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Abstract—Federated Learning (FL) represents a paradigm
shift in machine learning, allowing collaborative model training
while keeping data localized. This approach is particularly
pertinent in the Industrial Internet of Things (IIoT) context,
where data privacy, security, and efficient utilization of dis-
tributed resources are paramount. The essence of FL in IIoT
lies in its ability to learn from diverse, distributed data sources
without requiring central data storage, thus enhancing privacy
and reducing communication overheads. However, despite its
potential, several challenges impede the widespread adoption of
FL in IIoT, notably in ensuring interpretability and robustness.
This article focuses on enabling trustworthy FL in IIoT by
bridging the gap between interpretability and robustness, which
is crucial for enhancing trust, improving decision-making, and
ensuring compliance with regulations. Moreover, the design
strategies summarized in this article ensure that FL systems
in IIoT are transparent and reliable, vital in industrial settings
where decisions have significant safety and economic impacts. The
case studies in the IIoT environment driven by trustworthy FL
models are provided, wherein the practical insights of trustworthy
communications between IIoT systems and their end users are
highlighted.

Index Terms—Federated Learning; Industrial IoT; Explain-
ability; Interpretability; Robustness; Environmental Constraints.

I. INTRODUCTION

FEDERATED Learning (FL) has emerged as one of the
promising platforms in collaboration with Artificial In-

telligence (AI), especially when applied to Industrial Internet
of Things (IIoT) networks [1]. With the core elements of FL,
it can be applied to intelligent IIoT systems by facilitating
AI training at the network edge. Incorporating FL into IIoT
networks makes it possible to address scalability issues while
also addressing concerns related to user privacy and the
confidentiality of industrial data [2].

The integration of FL across diverse industries such as
smart cities, healthcare, and transportation is revolutionizing
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data-sharing methods, attack detection, and privacy preserva-
tion. These industries, closely linked with various Internet of
Things (IoT) services, benefit from FL’s ability to manage
data efficiently and securely, as highlighted in Nguyen’s study
[3]. Particularly in IIoT network scenarios, which demand
high throughput, low latency, and precise anomaly detection,
FL’s role becomes even more crucial. By incorporating deep
reinforcement learning within an FL framework, FL-based
anomaly detection techniques significantly reduce privacy
risks, a concept validated in Wang’s research [4].

However, the challenge lies in integrating FL, IIoT, and
trustworthiness on a single platform, especially within the IIoT
context, which is a relatively unexplored area. The challenge
is especially due to the tiny footprint of the IIoT devices
to withhold the FL model, and subsequently ensure security
and privacy for the devices and model. Addressing this, the
chameleon hash method with a configurable trapdoor, as pro-
posed in Wei’s study [5], tackles vulnerabilities by employing
FL for privacy-preserving data analysis in IIoT. This method
has been effectively implemented in a redactable medical
blockchain, demonstrating enhanced accuracy and efficiency.
Additionally, Li’s research introduces a multi-tentacle feder-
ated learning (MTFL) architecture for the software-defined
IIoT framework, comprising a stochastic tentacle data ex-
changing (STDE) protocol and an efficient poisoning attack
detection algorithm [6]. These innovations collectively mark
significant advancements in the field.

Furthermore, federated cybersecurity, a decentralized ap-
proach through FL, plays a pivotal role in identifying and mit-
igating security threats in the IIoT, as discussed in Ghimire’s
study [7]. FederatedTrust, for instance, ensures reliable FL
models by employing thirty metrics and six pillars to evaluate
trustworthiness in IoT and edge computing, as noted by
Sanchez [8]. This underscores its practical application in IoT
security, particularly in smart industries. Despite these devel-
opments, the existing literature on trustworthy FL, especially
in IIoT, remains limited, lacking a forward-looking vision for
the potential, enabling technologies, challenges, and various
design aspects of employing FL in IIoT networks.

The research questions tackled in this paper are outlined as
follows:

• How to achieve a balance between interpretability and
robustness in FL systems within the IIoT, ensuring both
transparency for trust and compliance, and resilience
against diverse industrial challenges.
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• What design strategies are effective for creating FL
systems in IIoT that are both transparent and reliable,
considering the unique industrial requirements where
decisions have significant safety and economic impacts?

