THESE EXPERIMENTS ARE METICULOUSLY DOCUMENTED IN THE APPENDIX FOR REFERENCE.

Methods Architecture Param(M) Ts
Acc

Td
Acc

cifar10 cifar100 cifar10-dvs dvs 128

RMP [39] S-V-16 138.4 4096 93.63 70.93 - - -
Calibration [40] S-V-16 138.4 2048 95.79 77.87 - - -
SEW-ResNet [29] S-R-21 21.79 4 95.34* 78.32* 16 74.4 97.9
MS-ResNet [30] S-R-18 11.69 4 94.79* 78.15* 16 75.56 97.54*
Att-MS-ResNet [7] S-R-18 11.87 4 95.07* 77.89* 20 77.35* 98.23

tdBN [35] S-R-19 12.63 4 92.92 70.86 16 67.8 96.9
TEBN [36] S-R-19 12.63 4 94.7 76.13 10 83.3* 97.95*
MPBN [41] S-R-19 12.63 2 96.05* 79.51 10 74.4 98.26*

Spikformer [31] S-T-4-384 9.32 4 95.19 77.86 16 80.9 98.3
Spike-Driven [33] S-T-4-384 9.32 4 95.6 78.4 16 80 97.9*

This work S-T-4-384 7.93
4 96.27 81.37 16 83.6 98.61
2 96.12 80.9 10 82.9 98.61

only an improvement over the aforementioned models but also
highlights the RTFormer’s architectural benefits, which are
particularly advantageous for complex and nuanced datasets
like CIFAR-100.

In conclusion, RTFormer, with its strategic modifications
and enhancements, stands as a testament to the potential of
SNNs, particularly in processing complex visual data, and sets
a new benchmark for accuracy and efficiency in the field.

Fig. 3. The figure presents two line graphs, where the blue line represents
the baseline model, and the green line indicates the performance after
incorporating TSBN. The graph on the left illustrates the results obtained
on the CIFAR-10 dataset, while the right graph showcases the outcomes on
the CIFAR10-DVS dataset.

B. Neuromorphic Datasets Classification

Dataset Description. The CIFAR10-DVS dataset is a
neuromorphic version of the well-known CIFAR-10 dataset,
converted using a Dynamic Vision Sensor (DVS). It presents
everyday objects in a format compatible with neuromorphic
vision systems, capturing temporal changes in pixel intensity.
DVS128 Gesture, on the other hand, is a gesture recognition
dataset specifically designed for neuromorphic processing. It
comprises hand gesture data from 29 individuals under various
lighting conditions, captured through a DVS camera, making

it ideal for developing and testing gesture recognition models
on SNNs and neuromorphic hardware.

As shown in Tab.II, RTFormer exhibits unique advantages in
Neuromorphic datasets, such as CIFAR10-DVS and DVS128
Gesture, which capitalize on the intrinsic features of Spiking
Neural Networks (SNNs) and the architectural innovations
specific to RTFormer.

TABLE III
ABLATION EXPERIMENT FOR TSBN. IN THE ”ARCHITECTURE” COLUMN

OF THE TABLE, THE ABBREVIATION ”S” STANDS FOR ”SPIKING,” ”R”
REPRESENTS ”RESNET,” AND ”T” DENOTES ”TRANSFORMER.”

Dataset Method Architecture Acc.(%)

CIFAR10

Baseline S-R-19 95.28%
w/ TSBN S-R-19 96.04%

Baseline [33] S-T-4-384 95.60%
w/ TSBN S-T-4-384 96.27%

CIFAR100

Baseline S-R-19 74.52%
w/ TSBN S-R-19 79.37%

Baseline [31] S-T-4-384 80.90%
w/ TSBN S-T-4-384 83.60%

Compared to Previous Research. RTFormer outshines
prior studies, notably in neuromorphic datasets like CIFAR10-
DVS and DVS128 Gesture. It demonstrates superior accuracy,
a clear advancement over earlier methods like RMP and Cal-
ibration, which do not present results for these DVS datasets.

Against Other BN Methods in SNNs. When compared
to other batch normalization techniques such as tdBN, TEBN,
and MPBN, RTFormer exhibits noteworthy improvements in
accuracy on neuromorphic datasets. This suggests that its
approach to integrating batch normalization is more effective
for handling the dynamic nature of these datasets.

Versus Other Spiking Transformer Architectures. RT-
Former also excels in comparison to other spiking transformer
architectures like Spikformer and Spike-Driven. It achieves



higher accuracy rates, highlighting its effectiveness in pro-
cessing the temporally rich data characteristic of neuromor-
phic datasets, thereby underscoring its advanced capability in
handling spatiotemporal data complexities.

C. Ablation Study

To verify the effectiveness of the TSBN, a lot of abla-
tive studies using different architecture were conducted on
the CIFAR10 and CIFAR10-DVS datasets. Table III clearly
demonstrates that the integration of Temporal Sliding Batch
Normalization (TSBN) leads to an enhancement in accuracy,
regardless of whether the underlying backbone is a Spiking
ResNet or a Spiking Transformer. This improvement is consis-
tent across both Static and Neuromorphic datasets, a fact that
is also visually evident in the accompanying Figure IV-A2.

D. Performance Insights of RTFormer

Architectural Synergy with Neuromorphic Data. Neu-
romorphic datasets inherently contain temporal information
that traditional static datasets lack, and RTFormer is adept
at leveraging this. The model’s architecture, influenced by
the Transformer design, is inherently suited for handling
sequences, making it exceptionally well-aligned with the time-
sensitive data in neuromorphic datasets. The RTFormer uses
Spiking Transformer blocks tailored to process the spatio-
temporal dynamics present in such data, enabling it to capture
the nuanced temporal patterns that are pivotal for recognition
tasks in neuromorphic vision.

Effectiveness on Static Data. The RTFormer’s effective-
ness in processing static datasets can be attributed to its
novel integration of re-parameterized convolutions. The spatial
core’s re-parameterized convolutions adeptly capture complex
spatial patterns in static data, while the TSBN, even in a
non-temporal context, provides adaptive normalization that
enhances the network’s ability to generalize from training to
unseen data. This combination not only boosts computational
efficiency but also ensures a high level of accuracy, making
RTFormer a versatile tool in both dynamic and static data
environments.

Efficient Temporal Encoding. The RTFormer’s use of
Temporal Sliding Batch Normalization (TSBN) is particularly
beneficial for neuromorphic datasets. This specialized BN
method ensures that RTFormer’s neurons maintain an opti-
mal firing rate, preventing both the vanishing and exploding
gradient problems that are common in SNNs. This allows the
RTFormer to efficiently encode temporal information, a critical
aspect when dealing with datasets like CIFAR10-DVS, where
each pixel’s intensity changes over time are encoded into spike
trains.

Robust to Diverse Visual Stimuli. RTFormer’s robustness
to diverse visual stimuli, stemming from its Transformer
roots, is evident in its neuromorphic dataset performance. The
attention mechanisms allow the model to focus on the most
salient features within the spike trains, enhancing its ability
to discern between different gestures and visual patterns with
high accuracy.

V. CONLCUSION

To ensure efficient inference on spiking chips, all convolu-
tional operations within our model have been reparameterized
structurally. In conjunction, we have refined the subsequent
Batch Normalization (BN) technique to align with the charac-
teristics of Leaky Integrate-and-Fire (LIF) neurons, resulting
in the introduction of Temporal Sliding Batch Normalization
(TSBN). By embedding TSBN into the transformer architec-
ture, we have crafted the RTFormer, which achieves unprece-
dented results on both static and neuromorphic datasets, setting
new benchmarks in performance.
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