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Abstract— In real-world situations, a robot may often en-
counter “under-determined” situation, where there are more
sound sources than microphones. This paper presents a speech
separation method using a new constraint on the harmonic
structure for a simultaneous speech-recognition system in
under-determined conditions. The requirements for a speech
separation method in a simultaneous speech-recognition system
are (1) ability to handle a large number of talkers, and
(2) reduction of distortion in acoustic features. Conventional
methods use a maximum likelihood estimation in sound source
separation, which fulfills requirement (1). Since it is a general
approach, the performance is limited when separating speech.
This paper presents a two-stage method to improve the sep-
aration. The first stage uses maximum likelihood estimation
and extracts the harmonic structure, and the second stage
exploits the harmonic structure as a new constraint to achieve
requirement (2). We carried out an experiment that simulated
three simultaneous utterances using impulse responses recorded
by two microphones in an anechoic chamber. The experimental
results revealed that our method could improve speech recog-
nition correctness by about four points.

I. INTRODUCTION

Since people currently have increasing opportunities to

see and interact with humanoid robots, e.g., the Honda

ASIMO [1], Kawada HRP [2], and KOKORO Actroid [3],

verbal communication is critical in accomplishing symbiosis

between human and humanoid robots in everyday life. For

example, verbal communication is the most effective way of

interaction when we ask a robot to do housework, or when

a robot informs us about what happened today.

A robot’s capabilities are quite unbalanced in verbal com-

munication. Robots can speak very fluently and sometimes

in a fully emotional way thanks to up-to-date text-to-speech

systems. In contrast, they cannot hear well due to limited

automatic speech recognition (ASR). Poor ASR is mainly

caused by interfering sounds, e.g., other people speaking at

the same time, air-conditioning, the robot’s own cooling fans,

and the robot’s movements. In other words, robots or people

usually hear a mixture of sounds and thus the robots’ audition

should separate speech signals from this mixture of sounds.

Research on robot audition has mainly focused on sound-

source localization, sound-source separation, and the recog-

nition of speech or other sound sources. The most common

underlying assumption in robot audition is that the number of

sound sources should not exceed the number of microphones.

Independent Component Analysis (ICA) [4] for sound-source

separation assumes that there are equal numbers of sound

sources and microphones. Beamforming [5] usually assumes
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Fig. 1. Simultaneous speech-recognition system

that the number of microphones is larger, i.e., an “over-

determined” situation.

Robots working with humans often encounter an “under-

determined” situation, i.e., there are more sound sources than

microphones. Since previous systems assume non-under-

determined conditions, robots that work in real situations

need many microphones. However, deploying many micro-

phones is unfavorable from the viewpoint of space needed to

deploy these microphones, the cost in using a multi-channel

synchronizer, and the satisfaction of working in real time.

Furthermore, even though robots have many microphones,

we cannot be sure that there are not more sound sources

than microphones.

This paper focuses on the method for under-determined

speech separation that can be used for a simultaneous speech-

recognition system. Generally speaking, a simultaneous

speech-recognition system consists of a speech-separation

module and a speech-recognition module, as shown in Fig. 1.

When we consider under-determined conditions, it is difficult

to develop the speech-separation module because this module

has more outputs than inputs.

There have been some methods for speech separation

in under-determined conditions. Yılmaz et al. [6] used a

time-frequency mask that was estimated by using histogram

clustering assuming that at most one speech was dominant

in each time-frequency region. Nakadai et al. [7] also used a

time-frequency mask that employed an active direction pass

filter assuming sparseness of talker directions. Lee et al. [8]

estimated a mixing matrix and speech signals concurrently

using a maximum a posteriori estimation. Bofill et al. [9]

and Zhang et al. [10] introduced a two-stage approach,

which meant the estimation of mixing matrix and that of

the speech signals were done in series, assuming that each

time-frequency region contains not more dominant sources

than the number of microphones.

These methods use the characteristics of the power distri-
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bution of voices: when we convert human voices into time-

frequency expressions, only a few time-frequency regions

have high power and most of the time-frequency regions have

low power. When we take into consideration this characteris-

tic, we can assume that each time-frequency region has only a

few “dominant sources”, which are sound sources that have

relatively high power in one time-frequency region. Using

this assumption, we can handle under-determined speech

separation as if there are fewer talkers than microphones by

ignoring non-dominant utterances.

When we use this characteristic, it is very important to

estimate the dominant sources because one mis-estimation

affects all separation results. There are two specific types

of effects. The first is the lack of spectra in the mis-

estimated source because the power of non-dominant sources

is regarded to be zero. The second is the leakage noise of

other sources that is derived from the residual power of the

mis-estimated source.