• How can FL be adapted to meet the specific demands
and characteristics of IIoT environments, including the
aspects of data privacy, security, and efficient utilization
of distributed resources?

These questions aim to address the complexities of integrating
FL into IIoT with a focus on making these systems trustwor-
thy and suitable for industrial applications. To address these
questions, we present the following contributions:

• We shed light on how to unlock the potential of respon-
sible and robust FL to transform IIoT networks into a
self-sustaining architecture.

• For the first time in the literature, we provide a holistic
overview of the design methodologies and challenging
environments of IIoT. Also, we envision the idea of
integrating hybrid trustworthy FL design approaches for
IIoT networks.

• We sketch a road map with four different case studies
along with the investigation for the successful realization
of trustworthy FL in IIoT-empowered networks.

The rest of this paper is organized as follows. The inter-
pretability and robustness enhancements in FL are covered in
Section II. Section III presents the design methodologies of FL
through deterministic, probabilistic, and adaptive approaches.
This is followed by IIoT case studies on manufacturing, en-
ergy, supply chain, and environment monitoring in Section IV.
Section V concludes the paper and highlights future directions.

II. RESPONSIBLE AND ROBUST FEDERATED LEARNING

FL has emerged as a crucial technology, enabling decentral-
ized machine learning while addressing key issues like com-
munication efficiency, data privacy, and model accuracy. This
is particularly relevant in IIoT, where devices often operate
in resource-constrained environments, and the integrity and
confidentiality of data are paramount. Recent advancements
in FL for IIoT focus on optimizing communication efficiency,
data privacy, and model accuracy [9].

A. FL Enhancement Techniques in IIoT Settings

1) Model compression: This technique reduces the size of
the FL models, making them more suitable for transmis-
sion over networks with limited bandwidth, which is a
common constraint in IIoT environments.

2) Differential privacy: This approach adds noise to the
data or model updates, thus ensuring that individual
data points cannot be reverse-engineered, an essential
consideration for maintaining data privacy in IIoT.

3) Secure multi-Party computation: This method enables
multiple parties to collaboratively compute a function
over their inputs while keeping those inputs private,
which is vital in collaborative IIoT settings.

4) Edge computing paradigms: By processing data close
to where it’s generated, edge computing reduces latency

and bandwidth use, which is crucial for real-time appli-
cations in IIoT.

Furthermore, to address the dual challenges of interpretabil-
ity and robustness in FL, several strategies have been em-
ployed:

B. Interpretability Enhancements

• Layer-wise relevance propagation (LRP): It is one of
the powerful XAI-based ML approaches that hold the
capability to scale towards even the most complex DNNs.
In IIoT, where decision-making processes must often be
transparent and justifiable, LRP can be particularly valu-
able. It allows for a detailed understanding of how input
data influences the model’s output, which is essential for
trust in automated systems.

• Attention mechanisms: These mechanisms can be specifi-
cally tuned to the data types most commonly encountered
in IIoT, like time-series sensor data, highlighting the
critical aspects for predictions or classifications.

C. Robustness Enhancements

To strengthen the model’s robustness against possible at-
tacks, “adversarial training” entails supplementing training
data with adversarial instances that are designed to trick the
model. Adversarial training strengthens FL models against
malevolent actors trying to impact model integrity in the
setting of IIoT, where security risks are common. On the
other hand, the term “byzantine-resistant aggregation” de-
scribes methods used in the FL process to reduce the impact
of attacks. Byzantine-resistant aggregation guarantees that
malicious nodes do not disrupt the collaborative learning
process in IIoT settings, where data integrity is crucial. This
improves the dependability and credibility of FL models used
in IIoT contexts. These methods are essential for preserving
FL models’ integrity in the face of possible hostile impacts
and protecting IIoT systems’ efficacy and security.

• Adversarial training: In IIoT, where systems can be
targets for cyber-attacks, training models with adversarial
examples can significantly improve their resilience, ensur-
ing more reliable performance in hostile environments.

• Byzantine-resistant aggregation algorithms: Given the
distributed nature of IIoT and the potential for compro-
mised nodes, these algorithms are crucial for maintaining
the integrity of the FL process, ensuring that malicious
or erroneous updates do not skew the model.

