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Abstract—Effective lesion detection in medical image is not
only rely on the features of lesion region, but also deeply relative
to the surrounding information. However, most current methods
have not fully utilize it. What’s more, multi-scale feature fusion
mechanism of most traditional detectors are unable to transmit
detail information without loss, which makes it hard to detect
small and boundary-ambiguous lesion in early stage disease.
To address the above issues, we propose a novel intra- and
across-layer feature interaction FCOS model (IAFI-FCOS) with
a multi-scale feature fusion mechanism ICAF-FPN, which is a
network structure with intra-layer context augmentation (ICA)
block and across-layer feature weighting (AFW) block. Therefore,
the traditional FCOS detector is optimized by enriching the
feature representation from two perspectives. Specifically, the
ICA block utilizes dilated attention to augment the context
information in order to capture long-range dependencies between
the lesion region and the surrounding. The AFW block utilizes
dual-axis attention mechanism and weighting operation to obtain
the efficient across-layer interaction features, enhancing the
representation of detailed features. Our approach has been
extensively experimented on both the private pancreatic lesion
dataset and the public DeepLesion dataset, with AP50 of 62.2%
and 60.0%, respectively, and these results are 6.4% and 2.3%
higher than the FCOS. Additionally, our model achieves SOTA
results on the pancreatic lesion dataset.

Index Terms—medical images, computer aided diagnosis, le-
sion detection, deep learning, object detection.

I. INTRODUCTION

Cancer is a major global public health concern, with 10
million people worldwide succumbing to cancer by the year
2020. The chances of survival would significantly increase if
cancer is detected early [1]. However, there is currently a lack
of simple and efficient lesion detection methods, resulting in
the discovery of most cancers at later stages. For example,
pancreatic Ductal Adenocarcinoma (PDAC) is often treated
only after the appearance of metastatic symptoms, which leads
to an increase in mortality rate [2].

In the early stages of disease diagnosis, radiologists would
normally screen for tumors using medical imaging, such
as Computed Tomography (CT). However, the accuracy of
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(a) easy to detect (b) hard to detect

Fig. 1. CT scan visualization of the pancreas dataset. (a) easy to detect:
tumor features are distinct and have clear boundaries. (b) hard to detect: tumor
boundaries are fuzzy and the target is small, a situation that is often difficult
for the network to identify.

diagnose is often relies on the experience of the medical
professionals, and when screening a large number of CT scan
images, it can consume a considerable amount of their time
and energy, leading to the possibility of errors and omissions
[3]. Utilizing automated Computer-Aided Diagnosis (CAD)
systems can assist doctors automatically identifying suspected
lesion locations and reduce the workload for physician, en-
abling faster and more accurate early cancer screening.

Computer-Aided Detection (CADe) is a component of
CAD, which is aim to detect lesion areas by object detection
methods. Directly applying these methods to lesion detection
in CT scan images may not guarantee the satisfactory perfor-
mance since there’s a difference between medical images and
natural images. To the best knowledges we know, there exist
several challenges as follows:

Firstly, there is often a correlation between the type of
lesion and its location. Such as mucinous cystic neoplasms
(MCNs), a type of pancreatic cystic neoplasms (PCNs), most
commonly occurs in the pancreatic body and tail [5]. Existing
methods [6] mainly focus on the area of the lesion and do not
fully utilize the information surrounding the lesion. Secondly,
the traditional detectors [8], [10], [16] has two drawbacks
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when performing multi-scale feature fusion: (1) direct fuse of
different layers of features reduces the representation of multi-
scale features, (2) top-down transfer of features leads to loss
of information. When the lesion area occupies only a small
fraction of the pixels in CT scan image, or when the difference
in features between the lesion area and the non-lesion area is
not obvious, the loss of detail information makes it difficult to
identify and localize the lesion. Fig. 1 illustrate visualization
of CT scan with distinctive and less distinctive lesion features.

To address the above challenges, this paper proposes a
novel intra- and across-layer feature interaction FCOS model
(IAFI-FCOS). The main design a multi-scale feature fusion
mechanism ICAF-FPN with intra-layer context augmentation
(ICA) block and across-layer feature weighting (AFW) block.
This model enriches the lesion-related features and improves
the accuracy of early cancer detection. The main contributions
of this paper are as follows:

• The proposed ICA block, at each intra-layer, utilizes di-
lated attention transformer to increase the receptive field,
supplement contextual information in the lesion area, and
learn long-range dependencies with surrounding.

