
ar
X

iv
:0

90
7.

30
45

v1
 [

cs
.C

R
]

17
 J

ul
 2

00
9

SecSip: A Stateful Firewall for SIP-based Networks
Abdelkader Lahmadi and Olivier Festor

INRIA Nancy - Grand Est Research Center, Villers-Lès-Nancy, France
Email: {Abdelkader.Lahmadi,Olivier.Festor}@loria.fr

Abstract—SIP-based networks are becoming the de-facto stan-
dard for voice, video and instant messaging services. Being
exposed to many threats while playing an major role in the
operation of essential services, the need for dedicated security
management approaches is rapidly increasing. In this paperwe
present an original security management approach based on a
specific vulnerability aware SIP stateful firewall. Through known
attack descriptions, we illustrate the power of the configuration
language of the firewall which uses the capability to specify
stateful objects that track data from multiple SIP elementswithin
their lifetime. We demonstrate through measurements on a real
implementation of the firewall its efficiency and performance.

Index Terms—SIP, VoIP, Security, Firewall

I. I NTRODUCTION

The Session Initiation Protocol (SIP) [1] has established
itself among the most important Internet protocols. It is
designed to establish, modify, and terminate a session of
application services. SIP is currently used in many popular
services such as Voice over IP (VoIP), Instant Message (IM),
Presence Service and even File Transfer. In the near future,
it is expected that SIP will play an essential role in the next-
generation telephony networks. Traditional telephony based on
PSTN networks was well secured, since it is based on close
environments, where calls are carried by dedicated lines and
managed by operator-owned devices. To carry calls, SIP-based
service architectures use the Internet and expose themselves to
all kinds of attacks ranging from Distributed Denial of Service
to toll-fraud, vishing or eavesdropping [2].

Offering an efficient security management framework for
SIP infrastructures is becoming a challenge to the success
and the wide deployment of VoIP services. We believe that
one essential building block of such a security management
framework is a dedicated SIP firewall. It must be dedicated
because the use of generic IP-based firewalls are inefficient
to address and mitigate most attacks against SIP services. IP-
level firewalls actually have two major drawbacks :

• they do not address the SIP protocol semantics. The SIP
protocol messages are text based, and the various fields
of a message are exploited to carry out different kinds
of attacks. For example, an attacker can easily employ
the SIP BYE request to tear down a session, without any
violation of an IP level firewall rule.

• they do not allow to consider per device specific vulner-
abilities. Different devices have different vulnerabilities.
Being able to protect them in an efficient way requires
both the knowledge of the devices and a precise specifi-
cation of the specific vulnerabilities. This is not provided
by IP level firewalls.

To remedy these shortcomings, we have designed and
implemented a SIP defense system that does support an in-
depth message analysis together with a SIP protocol state
tracking function. It is also required that the designed SIP
defense system satisfies the following properties: it must be
fast, accurate, induce low overhead and be safe. Our approach
to this problem is an application level firewall implemented
as a “bump in the wire” device: it intercepts SIP messages,
evaluates their safety before forwarding them to their destina-
tions. If the message or the transaction to which a message
belongs is unsafe, our system SecSip blocks it, thus protecting
the device from the threat.

Our approach to protect SIP networks from diverse vulnera-
bilities is depicted in Figure I. The fuzzing module allows the
discovering of per device SIP vulnerabilities in the network. It
then updates the vulnerability knowledge base that shares with
the firewall named SecSip. In a second stage, SecSip translates
this vulnerability into defense rules to protect devices from the
threat.

The SecSip environment combines two key techniques.
First, it uses a rule-based engine to execute rules that model
SIP vulnerabilities. These rules are executed against SIP proto-
col messages, transactions and dialogs. Second, it monitors the
SIP protocol to enable stateful semantic tracking through state-
ful objects claimed by vulnerabilities defense rules. Hence,
rules that model SIP vulnerabilities are based on both protocol
behaviour and attack signatures.

The system can operate either as a service deployed in the
network infrastructure or as a client-side protection tool. While
each has its merits as we will explain later, we focus in this
paper on the network service deployment model on which
performance is a key issue.