We propose a method with constraints using the harmonic

structure to improve the accuracy of dominant source es-

timation. Since most methods for under-determined speech

separation do not effectively use the characteristics of human

voices, the output sounds with these methods are likely to

be too distorted to recognize. We use the L1-norm method,

which can handle many sound sources, and add new con-

straints using the harmonic structure to maintain acoustic

features and improve ASR results.

The rest of this paper is organized as follows: Section

II focuses on under-determined speech separation, and de-

scribes problem setting, requirements, an L1-norm separation

method, and problems with that method. Section III proposes

an under-determined speech separation method that uses the

constraints of the harmonic structure. Section IV presents the

results of experiments, and Section V summarizes this paper.

II. UNDER-DETERMINED SIMULTANEOUS

SPEECH SEPARATION

This section presents the problem settings, requirements,

and an L1-norm method for separating under-determined

speech, and we explain some problems with that method

in simultaneous speech-recognition systems.

A. Problem Settings for Underdetermined Speech Separation

The problem settings of speech separation used in this

paper are as follows. Note that N > M because we have

considered under-determined conditions.� �
Input M mixtures of N simultaneous utterances.

Output Each speech signal of N talkers.

Assumption Mixing matrix H is known.

� �
We add a supplementary explanation to the assumption.

Since our method is based on one of the L1-norm methods

for separation [9] [11], which needs mixing matrix H , our

proposed method also needs mixing matrix H . To satisfy

this requirement, we can measure the transfer function in

advance. If this is impossible, we can use the method to

estimate the mixing matrix from observed signals [12].

TABLE I

DEFINITION OF VARIABLES

N Number of talkers

M Number of microphones (M < N)

t Time frame index

f Frequency bin index

sj(t) Speech signal of talker j in time frame t

s(t) [s1(t), s2(t), ..., sN (t)]T ∈ CN

hij Transfer function from talker j to microphone i

hj [h1j , h2j , ..., hMj ]
T

∈ CN

H Matrix consists of hij

xi(t) Observed signal of microphone i in time frame t

x(t) [x1(t), x2(t), ..., xM (t)]T ∈ CN

K Set of indices of dominant sources

ki Index of i-th dominant source

B. Requirements for Underdetermined Speech Separation

There are two main requirements for under-determined

speech separation.

1) Ability to handle a large number of talkers

2) Reduction of distortion in acoustic features

We will now discuss these two requirements.

1) Ability to Handle a Large Number of Talkers: Since

our aim is to develop a system that can be used when there

is a lot of sound, our method have to be able to handle many

sources in each time-frequency region. Many separation

methods for under-determined conditions have assumed that

the number of dominant sources in one time-frequency is

a small constant to simplify the separation. However, when

the number of talkers increases, each time-frequency region

contains more and more number of dominant sources. This

means that a separation method must not have too strict

assumption about the number of sources in each time-

frequency region.

2) Reduction of Distortion in Acoustic Features: Since we

aim at developing a system that can recognize simultaneous

utterances, the separation results are used for ASR. Since the

speech-recognition module calculates several values, called

acoustic feature values, in order to recognize easily, our

separation method must keep these acoustic features of the

original speech signals. Since we use the Mel-Frequency

Cepstrum Coefficient (MFCC) [13] as the feature value,

separating the following two areas is especially important.

1) Time-frequency regions that have high power

2) Time-frequency regions that are low in frequency

The former comes from the fact that MFCC is calculated by

the sum of the power spectra of each frequency band, and

the latter is comes from the fact that MFCC is calculated

using mel-scaled frequency.

C. L1-Norm Method of Speech Separation

Let us first describe the speech mixing process. We mod-

elize the sound-transfer function as a linear time-invariant
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function and use time-frequency expression to separate mix-

tures because this enables speech separation to be considered

independently in each time-frequency region. Table I defines

the basic variables used in this paper. Using the Short-time

Fourier Transform (STFT), the speech-mixing process can

be written in the time-frequency domain as follows.

x(f, t) =

N
∑

j=1

hj(f)sj(f, t) (1)

= H(f)s(f, t) (2)

To determine the proper STFT frame length, we use the

knowledge by Yılmaz et al. [6].

Now, we will explain the L1-norm separation method [11]

that is based on the assumption that the power distributions

of speech signals are Laplacian distributions. This method

also assumes that the number of dominant sources in one

time-frequency region is at most M , i.e., the number of

microphones. Note that we omit f and t from the formulas

because the calculation will be done independently in each

time-frequency region.