The advancements in FL for IIoT aim to improve perfor-
mance and prioritize the systems’ robustness and transparency.
These qualities are crucial for FL’s acceptance and effective
operation in industrial environments. The responsible and
robust approach to FL in the IIoT sets the stage for developing
more secure, efficient, and reliable industrial automation and
monitoring systems.

Enhancements in FL for IIoT address particular require-
ments such as managing heterogeneous data, maintaining
privacy, and supporting devices with limited resources. Fur-
thermore, adversarial resilience against cyber-attacks should
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be given priority by FL approaches, as should the facilitation
of real-time adaptation for prompt decision-making. By guar-
anteeing strong model training, data privacy, and robustness
against adversarial assaults in dynamic IIoT contexts, these
improvements set apart IIoT-focused FL from other areas.

III. DESIGN METHODOLOGIES FOR CHALLENGING
ENVIRONMENTS

A. Guidelines for Equipping FL Architectures

Consideration of different emerging technologies in associa-
tion with FL architectures to handle issues in particularly chal-
lenging contexts environments, demands the following general
principles and guidelines for improving FL architectures in
such settings:

When equipping FL architectures, certain design consid-
erations largely depend on optimizing for IIoT devices with
limited resources and managing data heterogeneity using adap-
tive learning rates and customized preprocessing techniques.
Incorporating adversarial robustness techniques like adversar-
ial training and anomaly detection, integrating robust privacy-
preserving mechanisms like FL with encryption or differential
privacy, and supporting real-time adaptation through online
learning and adaptive FL algorithms are also necessary. Fur-
thermore, the design demands lightweight model architectures
and edge computing solutions. FL architectures can success-
fully meet the special requirements of IIoT environments
by addressing these issues and design considerations. This
allows for collaborative model training while protecting data
privacy, guaranteeing model robustness, and promoting prompt
decision-making based on dynamic IIoT data streams.

1) Robust Communication and Processing: Implement re-
silient and decentralized communication protocols with an
asynchronous approach, utilizing edge computing for local
data processing to cope with unreliable connectivity. Addi-
tionally, the incorporation of redundancy and fault-tolerant
methods as a proactive measure to effectively manage device
failures in challenging scenarios is recommended.

2) Resource-Efficient and Adaptive Learning: Develop FL
algorithms that prioritize real-time processing and energy
efficiency, considering the constraints of demanding situations.
Additionally, it is required to design adaptable models capable
of responding to dynamic environments, incorporating rein-
forcement learning techniques for continuous improvements.

3) Security and Privacy Preservation: Enhance data protec-
tion by integrating privacy-preserving technologies such as ho-
momorphic encryption and employing secure communication
protocols. Concurrently, optimize data collection by leverag-
ing sensor technologies in collaboration with FL frameworks
designed for robustness.

4) Continuous Monitoring and Collaboration: Establish
continuous monitoring systems for FL model performance in
challenging environments. Subsequently, it is recommended
to foster integration among various sensor technologies, im-
plement feedback loops, and evaluate FL structures based on
real-world performance data from actual applications.

B. Deterministic Approaches

Designing robust and efficient systems for challenging envi-
ronments, particularly in industrial settings, is a complex task
that requires innovative and resilient methodologies. This is
particularly true when implementing FL in the context of the
Industrial IoT and manufacturing processes.

The reliability and performance of FL are put to the
test in high-temperature IIoT environments, such as steel
manufacturing or chemical processing plants. According to
Gaddam et al. [10], high temperatures can impact hardware
performance and data transmission, which can disrupt learning
processes. To address these challenges, it is crucial for design
methodologies to prioritize the development of hardware and
software that can effectively withstand extreme temperatures.
This involves the utilization of heat-resistant materials in the
construction of devices, as well as the implementation of ad-
vanced cooling technologies. On the software side, optimizing
algorithms for efficient data processing is crucial to minimize
the duration the hardware is exposed to high temperatures.
Furthermore, by implementing robust data synchronization
methods, it is possible to ensure consistent performance of
FL even when there are thermal fluctuations.

In FL for IIoT, decentralization improves dependability
by lowering reliance on single points of failure, encourag-
ing redundancy, and lowering data loss risks. Decentralized
techniques enhance system resilience, privacy, and security
by decreasing vulnerability to centralized weaknesses and
aggregating insights locally, notwithstanding the constraints
associated with gathering data from remote sources.