• The proposed AFW block utilizes dual-axis attention
to aggregate across-layer features, then the aggregated
features adaptively filter redundant and conflicting in-
formation through weighting when fused with features
of each layer. This complement the texture information
and position information of small targets from low-level
feature maps, alleviating the issue of information loss
from traditional methods.

• The proposed IAFI-FCOS model is train and validate on
both the private pancreatic lesion dataset and the public
DeepLesion dataset, results in better performance com-
pared to the other methods, which proves its performance
and its robustness on different datasets.

The rest of the paper is organized as follows. We provide
an overview of object detection methods and its applications
on the field of medical imaging in Section II. In Section III,
the method proposed in this paper is specifically described.
In Section IV, the results are reported and analyzed. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

Object Detectors. Object detection is a fundamental task in
the field of computer vision, and numerous research achieve-
ments have propelled its advancement. The object detectors are
generally classified into three categories: two-stage detectors
[8]–[12], one-stage detectors [13]–[19] and transformer-based
detectors [20]–[22]. The two-stage detectors follow the tradi-
tional object detection pipeline, by generating lots of candidate
regions and then classifying the objects present in each candi-
date box into different object classes. The one-stage detectors
operate as either a regression or classification problem, directly
mapping from image pixels to bounding box coordinates and
class confidences. Transformer-based detectors are end-to-
end structures, eliminating the need for manually designed
components (e.g., non-maximum suppression).

For the lesion detection task, we choose the one-stage
detector FCOS [16] as our baseline model. This is because
its simplifies the whole target detection process and performs
better when dealing with small targets.

Feature Pyramid Networks. Object detection tasks com-
monly utilize Feature Pyramid Networks (FPN) [10] to enable
models to effectively detect objects at different scales. SSD
[13] first attempts to predict the location and class of targets
with multi-scale features. FPN [10] introduces a top-down and
lateral connection mechanism, effectively fusing features at
different scales. Subsequently, PANet [23] further proposes a
bottom-up path, which combined with FPN to enable high-
level features to capture detailed information in low-level fea-
tures. NAS-FPN [24] optimizes the Feature Pyramid Network
through neural architecture search to achieve automatic search
and design and enhance the performance of object detection
models. FCOS uses the traditional FPN structure with simple
top-down fusion of multi-scale features, which can lead to
information loss.

Medical Images lesion Detection. Medical image lesion
detection, which is used of computer-aided detection (CADe)
to identify the location and category of lesions [9]. With the
help of CADe, the time and computational cost required can
be reduced, assisting physicians to improve efficiency. For
example, Ding et al. [25] and Zhu et al. [26] improve the
Faster RCNN [8] and combine it with 3D convolution for
the detection of lung nodules, which enhance the accuracy of
nodule identification by strengthing improve the fine-grained
representation and capturing more unique features. Fan et al.
[27] develops a framework for Computer-Aided Diagnosis
(CAD) system based on Mask Region Convolutional Neural
Network [11] for the large-scale detection and segmentation
of breast cancer. These frameworks all utilize 3D CNN to
enhance the two-stage detector, improving detection perfor-
mance, but they require substantial computational resources
and extensive manual annotation of 3D bounding boxes. Sub-
sequently, Liu et al. [6] further explores the one-stage method
YOLOv3 to improve the detection performance in universal
lesion areas. It significantly strengthened the accuracy of the
lesion detector using only a 2D structure. However, there still
remain some challenges to recognize those tough lesions, such
as the smaller lesions and those with ambiguous borders.

To address above issues, we propose a novel IAFI-FCOS
method to capture effective information for CT scan images,
improving the accuracy and robustness of lesion detection.

III. METHOD

In this section, we present the details of the proposed the
IAFI-FCOS. This study utilizes the FCOS as our baseline, and
combines it with a novel proposed Neck called ICAF-FPN.
The overall architecture of the network is illustrated in Fig. 2.
It mainly consists of the following components: (a) Backbone:
Given an input feature map I, extract multi-scale features
Ci(i = 2, 3, 4, 5) using convolution network, i.e. ResNet. (b)
Neck: This part consists of ICAF-FPN. The main role is to
aggregate and distribute the multi-scale features Ci from the
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Fig. 2. Overview of the network architecture of the IAFI-FCOS detection framework, which mainly consists of three components: (a)a backbone network for
feature extraction, (b)the ICAF-FPN neck and (c)the object detection head network. The Ci, Pi, IFi, AFi and Li represent feature maps, the Wi indicate
learnable weights.

backbone network. (c) Head: Outputs the final classification
and localization prediction results.