The remainder of the paper is organised as follows. Sec-
tion II gives an overview on SIP vulnerabilities as well as
on achievements in the area of firewalls and the associated
specification languages. Then, we discuss the design space of
a SIP defense system in section III. The SecSip runtime and
language are described in section IV. Their evaluation is per-
formed in section V. Finally, we conclude on the contribution
and outline some future work in section VI.

II. RELATED WORK

A. SIP exploits and vulnerabilities

VoIP networks are subject to many types of attacks. A
rich set of existing work [3], [4], [5], [6] has addressed SIP
vulnerabilities and exploits to examine how they can be effi-
ciently used to compromise the reliability and trustworthiness

http://arxiv.org/abs/0907.3045v1

Fig. 1. Overall approach combining the SecSip firewall and fuzzing tools.

of SIP-based VoIP systems. In [3], authors focus on billing
attacks The SIP protocol is also exposed to traditional DoS
attacks [7] like network bandwidth and OS/firmware attacks
to exhaust available resources. Furthermore, SIP comes with
its own specific DoS attacks. These attacks are illustrated
in [5] where the author presents stateful solutions based on
finite-state machines for SIP transactions to detect them. These
two contributions, have mainly illustrated SIP exploits rather
than the specification of the vulnerability that allows such
attacks. In [6], authors enumerate SIP attacks and identifythe
vulnerabilities that causes them. The lack of authentication is
for example, the major cause of signalling attacks like BYE,
CANCEL and Re-INVITE.

B. Application Level Firewalls and their language

There is a lot of literature on application level firewalls
and intrusion detection systems [8], [9], [10] devoted to com-
mon protocols like HTTP, SMTP, etc. The SecSip language
is inspired by the ModSecurity [8] approach which allows
HTTP traffic monitoring and filtering, with real-time intrusion
detection. Snort and Hogwash [9] are other intrusion detection
systems that target mainly the network level. They recently
started to support some SIP exploits such as INVITE flooding
attacks in a very limited way.

VoIP firewalls and more specifically those addressing the
defense of the SIP protocol, are still in early stages and there
is only limited work published [11], [12], [13], [5]. The authors
of [12] propose a solution for stateful intrusion detection
called SCIDIVE. The system relies on a stateful engine that
determines the current state from multiple packets involved
in the same session. The system also uses cross-protocol
detection to verify the consistency between two protocols
involved in the same VoIP session, mainly SIP and RTP. The
goal of their work are similar to SecSip and shares the stateful
feature.

VoIP defender [11] is a SIP-based security architecture
designed to monitor, detect, analyse and counter attack. The
nature of the employed detection scheme (stateful or stateless)
is not clearly defined in the publication. In addition, no details

are provided in about the language used to build defense rules
and how it can be used for SIP.

Our work is complementary to existing SIP vulnerability
and exploit discovery tools. SecSIP uses the output from
vulnerability discovery systems like KIF [14] to close the
defense loop by enforcing security policies against attacks ex-
ploiting these vulnerabilities. We also take profit from existing
intensive literature dedicated to application level firewalls, to
instantiate the system.

III. SIP DEFENSE DESIGN SPACE

The SIP protocol is transaction-based. Each transaction
consists of a request that invokes a particular method, or
function, on the server and at least one response [1]. Attackers
usually use malformed SIP messages within a transaction
to compromise a SIP entity. They also employ legitimate
messages to attack a SIP infrastructure (e.g. redirect calls, end
a session, cancel invitation and update session parameters).
Therefore, a SIP defense system must be able to defend
a SIP infrastructure against both malicious (but legitimate)
transactions and malformed messages.

The underlying approaches we do consider fall into two
categories: proactive and reactive. Proactive defense prevents
malicious transactions and malformed packets from reaching
the intended victim. A common proactive approach to identify
malicious behaviour is to record interacting SIP states, objects
and messages. In this case, the approach is stateful. A proactive
approach may operate anywhere in the network perimeter.
However, if located at the victim side such an approach
becomes useless, since a denial of service attack damage still
occurrs while the defense system tries to prevent it. A reactive
defense approach generates an inoculation in response to an
attack. This response will protect SIP devices. An example
of such inoculation is to deploy patches to eliminate a bug
exploited by the attacker. There are many additional examples
of reactive defense approaches including intrusion prevention
systems, statistical analysis, attack signatures, reactive address
blacklisting, etc. These solutions attempt to recognise post-
attacks and take a counter-measure later.