In environments where corrosive substances are prevalent,
such as in certain types of chemical manufacturing, traditional
computing, and IoT devices can degrade quickly, hindering
the effectiveness of FL [11]. To address this, design method-
ologies must include the use of corrosion-resistant materials
in device fabrication. Coatings and seals that can withstand
harsh chemicals are essential for protecting the devices’ inter-
nal and external components. From a software perspective,
strategies such as redundant data paths and error-checking
mechanisms can help maintain data integrity in these harsh
conditions. Furthermore, predictive maintenance algorithms
integrated into the FL system can preemptively identify and
address potential issues caused by corrosive elements, thereby
reducing downtime and maintaining steady performance.

In both high-temperature and corrosive environments, the
key is to develop FL systems that are resilient to physical
challenges and capable of adapting to environmental changes.
This involves a continuous cycle of monitoring, learning, and
adapting, where the FL system evolves to maintain optimal
performance. Such deterministic approaches in the design of
FL systems are crucial for their successful deployment and
operation in challenging industrial environments.

C. Probabilistic Strategies

In challenging IIoT environments, which may include fac-
tors like varying network conditions, fluctuating data quality,
and unpredictable hardware performance, probabilistic models
can enhance the resilience of FL systems. These models
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Fig. 1. The Federated Learning Architecture in an Industrial Environment with IIoT-enabled devices and XAI frameworks.

account for uncertainties and variabilities in the data and
operational conditions [12]. By incorporating probabilistic
reasoning, FL systems can make more informed decisions,
even in the face of incomplete or noisy data. Techniques like
Bayesian inference can be used to update models dynamically
as new data becomes available, providing a robust framework
for learning under uncertainty.

To further adapt FL to challenging environments, techniques
that focus on environmental adaptability are essential. This
includes developing adaptive algorithms that can adjust learn-
ing parameters in response to changes in the environment.
For instance, reinforcement learning strategies can be em-
ployed, where the FL system learns optimal actions through
trial and error, adapting to the environment’s dynamics [13].
Furthermore, integrating reliable outlier detection and handling

mechanisms guarantees that the FL models are not excessively
impacted by abnormal data, which is frequently encountered
in unstable environments.

Overall, probabilistic strategies in FL offer a promising
avenue for designing systems resilient to the uncertainties and
variabilities of challenging IIoT environments. By leveraging
these techniques, FL systems can maintain performance and
reliability, even under adverse conditions.

D. Adaptive Hybrid Approaches

The dynamic design fusion in FL involves combining the
predictability of deterministic models with the flexibility of
probabilistic approaches. Deterministic models provide a solid
foundation, offering predictable outcomes under specific con-
ditions, which is vital for ensuring baseline performance and
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reliability [9]. On the other hand, probabilistic models excel
in handling uncertainties and variabilities inherent in IIoT
environments, like fluctuating network conditions or variable
data quality. By integrating these approaches, FL systems
can maintain stable operation while dynamically adapting to
changing environmental factors. This fusion allows for robust
decision-making, balancing the need for consistency with the
ability to respond to new and uncertain information.

To further enhance the robustness of FL in challenging IIoT
environments, context-aware methodologies are crucial. These
approaches involve designing FL systems that are not only
aware of their operational context but can also adapt their
learning and decision-making processes based on this context
[14]. This might include adjusting learning rates, modifying
model parameters, or selectively weighting data based on its
source and quality. Context-aware systems are particularly
adept at dealing with the heterogeneous and dynamic nature
of IIoT environments, where the operating conditions can vary
widely and unpredictably. By being responsive to the specific
context in which they operate, FL systems can optimize
their performance and maintain high levels of accuracy and
efficiency, even in the most challenging conditions.

These adaptive hybrid approaches in FL design offer a
pathway to creating reliable and adaptable systems, capable
of thriving in the diverse and often unpredictable landscapes
of the IIoT.