A. ICAF-FPN

The accuracy of object detection relies on the processing
of features at different scales by the NECK part. Low-level
features tend to carry texture information and edge informa-
tion, which helps in the localization of small targets. High-
level features include semantic features and the location of
larger objects. Effectively fuse features of different levels
can improve the network’s detection accuracy for objects of
different sizes [28]. For the lesion detection task, we design a
new multi-scale feature fusion mechanism, ICAF-FPN, which
prevents information loss by aggregating features in both intra-
and across-layer perspective.

Intra-layer. The recognition of a lesion depends not only
on its inherent feature information, but also needs to be aided
by the information provided by the background surroundings
nearby the lesion. Traditional approaches employ convolution
to process features at each layer, to capture the local features
of the target. However, the nature of the convolutional oper-
ation, i.e., the limited receptive field, unavoidably has some
drawbacks in establishing global dependencies. In our work,
the ICA block is designed to deeply interact with each layer’s
inner features. We utilize multi-head dilated attention (MHDA)
block to capture the global dependencies between the lesion
area and the surrounding pixels, which significantly expands

the receptive fields. This approach preserves the model’s
sensitivity to local features while capturing global contextual
information, enhancing the accuracy of lesion identification.

Across-layer. When inconspicuous lesion boundaries and
small lesions appear (such as in Fig. 1 (b)), the amount of
detail information determines the success of screening and
detection. However, the traditional top-down and bottom-up
transmission modes may lead to information loss, as each layer
only receives complementary neighboring information while
the cross-layer information (e.g. C2 to C4) is weakened and
lost during transmission. Inspired by Glod-YOLO [28], we
propose the AFW block, which first extract global effective
features directly through across-layer feature gather (AFG)
block to reduce the information loss. To retain more infor-
mation about the positions of small targets, we specifically
introduce the low-level feature map C2 into the AFG block.
After extracting the global features, they are assigned to
different hierarchical levels. It’s worth noting that directly
fusing information of different densities may lead to semantic
conflicts, thus limiting the expression of multi-scale features.
Here, we design the split feature weighting (Split FW) block
with different weights for each levels to fuse global features
and filter conflicting information.

Finally, the layer features, the intra-layers interaction fea-
tures and the across-layer interaction features are adaptively
fused to obtain the output features of the neck by adaptive
feature fusion (AFF) mechanism. Compared with existing



FPN, our proposed ICAF-FPN is more focused on the lesion
detection task, which not only establishes global dependencies
within each layer, but also realizes the depth of the information
interaction between the different layers, further improves the
expression ability of multi-scale features. This design allevi-
ates the problems in lesion detection.

B. Intra-layer Context Augmentation Block
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Fig. 3. The structure of ICA block.

Dilated convolution [29] and DilateFormer [30] expand the
receptive field and capture rich contextual information by
setting different dilation rates. To establish the relationship
between the lesion region and the surrounding background,
we design the ICA block. The structure is shown in Fig. 3,
for the feature maps Ci(i = 3, 4, 5), we first apply convolution
to enrich local details. Subsequently, we utilize a multi-head
dilated attention (MHDA) to establish dependencies between
pixels. The feature map is divided into three heads by channel
dimension and compute the dilated attention for each head.
The dilated attention expands the receptive field by setting
different the dilation rate R (e.g., R=1, 2, 3). Such as, an unflod
operation utilizes a 3× 3 kernel size with R = 3, and the size
of receptive field is 7× 7. Then, we concatenate the features
from the different receptive field of three heads together and
feed the concatenated features into a linear layer. The residual
structure complement detailed information. Finally, the intra-
layer interaction features IFi is obtained through MLP and
residual layer.

The above processes can be formulated as:

hn = MHDA(C
′

i , Rn), 1 ≤ n ≤ 3, (1)

Xi = C
′

i + Linear(Concat[h1, h2, h3]), (2)

IFi = Xi +MLP (Xi), (3)

where C
′

i is the feature map after convolution, Rn represent
the dialation rate of the n-th head.

In contrast to conventional multi-head attention which cal-
culate self-attention on the whole graph, we capture the spatial
positional connections by building the different receptive fields
sparsely. This approach successfully reduces computational
complexity while captures global dependency relationships.