The effectiveness of each approach depends on the type of
attack. A proactive approach is suitable to cover compromise
attacks like toll fraud, unwanted calls and messages, . . . [6].
This type of attack needs very few SIP messages to cause
damage. The proactive approach needs to identify malicious
SIP objects and prevent them from reaching the victim.
The defense strategy can be exercised either in the network
perimeter or at the victims’ location. Denial of service attacks
keep the victim unaffected if applied at the network level rather
than on end-systems.

The design space of SIP defense solutions is summarised in
Table I. We observe that a proactive SIP defense in network
is more efficient than others, but also more challenging to
build. It needs high assumptions about safety and complexity.
However it is more efficient to protect SIP-based networks.

IV. A RCHITECTURE AND COMPONENTS

Our approach to defend SIP-based networks relies on the
insertion of a proactive point of defense between a SIP-based
network of devices (servers, proxies, user agents) and the open
Internet. Therefore, all SIP traffic is inspected and analysed
before it is forwarded to these devices. Figure 2 depicts
the proposed SecSip architecture that integrates four major
components: Input/Output Layer, Stateful Inspection Layer,
SIP Packet Handler and Rule Compiler and Optimizer.

Fig. 2. Overview of SecSip architecture.

Each component is described in details in the following
sections.

a) Input/Output Layer: The input and output features
provide the service able to capture, inject, send and receive
SIP packets from and to the network. They are configured
according to the deployment mode of the firewall. In an in-line
mode, the capture feature is active on the incoming interface
(from the Internet). If the packet is safe, the firewall, willinject
it, using raw sockets, on the SIP network while keeping the
same source and destination addresses. Features to accept TCP
connections and UDP traffic for further deployment modes is
also supported.

b) SIP Packet Handler:Intercepted packets are moved
to the SIP Packet parser module. The main function of this
module is to extract different fields within a SIP message. Each
field within a SIP message is the composition of a key that
represents the field name as defined by the SIP BNF [1] and
its respective value. While parsing a sip message, the parser
builds a data tree that represents the SIP packet. Each node
of the parse tree represents a SIP field defined by a numerical
identifier. The parse tree node also contains useful information
about the field such as type, length, starting and ending offsets
within the SIP packet, . . . This information is used later by the
stateful inspection layer to check the various SIP fields.

c) Rules Compiler and Optimizer:The core of the Sec-
Sip firewall is its rule engine. It has the critical task to process
defense rules against SIP messages and transactions. When
initializing, the rule engine starts loading and parsing rules
to identify different targets, operations and actions within
each rule. Each rule is transformed into a specification. A
specification is a data structure that holds the names and
values of each object of the rule. Then, rule specifications are
compiled to identify the targeted fields from the parse tree,
the pre-registered operations and actions.

During rule parsing, the engine creates stateful objects to
store SIP dialogs related data. Each defined rule set is attached
to a SIP transaction state machine type as specified in [1]. The
rules engine is thus able to store defense rules according to
their transaction state machine types. It uses a hash table to
store rules where each entry is defined by the rule’s transaction
type. After being stored, an optimization component traverses
the rules hash table and starts scheduling their execution.
This component specifies how rules will be executed when
a SIP message arrives to the firewall. Rules are ordered in a
scheduling list according to their referenced objects. At the
top of the list are the rules that declare objects and acts on
their values. At the bottom of the list are rules that have many
matches and have disruptive actions on a SIP message. In the
example depicted in Figure 3, we have two SecSip rules. The
first rule declares and updates a counter that counts the number
of received INVITE messages. The values 10 and 60 denote
that we need to decrease the counter value by 10 each 60
seconds. The second rule will drop SIP messages when the
counter is greater than 80.