In an IIoT setting employing an adaptive hybrid approach
to FL integrated with Explainable Artificial Intelligence (XAI)
frameworks, the architecture, shown in Figure 1, dynamically
combines the benefits of both centralized and decentralized
machine learning models. IIoT devices like sensors and as-
sembly machines process and analyze data locally, training
AI models with data specific to their environments. This local
processing is key in preserving data privacy and minimizing
bandwidth usage. Here, the virtualization layer makes resource
management and allocation easier, guaranteeing that IIoT
devices are used effectively. Model aggregation is handled by
FL aggregation servers, and VMs in the cloud offer scalable
computational resources. Integration takes place through APIs,
which guarantee safe communication and cooperative model
training, boosting FL’s credibility for IIoT.

In the adaptive hybrid model, these local devices periodi-
cally send model updates to a central server, which aggregates
these updates to refine a global model. However, unlike tradi-
tional FL, this approach can adaptively choose when to rely
more on local models and incorporate more from the global
model, depending on factors like data diversity, model per-
formance, and network conditions. This adaptability ensures
optimal learning outcomes, balancing the need for customized
local models with the benefits of a robust, generalized global
model.

The integration of XAI in this adaptive hybrid framework
is crucial for maintaining transparency and trust in the AI
models. XAI tools provide insights into the decision-making
processes of both local and global models, ensuring that AI
decisions are interpretable and justifiable, a necessity in critical
industrial applications. This approach not only enhances oper-
ational efficiency and decision-making in IIoT environments

but also ensures that AI models remain understandable and
trustworthy to human operators, aligning with the evolving
needs and constraints of the industrial sector.

IV. CASE STUDIES AND PRACTICAL INSIGHTS

The field of FL in IIoT has seen significant advancements,
with real-world applications demonstrating its potential for
responsible and robust operations. Below are illustrative case
studies and practical insights from various industries. Fig. 2
shows the dynamic personalized IIoT solutions through se-
cured and trustworthy FL models.

A. Smart Manufacturing

In a smart manufacturing scenario, FL is utilized to enhance
production processes by optimizing them, all while prioritizing
data privacy. FL can identify patterns and inefficiencies by
analyzing data across multiple manufacturing sites, all while
ensuring that sensitive information is not shared. For example,
a multinational company can utilize FL to streamline its
quality control procedures across various locations, resulting
in improved efficiency and decreased waste.

B. Energy Sector

In the energy sector, particularly in renewable energy, FL
is applied to predict maintenance needs and optimize energy
distribution. By processing data from various wind farms or
solar panels, FL can predict when maintenance is required,
thereby reducing downtime and maximizing energy output.
This application not only improves operational efficiency but
also contributes to the sustainability of energy systems.

C. Supply Chain Management

FL can significantly enhance supply chain management by
providing insights into logistics without compromising the
data of individual suppliers. For example, in a complex supply
chain, FL can be used to track and predict inventory levels,
ensuring timely restocking and reducing the risk of supply
shortages.

D. Environmental Monitoring

In environmental monitoring, FL is used to process data
from various sensors deployed in different geographical loca-
tions. This data helps in predicting environmental trends and
potential hazards, such as pollution levels or the likelihood of
natural disasters. Such applications are crucial for proactive
environmental protection and disaster management.

These case studies demonstrate the versatility and efficacy
of FL in IIoT, highlighting its ability to offer robust solutions
while adhering to responsible data-handling practices. As the
technology continues to evolve, it is expected to find even
more innovative applications across different sectors.

The future of trustworthy FL in IIoT lies in developing
holistic frameworks that integrate robustness and interpretabil-
ity seamlessly. Potential directions include:



IEEE INTERNET OF THINGS MAGAZINE 6

Fig. 2. The Dynamic Industrial Management through Personalized IIoT Framework driven by Federated Learning Models.

• XAI integration: More profound integration of XI tech-
niques within FL models to enhance transparency and
trust.

• Advanced anomaly detection: Leveraging AI to detect
and mitigate novel attacks and anomalies in FL networks.

• Hybrid models: Combining the strengths of different
learning paradigms (supervised, unsupervised, and rein-
forcement learning) within the FL framework for more
robust and interpretable models.