C. Across-layer Feature Weighting Block
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Fig. 4. The structure of AFW block. The left and right sides of the figure
represent the specific processes of AFG and Split FW, respectively.

The AFW block consists of the across-layer feature gather
(AFG) block and the split feature weighting (Split FW) block,
as illustrated in Fig. 4. Firstly, the AFG block aligns multi-
layer features and extracts global features using a dual-axis
attention operation [31]. Then, the cross-layer global features
are weighted and fused with the aligned features, effectively
facilitating the interaction of inter-layer information.

AFG. In the neck part of FCOS, a top-down mechanism is
directly adopted to merge the C3, C4 and C5. To preserve
more detailed information for smaller targets, we introduce
features from the C2 layer and employ a different fusion
mechanism. Initially, We align the four layers of different scale
features to a unified size, avoiding computational overload by
mapping images of different resolutions to the size of the
C4. For high-resolution feature maps, the average pooling
operation is used for downsampling, while the transpose
convolution is taken for upsampling the low-resolution images.
Due to the reason that the traditional up-sampling methods
may lead to loss of information, we adopt the transposed con-
volution allows flexibility in retaining and reconstructing the
information in the original input by learning the parameters.
The formula is as follows:

Ai = Falign(Ci), i = 2, 3, 4, 5 (4)

where Faling represent the alignment method, Ai represents
the aligned features.



The aligned features are concatenated through the channel
dimension and the global features are extracted by fusing
the spliced features using the dual-axial attention mechanism.
The dual-axial attention refer to the establishment of long-
range dependencies in the vertical and horizontal directions,
respectively. The feature map X is divided into two parts
Xv ∈ RH×W×C/2 and Xh ∈ RH×W×C/2 by channel dimen-
sion. In the vertical direction, Xv is evenly split into W non-
overlapping vertical axial stripes and projected as Q1, K1.
In the horizontal direction, Xh is evenly split into H non-
overlapping horizontal axial stripes and projected as Q2, K2.
V is projected by the feature map X and shared in dual-axial.
To compute self-attention separately, the formula is as follows:

X
′

v = Attention(Q1,K1, V ) (5)

X
′

h = Attention(Q2,K2, V ) (6)

where X
′

v and X
′

v denote the feature map after self-attention.
While the dual axial attention mechanism reduces the com-

plexity of attention, the axis to axis interaction information is
lost which is very critical for object detection task. Hence,
convolutional are employed to spatially interact with the
shared V , supplementing the connections between different
axis. The final output of two parts are concatenated along the
channel dimension. The process is formulated as:

X
′
= X + Concat(X

′

v + Va, X
′

h + Va) (7)

where Va denotes the value after interacting with the axial
information, X

′
denotes the output of AFG.

Split FW. The AFG effectively aggregates across-layer
information. In order to efficiently fuse global information into
different layers, we use different weights to enhance features at
each scale. We expand the feature map X

′
along the channel

dimension by adding three dimensions, serving as learnable
weights for each layer. After utilize the Split operation, these
weights are divided into a globally effective feature weight
map G and layer-specific feature weight maps Wi(i = 1, 2, 3).
Wi and G are multiplied by the aligned feature map Ai,
respectively. It can complement the inter-layer correlated fea-
tures while suppressing the conflicting information to enhance
the representation of multi-scale features. The above processes
can be formulated as:

AFi = Ai ·G ·Wi, i = 3, 4, 5 (8)

D. Adaptive Feature Fusion
The ICA and AFW blocks aggregate intra- and acoss-scale

features, with the ultimate goal of fusing multiple semantic
features: IFi, AFi and Li. Li is obtained by 1×1 convolution
of Ci. We observe that a straightforward addition leads to
confusion of distinct features, which reduce the ability to
recognize the target. To address this problem, we employ an
adaptive fusion mechanism, introducing weighting parameters
to ensure that the contribution of each feature to the final
fusion result is learned by the network. This process can be
expressed as:

Pi = α1 · IFi + α2 ·AFi + α3 · Li, α1 + α2 + α3 = 1 (9)

where αi denotes different weights, Pi denotes the output of
the neck part.

IV. MATERIALS AND EXPERIMENT

In this section, we introduce the datasets, the training sched-
ule and the evaluation metrics used in our experiments. Then,
we compare our proposed method with the other methods
and analyze the effectiveness of our methodology by ablation
study. Patient data were fully anonymized in this study to
ensure confidentiality and privacy.