Even, if the rules are reversed in the configuration files
and the administrator writes R2 before R1. The SecSip op-
timization component will schedule R1 followed by R2 in its
scheduling list since R2 references the variable rate that is
declared and updated by R1.

d) Stateful Inspection Layer:The inspection layer exe-
cutes the appropriate rules on each received SIP packet without
any buffering, even if the SIP message is incomplete.

Figure 4 shows how a SIP message traverses the SecSip
runtime and gets analyzed. First a SIP message is captured
from the network interface by the IO layer and delivered to
the parsing module. Then, the packet is parsed according the
pre-registered fields of the SIP parse tree that follows the SIP
format specification. These parsed fields will fill the parse tree

TABLE I
DESIGN SPACE OFSIPDEFENSE SOLUTIONS.

Attack type Defense approach Criteria
Proactive at SIP device Proactive in SIP network Reactive in SIP network

Compromise attacks
High High Not useful Assumptions
High High Effectiveness
Low High Complexity

Deny of service attacks
Not useful High Medium Assumptions

High Medium Effectiveness
High Medium Complexity

Examples Firewalls Firewall, NAT IDS

R1: secsip ”FIELDS:sip.method” ”ˆINVITE” declare:rate=counter[10;60]
R2: secsip rate ”@eq 80” drop

Fig. 3. A sample of SecSip rules

and synchronize the stateful objects defined by the SecSip
defense rules. SecSip stateful objects are stored to a certain
type of container specified in a specific rule. The SecSip
language provides three types of containers: set, list and bag.
A set is an unordered collection of objects without repeated
values. A list is an ordered collection of objects. A variation
of a set is the bag. It allows repeated values and multiple
objects. The different containers referenced by stateful objects
are stored within a hash table. Where each container has a key
that is a SIP dialog identifier defined by the triple (Call ID, To
Tag, From Tag). Based on the current state of the SIP session
and the direction of the packet, the corresponding matchingset
of rules is invoked to be processed. Rule processing will take
considered actions that may lead to a decision of forwarding
the packet to its destination or to drop it.

Fig. 4. SIP message traversal through SecSip runtime.

A. The SecSip language

The main feature of the stateful firewall is its language
designed to model SIP vulnerabilities. We here define a SIP
vulnerability as a flaw in one of its objects where execution
may go wrong and violate the intended semantics of the
SIP protocol (i.e., the protocol state machine and message
formats).

Object scope Lifetime Type

message-object message stateless
transaction-object transaction stateful
session-object session stateful

TABLE II
THE LIFETIME AND SCOPES OFSECSIP LANGUAGE OBJECTS

This leads to the following definitions :
Definition 1: S is the set of all possible object states in

a SIP interaction.
Definition 2: A SIP vulnerability is a tuplev = (f, P),

where f is a state transition function that defines post-
conditions, andP ⊆ S is a set of SIP objects states satisfying
pre-conditions.

A vulnerability contains a setP ⊆ S, where P defines
the required SIP object state for the vulnerability to exist,
also known as pre-condition. The post-condition functionf

expresses a transition from one SIP object state to another.
Definition 3: A SecSip rule is modeled as a tuplei =

(v, S
′

, A), wherev is a vulnerability,S
′

is a SIP state defined
by S

′

= fv(Pv) andfv is the vulnerability function associated
to v.

In this setting ifS
′

is detected by the post-condition function
fv , the SecSip runtime triggers the set of actionsA, before
enablingfv to occur on the real network.

A SIP object contains properties that describe network en-
tities and logical relationships. Logical relationship describes
communication and trust patterns between SIP network enti-
ties. We identify three types of entities for which SIP objects
are necessary : messages and their fields, transactions and
dialogs. In the SecSip defense language, a user-defined SIP
object follows the dot notation. It’s syntax form is as follows:
Object::= ObjectIdentifier [*(’.’ ObjectIdentifier)]

A user-define SIP object describes the SIP protocol proper-
ties over its lifetime. In the SecSip language, we define several
kinds of SIP objects with different lifetimes and scopes. Table
II summarizes the SIP objects defined by the SecSip language.
These objects are employed by the user-defined rules to detect
SIP vulnerabilities.