E. Practical Insights

FL provides customized solutions for improving industrial
processes in challenging industrial ecosystems. By coopera-
tively enhancing pressure control among dispersed devices,
FL can improve low-pressure processes in the chemical and
pharmaceutical sectors. FL is also useful for evaluating equip-
ment health in low-temperature conditions and optimizing
temperature control in cryogenic industries, such as the man-
ufacturing of liquefied natural gas. FL helps offshore oil
and gas operations improve overall safety in challenging and
remote environments and guarantee the quality of subsea
equipment. Extreme temperature and pressure changes are
addressed by FL in the aerospace manufacturing industry,
which also optimizes furnace conditions and forecasts equip-
ment failures to boost productivity. FL preserves data privacy,
minimises communication overhead, and allows collaborative
model training directly on distributed IIoT devices, providing

unique advantages for evaluating equipment health in low-
temperature environments. This strategy preserves the confi-
dentiality of sensitive data and guarantees real-time insights,
which is essential for preserving equipment dependability
under challenging conditions.

Furthermore, FL is also used in mining operations to opti-
mize autonomous vehicles, track the condition of equipment,
and improve extraction procedures in difficult terrain. Such
applications show the flexibility of FL in meeting certain
industry requirements while maintaining data security and
privacy.

Enabling trustworthy FL in the context of IIoT presents a
unique set of challenges and opportunities, primarily centered
around balancing interpretability and robustness. FL, a decen-
tralized approach to machine learning, allows for the training
of algorithms across multiple devices or servers while keeping
the data localized. This method is particularly beneficial for
IIoT, where data security and privacy are paramount, and the
data is often generated in distributed environments [15].

One key lesson learned is the importance of interpretability
in FL models. In the industrial setting, stakeholders need
to understand and trust the decisions made by AI models,
especially when these decisions can have significant safety and
financial implications. Interpretability in FL can be challenging
due to the distributed nature of the model training, but it’s
crucial for ensuring that the models are reliable and their
decisions are justifiable. Techniques such as model-agnostic
methods, visualization tools, and simplified model architec-
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tures have been explored to enhance interpretability without
compromising the model’s performance.

On the other hand, robustness in FL is essential for main-
taining the integrity and performance of the models in the
face of diverse and often noisy industrial data. Robustness
involves ensuring that the models are resistant to data anoma-
lies, adversarial attacks, and other forms of disruptions that
are common in IIoT environments. This requires advanced
techniques like anomaly detection, data encryption, and secure
aggregation protocols in the FL framework. The research in
this area focuses on developing robust FL models that can
withstand the challenges specific to industrial settings, such
as variable data quality and potential cybersecurity threats.

An XAI model predicting machine failures through FL
and IIoT frameworks in a manufacturing plant could provide
interpretable features such as vibration levels, temperature
fluctuations, and health status to diagnose unexpected issues,
aiding in understanding the root causes of equipment failures
and enabling proactive maintenance actions. Furthermore, ro-
bust XAI models ensure the consistency of product quality by
addressing quality variations in materials and environmental
conditions. The interpretability feature allows supply chain
managers to understand better the factors affecting perfor-
mance and identify areas for improvement. Additionally, the
robustness of the models helps manage supply chain disrup-
tions, demand volatility, and unforeseen market changes. In
packaging materials, interpretability allows inspectors to grasp
the criteria used by XAI algorithms to detect defects and
anomalies. To uphold product quality and brand reputation,
the robustness of the model assists in estimating variations in
surface textures, defects, and packaging configurations.

Last, the integration of trustworthy FL in IIoT hinges on
achieving a balance between interpretability and robustness.
While interpretability ensures the transparency and trustwor-
thiness of the models, robustness safeguards them against
the diverse challenges in industrial environments. Ongoing
research and practical applications are geared towards develop-
ing methodologies and tools that enhance both aspects, thereby
making FL a viable and reliable approach in the context of
IIoT.

V. CONCLUSION

While FL allows learning from diverse, distributed data
sources without central data storage, enhancing privacy and
reducing communication needs, its widespread adoption in
IIoT is challenged by issues ensuring model interpretability
and robustness. Trustworthy FL in the IIoT is a complex yet
promising domain. Bridging the gap between interpretability
and robustness requires a multifaceted approach involving ad-
vanced machine-learning techniques, robust security protocols,
and an overarching framework prioritizing transparency and
resilience. As technology evolves, the synergy of FL with
IIoT will undoubtedly play a pivotal role in realizing the full
potential of smart industries.
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