A. Dataset

We conducted experiments on two datasets. The first pan-
creatic lesion dataset is a contrast-enhanced CT images of
pancreas provided by the First Affiliated Hospital, Zhejiang
University School of Medicine. The dataset contains 1482
CT images, including 861 pancreatic serous cystic neoplasms
(SCNs), 353 mucinous cystic neoplasms (MCNs) and 268
without tumors. CT slices of difficult-to-detect lesion (e.g.,
small lesions) comprise approximately 16% of the dataset.
1173 images from the dataset are used for training, and other
additional 309 images are allocated for testing.

To validate the generalization performance of the model, we
conducted experiments on the publicly available DeepLesion
dataset [32]. This dataset contains 32,735 lesions on 32,120
axial slices from 4,427 patients. In this dataset, the lesion
types are diverse and contain lesions from various sites (e.g.,
bone, abdomen, liver, etc.). The dataset is divided into training
(70%), validation (15%), and test sets (15%) following official
standards.

Data pre-process. Different HU window level and window
width are set for each of the two datasets. Under different HU
window, we can focus on lesions in certain specific organs. We
set HU restriction in accordance with the window level and
window width provided by expert radiologists, the pancreas
dataset set 30 and 300, the Deeplesion dataset is set up as
provided in the official documentation.

B. Experimental Setting

Implementation Details. All experiments are conducted on
NVIDIA GeForce RTX 2080 11 GB GPUs. The input images
training size is 640× 640. The optimizer is set to stochastic
gradient descent (SGD) with weight decay of 0.0001 and
momentum of 0.9. The initial learning rate in our model is
set to 0.02, which would automatically scaled according to
batch size and GPU, and a total of 12 epochs are trained.
Other comparative experiments retained the original design.

Evaluation Metrics. We mainly use two evaluation metrics:
commonly used the Average Precision (AP) metric for object
detection and the Free-Response Receiver Operating Charac-
teristic (FROC). AP is defined as the area under precision-
recall (PR) curve of a certain class, including AP, AP50,
AP75, APS, APM, and APL. Mean Average Precision (mAP)
refers to the average of the summed APs for each class. In
this experiment, AP is used to represent the mAP result.
The alternative evaluation metric, FROC is generally used



TABLE I
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT ALGORITHMS ON THE PANCREAS DATASET. USE OF TWO EVALUATION METRICS: AP AND

FROC. THE BACKBONE PART REMAINS CONSISTENT, UTILIZING RESNET50.

Method AP AP50 AP75 APS APM APL
Sensitivity

0.5 1 2 4 mFROC

Faster RCNN [8] 30.6 46.2 32.8 9.5 43.4 34.3 60.8 68.6 68.6 68.6 66.6
Cascade RCNN [12] 31.4 45.7 33.4 10.4 44.7 36.4 66.2 67.6 67.6 67.6 67.2

RetinaNet [14] 19.2 32.4 20.8 10.4 26.9 31.9 59.7 67.9 72.5 75.2 68.8
CenterNet [15] 32.0 48.5 35.6 10.0 44.4 35.6 67.1 72.9 80.7 81.8 75.6

TOOD [17] 32.7 46.6 35.3 16.8 44.1 38.8 66.7 79.5 80.6 82.2 77.2
Sparse RCNN [18] 24.3 42.5 25.0 4.8 33.4 32.9 59.9 62.8 65.4 66.5 63.6

YOLOx [19] 35.8 48.2 41.2 11.5 45.8 42.6 60.3 65.5 65.8 65.8 64.3
YOLOv8 [20] 37.0 49.1 41.7 19.0 42.4 38.8 61.2 63.5 66.7 66.7 64.5

Deformable DETR [21] 10.6 20.7 11.4 2.8 16.4 6.9 23.5 34. 5 36.3 36.3 32.6
DINO [22] 37.1 52.5 40.5 14.0 45.9 45.1 67.3 71.2 73.9 77.2 72.4

FCOS(Baseline) [16] 36.1 55.8 39.0 15.4 44.8 41.0 73.7 78.6 80.8 82.9 79.0
Our Method 42.0 62.2 46.7 22.3 50.0 44.1 75.3 80.0 80.9 82.3 79.5

in the medical field and allows the evaluation of arbitrary
abnormalities on each image. Specifically, the detection of
medical images requires extremely high sensitivity to ensure
the detection of all abnormalities, allowing for some degree
of false positives (FPs). FROC measures whether a detector
can find more true positives (TPs) at the same false positive
rate. In our experiments, we set the FPs per image to 0.5, 1,
2, and 4 to compare the sensitivity of different methods.