Stateful objects are defined using thehold instruction. A
stateful object has predefined properties when it is created.

The objects related to a SIP message track the values of its
fields. These objects are stateless since they are re-initialized
with each message. By default the SecSip runtime provides
a set of stateless objects mapped to the parsed fields of a
SIP message. These objects are defined by theFIELDS or
BODY identifiers mapped to the header or the body parts of
a SIP message. The identifier is followed by the name of the
object that follows a dot notation. For example, to access the
From specific field of a SIP message, we use:FIELDS :
sip.from.

Transaction related objects are used to record data across the
lifetime of a transaction, spanning a request and multiple re-
sponses. Within the SecSip runtime, a transaction is identified
by the combination of theBranchID and theCSeqcommand
value.

A dialog is defined by theCall-ID together with theFrom
IP and To IP. It spans multiple transactions. Objects related
to a dialog are stateful and provide data across the lifetime
of the dialog. For example, to initialize a stateful object that
tracks the values of theFrom field in all messages within a
dialog, we use the following:

hold:FROM_LIST=set[MESSAGE_HEADERS:sip.from]

In the above example, the statement defines a stateful
object FROM LIST that holds the values of the stateless
object sip.form from the message-objectFIELDS over all
messages within a dialog. We note, thatFROM LIST is
a user defined object that will hold stateful data. However,
the FIELDS:sip.form is a predefined object in the SecSip
language.

To illustrate the ease of use of the SecSip language, we
present two real attacks against SIP protocol on which we
will illustrate the defense specification.

e) DoS attacks detection:A well known example of DoS
attack against the SIP protocol is the BYE-attack [6]. In this
scenario, the aim of the attacker is to teardown a VoIP session
between two UAs. To this end, it sends a faked BYE message
to one UA on behalf of the other UA. When the targeted UA
receives the fake BYE message, it prematurely tears down the
established call assuming that is requested by the partner UA.
This attack is illustrated in Figure 5.

The detection of this attack, needs to track stateful objects
within a SIP session1. In this scenario, we start with recording
the values of theFrom field used by SIP messages within a
session in the user defined stateful objectfrom list. We also
track the IP addresses in the messages and record them under
the main stateful objectfrom list with a child objectip addr
. The two stateful objects have a list as container since we
need to track all values. In the SecSip language, the different
objects are expressed by the rules depicted in the Figure 6.

When a request of type BYE is seen by SecSip, itsFrom
field is checked against the data store objectfrom list. If

1i.e. a sequence of multiple SIP messages exchanged between two or more
SIP entities.

Fig. 5. Illustration of the BYE attack.

its value is not in the list then the message is dropped by
the SecSip runtime. The set of rules that detects this attackis
depicted in Figure 7.

f) INVITE request flooding attack detection:Another
type of DoS attack, used to illustrate the SecSip language,
is the flooding attack that targets either SIP phones or proxies
and servers. The objective of the attack is to exhaust resources
(CPU, memory, bandwidth) of the targeted device by generat-
ing multiple calls within a short duration of time.

In [5], the author proposes a method based on thresholds to
detect this kind of attacks. He considers that an upper boundon
the number of allowed transactions per node should be defined
and enforced to defend SIP devices from flooding attacks. This
defense strategy can be easily specified in and enforced by our
framework as depicted in Figure 8.

The illustrated rule set tracks INVITE attempts within each
monitored transaction expressed by theTRobject and itscount
sub-object. In the first rule, we declare the stateful objectthat
will hold transactions identified by the branch parameter from
the Via field. The second rule declares a counter and updates
it every time an Invite message is seen. If the screened traffic
crosses the threshold of more than 15 attempts in 1 minute,
SecSip will drop subsequent transactions.

V. FRAMEWORK EVALUATION

When we designed and built the SecSip runtime, we had
several goals, the most important one being efficiency in terms
of both safety and performance.

A. SecSip safety

Since SecSip is designed to ensure SIP devices security in
an adversarial environment, it is imperative that it does not
introduces new source of failure and vulnerabilities. Given the
fact that we implemented the environment in C, we employed
several techniques to make it safe. They are listed below.