C. Results

In this section, we first evaluate the performance of our
method and other different types of methods for detecting
lesions on two datasets. Then ablation experiments are per-
formed on the pancreas dataset.

Comparison study. For the pancreatic dataset, as shown
in Table I, our method shows improvements in both AP and
sensitivity compared to the baseline. The AP has increased by
approximately 6%, and APS has shown an improvement of
around 7%. In addition, under the more stringent mean FROC
(mFROC) evaluation metric, our method improved by 0.5%.
Notably, at FPs in per images of 0.5, our method obtained a
higher sensitivity, achieving an improvement of 1.6%.

Comparing our method with other two-stage, one-stage and
transformer detectors, our method outperforms the others in
overall performance, as shown in Table I. The CenterNet
and TOOD show relatively good sensitivity under the FROC
metric, it still falls short of our method’s performance. Addi-
tionally, the Dino achieved performance similar to the baseline,
yet in comparison to our method, only has a slightly higher
APL of 1%, while all other metrics are inferior.

For the Deeplesion dataset, which contains lesion types from
different organ sites, it is more complex to realize the detection
task compared to the pancreas dataset. As indicated in Table II,
our method also achieves superior results on the Deeplesion
dataset, with an AP50 reaching 60.0%, and it improves the
APS from 0.1% to 0.5%, demonstrating the generalization of
the model. In this dataset, the proportion of small lesions is
extremely low. This scarcity of small lesions makes it more

TABLE II
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT ALGORITHMS

ON DEEPLESION DATASET. USING THE AP EVALUATION METRICS. ”-”
INDICATES THAT THE INDICATOR WAS NOT PROVIDED.

Method AP AP50 AP75 APS APM APL

Faster RCNN 29.1 52.1 30.7 0.1 34.7 44.6
Cascade RCNN 29.8 51.7 32.6 0.1 35.7 45.4

RetinaNet 25.4 48.4 23.8 0.1 29.0 47.9
CenterNet 32.0 57.3 33.6 0.1 38.3 49.8

TOOD 33.5 59.3 35.6 0.3 41.6 50.8
Sparse RCNN 26.2 48.7 25.6 0.2 33.7 45.7

YOLOx 32.2 58.0 33.3 0.1 37.5 49.7
Deformable DETR 24.5 47.7 22.4 0.2 29.5 39.5

DINO 33.3 57.4 36.1 0.2 40.3 47.9
Liu [6] - 57.5 - - - -
Zhu [7] - 60.4 - - - -

FCOS(Baseline) 32.3 58.4 32.9 0.1 37.7 51.5
Our Method 33.5 60.7 34.7 0.5 38.8 52.0

challenging to learn features related to small targets during
the training process, leading to difficulties in detecting these
small lesions.

Fig. 5. The FROC curves of various methods for detection on the Deeplesion
dataset.

TOOD does not differ much from the performance of our
method, but the AP50, APS and APL are 1.4%, 0.2% and



1.2% higher than TOOD, respectively. when comparing more
stringent FROC metrics, our sensitivity is higher the TOOD, as
shown in Fig. 5. FROC curves visually compare the sensitivity
of methods with similar AP values, and our method were
higher than the baseline at average FPs per image = 0.5, 1, 2,
and 4 by 2.7%, 2.4%, 2.2%, and 2.5%, respectively. However,
compared to Zhu’s method [7], our FROC metric still fails to
fully outperform it, despite performing better on the AP50. We
will continue to make improvements in subsequent studies to
optimize our approach.

As shown in Fig. 6, the first column visualizes the detection
results of the slices in the pancreas dataset and the second
column shows the results of the Deeplesion dataset. Our
method (b) is better at recognizing categories compared to
baseline (a), since there is no misdiagnosis of mucous cyst as
serous cyst. Furthermore, the baseline results may exhibit some
false positives, while our method avoids such occurrences and
achieves higher confidence.

Fig. 6. Detection visualization of the comparison between baseline and our
improved detector. (a): the results of baseline. (b): the results of our method.
The green and red bounding boxes represent ground truths and predictions.