1) Buffering optimization:The stateful nature of SecSip,
exposes it to state-holding attacks [15]. Such attacks may occur
when buffering data from parsed SIP message. To prevent
the environment from such attacks, each stateful object used

SecSip hold:from_list=list[FIELDS:sip.from]

SecSip hold:from_list.ip_addr=list[FIELDS:sip.from.addr]

Fig. 6. Declaration of stateful objects to track theFrom field values and their respective source IP addresses.

SecSip "FIELDS:sip.method" "!ˆBYE$" hold:from_list=set[FIELDS:sip.from]

SecSipRule "FIELDS:sip.method" "ˆBYE$" && "FIELDS:sip.from" "!@in from_list" drop

Fig. 7. SecSip rules to detect the BYE attack and drop the malicious message.

SecSipaction hold:tr=set[FIELDS:sip.via.branch]

SecSip FIELDS:sip.method "ˆINVITE$" declare:tr.count=counter[10;60]

SecSip tr.count "@gt 15" drop

Fig. 8. SecSip rules to detect a flooding attack INVITE transactions and drop the malicious messages.

by SecSip rules is hold within a timed container that when
expired, removes the object and blocks further traffic on the
object. The lifetime of the container is adjusted according
the scope of the object (message, transaction or session).
Furthermore, each buffered data is normalized to a maximum
size specified by the user from SecSip rules. For example, the
following SecSip rule normalizes a buffered SIP URI object
to a maximum size of 1024 bytes. Parsers do strictly limit the
length of data at runtime to avoid buffer overflows.

SecSip FIELDS:sip.uri "@normalize 1024"

2) SIP parser optimization:In the SecSip runtime, we
employed a lazy parser to optimize the time consumed by
the parsing of a SIP message. After loading the rules, the
SecSip runtime computes which objects of a SIP message are
referenced by the user defined rules. Therefore, only those
objects will be defined in the parse tree generated by the SIP
parser module.

B. SecSip performance

SIP dialogs and transactions are delay sensitive. Therefore
a SIP firewall needs low overhead when inspecting packets
before forwarding them to the target devices. To assess the
performance of our system, we start by looking at how SecSip
performs with a stressing SIP traffic and what latency it adds
while inspecting this traffic.

The testing environment is composed of three hosts with a
core 2 CPU cadenced at 2.93GHZ with 2 GB of RAM. The
first host plays the role of the SIP packet injector where we
have used the SIPp tool [16]. This tool is dedicated to sip
performance testing and provides a flooding feature capable
to generate INVITE SIP messages at higher rates. The second
host, where SecSip is running, is deployed as as a bump
in the wire device between the attacking host where the
INVITE messages injector is deployed and the targeted host.
The three hosts are connected through a 100 Mbits switched
Ethernet. SecSip performs all necessary functions including (1)
capturing the incoming SIP traffic on the specified interface(2)
extracting SIP fields, (3) Comparing extracted fields with the
available rules of the current transaction phase, and forward-
ing the SIP messages to the outgoing interface towards SIP

devices. Our metrics are the delay introduced by the SecSip
runtime while processing a SIP message and its throughput in
terms of messages/second. To measure the delay introduced
by SecSip, a Tcpdump instance did continuously run on the
incoming-traffic interface to capture incoming SIP INVITE
messages from the attacker and another Tcpdump instance
was operational on the egress interface to capture the same
messages after having been processed by the SecSip runtime.
We analysed captured data using a developed Perl scripts to
compute the throughput and processing delays of SecSip.

In this work, we evaluated the performance of SecSip with
two scenarios:

• In the first one, we only vary the rate of INVITE mes-
sages from 10 to 1000 messages/second by a step of 10.
Each value is maintained by the SIPp tool one minute and
then it is incremented by 10. SecSip is deployed without
any rule, only messages parsing overhead is measured.

• In the second one, we maintained the INVITE message
rate at a level of 60 messages per second. We then vary
for each test the number of rules from 1 to 650 by a step
of 10. Herein, our goad is to measure the overhead of the
rules processing module.

0 60 120 180 240 300 360 420 480 540 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of SIP messages/second

D
el

ay
 in

tr
od

uc
ed

 b
y

S
ec

S
ip

 (
m

s)

Fig. 9. Delays introduced by SecSip deployed as a bump in the wire device.
No rules are loaded by SecSip

The results of the first scenario are depicted in Figures 9
and 10. In this scenario, we measure the effect of a stressing

0 60 120 180 240 300 360 420 480 540 600
0

60

120

180

240

300

360

420

480

540

600

Number of SIP messages/second

S
ec

S
ip

 th
ro

ug
hp

ut
 in

 te
rm

s
of

 n
um

be
r

of
 S

IP
 m

es
sa

ge
s/

se
co

nd

Fig. 10. Throughput of SecSip in terms of number of SIP messages per
second. No rules are loaded by SecSip.

load towards SecSip. In figure 9, we show the mean delay
introduced by the SecSip runtime while processing a varying
number of injected INVITE messages towards the SIP device.
We observe that the delay stays below 1 ms, even with an
injection rate close to 500 messages/second.

The SecSip throughput is depicted in Figure 10 with respect
to an injection rate from the source host. We observe that the
throughput stays close to the injection rate.

0 100 200 300 400 500 600 700
10−1

100

101

102

103

104

105

Number of rules

D
el

ay
 in

tr
od

uc
ed

 b
y

S
ec

sS
ip

 (
m

s)

Fig. 11. Delays introduced by SecSip deployed as a bump in thewire device.
We varied the number of rules loaded by SecSip. The y-axis is in log scale.

The results of the second scenario, where we only varied the
number of rules, are depicted in Figures 11 and 12. We observe
from the Figure 12 that SecSip maintains its throughput close
to the injection rate of 60 SIP messages/second. However, as
depicted in Figure 11, the delays introduced by SecSip become
more important when we increase the number of loaded rules.

It seems that the rules processing module is the largest
component contributing to the SecSip overhead. Therefore,
we need to better optimize this component, to obtain a better
performance of the firewall.

VI. CONCLUSIONS ANDFUTURE WORK

With the increasing importance of SIP-based systems in the
Internet, the availability of defense solutions able to protect all

0 100 200 300 400 500 600 700
58

59

60

61

62

63

64

65

66

Number of rules

S
ec

S
ip

 th
ro

ug
hp

ut
 in

 te
rm

s
of

 n
um

be
r

of
 m

es
sa

ge
s/

se
co

nd

Fig. 12. Throughput of SecSip in terms of number of SIP messages per
second. We varied the number of rules loaded by SecSip.

these systems against malicious exploitation of vulnerabilities
is essential. In this paper, we have shown that SecSip is one so-
lution able to deal with known, and to some extend unknown,
vulnerabilities by efficiently building a per device tuned pro-
tection scheme. Our key contribution include the design of
a runtime and a rule-based language to protect SIP-based
networks from discovered vulnerabilities. The specification
language is easy to use for authoring SIP vulnerabilities based
on the protocol states prior any potential exploitation, along
with message parsing for exploit detection. To achieve this, the
SecSip language allows the use of stateful objects that track
protocol states. The evaluation of a SecSip implementation,
indicates that the introduced delays are acceptable for an on-
line analysis engine. The SecSIP implementation is distributed
in Open Source (GPL 2 license) and can be downloaded from
the INRIA Gforge2.

We are currently working on the improvement of the Sec-
Sip implementation and its language to stabilize the release
and provide improved performances. Interfaces with several
management services are also under development (e.g. Syslog,
SNMP). The idea behind it is to allow secsip to interact
directly with SIP devices management interfaces to collect
some useful data. For example, SecSip may need to know if
the SIP device is up or down. Finally, we also plan to couple
SecSip with attack and vulnerability tools [14] to automatically
generate defense rules.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP:
Session Initiation Protocol,” RFC 3261 (Proposed Standard), Jun.
2002, updated by RFCs 3265, 3853, 4320, 4916. [Online]. Available:
http://www.ietf.org/rfc/rfc3261.txt

[2] VoIPSA.org, “VOIPSEC mailing list on VoIP security issues,”
http://voipsa.org/mailman/listinfo/voipsecvoipsa.org, January 2009.