To validate the effectiveness of our designed ICAF-FPN
structure, we replace the FPN structure in the neck part
of baseline and compare the performance of detectors with
different FPN mechanisms, as shown in Table III. Comparing
with FPN, our method improves the AP by 6% and the APS
by 7%, which is a significant improvement in the overall
performance. Despite using the structure of PAFPN to improve
the effectiveness, our method still outperformed PAFPN by
3%. This demonstrates that our proposed approach effectively
improves lesion detection performance.

TABLE III
ABLATION STUDY ON FPN, DETECTION PERFORMANCE UNDER

DIFFERENT FPN STRUCTURES.

Neck AP AP50 AP75 APS APM APL

FPN [10] 36.1 55.8 39.0 15.4 44.8 41.0
PAFPN [23] 39.4 59.7 42.1 17.9 47.4 42.7

NAS-FPN [24] 24.3 37.7 25.9 10.3 32.9 32.7

ICAF-FPN 42.0 62.2 46.7 22.3 50.0 44.1

Ablation study. We perform ablation experiments on the
proposed method to evaluate the performance improvement in
lesion detection. The same strategy and parameters are used
during training and validation to ensure a fair comparison.

We evaluated the impact of different designs in the ICAF-
FPN on the model. As shown in Table IV, when only the
ICA block is introduced, resulted in an AP of 39.0%, an
improvement of 2.9% compared to the baseline. Notably, the
APS also achieves an improvement of 2.7%. This indicates that
combining background information can help with lesion detec-
tion. When only introducing the AFW block for information
interaction across different scales, we achieved better results
for small target detection, with a 4.1% improvement over
the baseline, while other metrics also showed improvements.
This reflects the fact that our method retains more details
that contribute to lesion identification. When combining ICA
and AFW and not using AFF, we noticed that APS and
APL are not as high as when using AFW blocks alone. We
conjecture that feature redundancy and conflicts occur when
using additional fusion of different semantic features, leading
to confusion between small and large target information. To
address this, we introduce adaptive features fusion (AFF)
mechanism by assigning different weights to the features. As
shown in the Table IV, after the introduction of AFF, APS
reached 22.3%, and APL goes from 41.6% to 44.1%, which is
an improvement in each metric, proving the effectiveness of
the adaptive module.

TABLE IV
ABLATION STUDY ON ICAF-FPN, COMPARISON OF THE PERFORMANCE

FOR DIFFERENT BLOCKS.

ICA AFW AFF AP AP50 APS APM APL

36.1 55.8 15.4 44.8 41.0
✓ 39.0 58.0 18.1 46.0 43.4

✓ 39.1 58.1 19.5 45.1 44.6
✓ ✓ 39.6 60.9 18.9 46.9 41.6
✓ ✓ ✓ 42.0 62.2 22.3 50.0 44.1

In the AFW block, to retain more information about small
targets, we additionally introduced the C2 layer compared
to the baseline. To verify the necessity of the C2 layer, we
conducted an ablation experiment, as shown in Table V.

TABLE V
ABLATION STUDY ON AFW BLOCK, W/O INDICATES THAT NO C2 LAYER
WAS INTRODUCED, W/ INDICATES THAT A C2 LAYER WAS INTRODUCED.

ICAF-FPN AP AP50 AP75 APS APM APL

w/o C2 38.0 57.3 41.8 14.2 46.8 44.1
w/ C2 42.0 62.2 46.7 22.3 50.0 44.1

Our method fully utilizes the information extracted from
both inter- and intra-layers to enhance the overall detection
performance, which also effectively improving the detection
rate of small targets without losing the accuracy of large
targets.



V. CONCLUSION

In this paper, we propose a lesion detector based on one-
stage method called IAFI-FCOS for assisting radiologists to
achieve faster and more accurate early screening and detec-
tion of cancer lesions. We mainly focus on enhancing the
neck part of the object detection framework, which extracts
lesion-related information from both intra- and across-scale
perspectives for features of different scales. Subsequently, we
adaptively fuses the diverse semantic features of each scale
and feed into the prediction head to obtain the final detection
results. The novel multi-scale feature fusion mechanism ICAF-
FPN alleviates the challenge of detecting ambiguous and
small lesions. Extensive experiments have demonstrated a
significant improvement in the detection of the pancreatic
lesion dataset, as well as an enhanced detection performance
of the Deeplesion dataset. Continuous efforts are still needed
to achieve full generalizability across various lesion detection
domains. In future studies, we will continue to improve and
optimize our method to enhance domain generalizability and
better meet the needs of the medical image analysis field.
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