[3] R. Zhang, X. Wang, X. Yang, and X. Jiang, “Billing attackson SIP-
based VoIP systems,” inWOOT ’07: Proceedings of the first USENIX
workshop on Offensive Technologies. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–8.

2http://secsip.gforge.inria.fr

http://www.ietf.org/rfc/rfc3261.txt

[4] H. Abdelnur, R. State, I. Chrisment, and C. Popi, “Assessing the
security of VoIP Services,” inIntegrated Network Management, IM
2007. 10th IFIP/IEEE International Symposium on Integrated Network
Management, Munich, Germany, 21-25. IEEE, May 2007, pp. 373–382.

[5] E. Chen, “Detecting dos attacks on sip systems,”VoIP Management and
Security, 2006. 1st IEEE Workshop on, pp. 53–58, April 2006.

[6] D. Geneiatakis, T. Dagiuklas, G. Kambourakis, C. Lambrinoudakis,
S. Gritzalis, K. Ehlert, and D. Sisalem, “Survey of securityvulnerabili-
ties in session initiation protocol,”Communications Surveys & Tutorials,
IEEE, vol. 8, no. 3, pp. 68–81, Qtr. 2006.

[7] A. Habib, M. M. Hefeeda, and B. K. Bhargava, “Detecting service
violations and dos attacks,” inIn Proceedings of 2003 Internet Society
Symposium on Network and Distributed System Security (NDSS03, 2003,
pp. 177–189.

[8] I. Rustic, ModSecurity Reference Manual v2.5.5, Breach Security, Juin
2008.

[9] Snort, The Open Source Network Intrusion Detection System,
http://www.snort.org, Juin 2008.

[10] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Comput. Netw., vol. 31, no. 23-24, pp. 2435–2463, 1999.

[11] J. Fielder, T. Kupta, S. Ehlert, T. Magedanz, and D. Sisalem, “VoIP
Defender: Highly scalable sip-based security architecture,” in Inter-
national Conference on Principles, Systems and Applications of IP
Telecommunications (IPTComm), ACM, Ed., New York, USA, 19-20
July 2007, pp. 11–17, iSBN: 978-1-60558-006-7.

[12] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai, “Scidive: A stateful
and cross protocol intrusion detection architecture for voice-over-ip
environments,” inDSN ’04: Proceedings of the 2004 International
Conference on Dependable Systems and Networks. Washington, DC,
USA: IEEE Computer Society, 2004, p. 433.

[13] H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia, “Voipintrusion
detection through interacting protocol state machines,”Dependable
Systems and Networks, 2006. DSN 2006. International Conference on,
pp. 393–402, 2006.

[14] H. Abdelnur, O. Festor, and R. State, “Kif: A stateful sip fuzzer,” in1st
International Conference on Principles, Systems and Applications of IP
Telecommunications (IPTComm), ACM, Ed., July 2007.

[15] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
evasion, traffic normalization, and end-to-end protocol semantics,” in
SSYM’01: Proceedings of the 10th conference on USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association, 2001, pp. 9–9.

[16] R. Gayraud and O. Jacques,SIPp Reference Manual, Juin 2008,
http://sipp.sourceforge.net/.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

D
el

ay
 in

tr
od

uc
ed

 b
y

S
ec

S
ip

 (
m

s)

Time (seconds)

This figure "flow.png" is available in "png"
 format from:

http://arxiv.org/ps/0907.3045v1

http://arxiv.org/ps/0907.3045v1

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

N
um

be
r

of
 S

IP
 m

es
sa

ge
s/

se
co

nd

Time (seconds)

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

N
um

be
r

of
 S

IP
 m

es
sa

ge
s/

se
co

nd

Time (seconds)

	Introduction
	Related work
	SIP exploits and vulnerabilities
	Application Level Firewalls and their language

	SIP defense design space
	Architecture and components
	The SecSip language

	Framework evaluation
	SecSip safety
	Buffering optimization
	SIP parser optimization

	SecSip performance

	Conclusions and Future work
	References