First, let us explain the separation method when M

dominant sources are known. When the set of indices of these

M dominant sources are expressed as K = {k1, k2, ..., kM},

Eq. (1) can be written as follows by ignoring low-power

speech signals, which indices are not in K.

x =

M
∑

u=1

hki
ski

(3)

= HKsK (4)

Here, HK = [hk1
,hk2

, ...,hkM
] is the part of the original

mixing matrix, H , and sK = [sk1
, sk2

, ..., skM
]T represents

the speech signals of dominant sources. Since HK is an

M ×M square matrix, we can separate mixtures as follows.

ŝK = H
−1

K x, (5)

ŝi = 0 ∀i 6∈ K, (6)

where ŝK = [ŝk1
, ŝk2

, ..., ŝkM
]T and the separation result is

represented as ŝ
′

K = [ŝ1, ŝ2, ..., ŝN ]T .

Next, we will explain how M dominant sources are

chosen. This is based on the assumption that the speech-

power distributions follow Laplace distributions. When each

talker’s distribution follows the same Laplace distribution

independently, logarithm of joint probability is expressed as

follows.

log p(s) = −λ

N
∑

k=1

|sk| + C (7)

where s = [s1, s2, ..., sN ]T , λ is a positive parameter of

the Laplace distribution, and C is a constant value. After an

observation, since we can use Eq. (2), logarithm of posterior

probability can be written as follows.

log p(s|x) =







−λ
∑N

k=1
|sk| + C ′ (x = Hs)

−∞ (otherwise)
(8)
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Fig. 2. Accuracy of estimating dominant sources

where C ′ is an another constant value.

When all elements are real numbers, s that maximizes

Eq. (8) will be ŝ
′

K when we choose K optimally. The most

naive method to find optimal K is to calculate ŝK with all

variation of K, and determine K that maximizes Eq. (8)

as Kopt. This is written as the combinatorial optimization

problem as follows.� �

Kopt = argmin
K

M
∑

i=1

|ŝki
| (9)

where

ŝK = H
−1

K x (10)

HK = [hk1
,hk2

, ...,hkM
] (11)

K = {k1, k2, ..., kM} (12)

(1 ≤ k1 < k2 < ... < kM ≤ N)

� �
Since our method uses a time-frequency expression, ele-

ments are not always real numbers but they can be com-

plex numbers. When the elements are complex numbers,

the above combinatorial optimization does not theoretically

maximize Eq. (8). However, Winter et al. [14] demonstrates

that this combinatorial optimization can be solved much

more quickly than a strict solution and the solution is similar

to the strict one even when elements are complex numbers.

Thus we use the above combinatorial optimization to obtain

the solution in this paper.

We will now discuss the problem when we use this speech

separation method in a simultaneous speech-recognition sys-

tem. Since this method can handle at most M dominant

sources in each time-frequency region, it can deal with

speech mixtures that contain many utterances. However, even

when the mixing matrix is known, the accuracy of dominant

source estimation depends on the power distribution of the

original speech signals [12].

In addition, the accuracy of dominant source estimation.

depends on the frequency, because the accuracy depends on

the mixing matrix, and the mixing matrix depends on the

frequency bin. Fig. 2 show the relation between frequency

and accuracy, and the horizontal line plots the average

accuracy. This experiment was carried out under the same

conditions as those in Section IV, i.e. we simulated the
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situation where three simultaneous utterances were recorded

by two microphones in an anechoic chamber, and separate it

using Eq. (9) - (12). The results of estimates were considered

to be accurate only when all M , i.e. 2, dominant sources

were correctly estimated. As Fig. 2 indicates, accuracy

of dominant source estimation is much different between

frequency bands with poor accuracy such as 0-200 Hz and

600-1000 Hz, and frequency bands with good accuracy such

as 200-600 Hz and 2500-3200 Hz. Even when we use differ-

ent impulse responses and different speeches to synthesize

speech mixtures, separated results also have frequency bands

with poor accuracy and ones with good accuracy.

As we have stated in Subsection II-B, we need a separation

method that satisfies (1) ability to handle a large number of

talkers and (2) reduction of distortion in acoustic features.

This method satisfies requirement (1); however, it does not

satisfy requirement (2), because the poor accuracy of dom-

inant source estimation makes spectrum lacks and leakage

noise, and this interference greatly distorts the acoustic

features. To improve the system’s ASR results, it is necessary

to reduce this interference.

III. UNDER-DETERMINED SPEECH SEPARATION

USING HARMONIC STRUCTURE

A. Our Approach Using Harmonic Structure

We focus on the harmonic structure of speech sounds

and separate speech mixtures with a new constraints using

harmonic structure. There are four main reasons we focus

on the harmonic structure.

1) Separation results with highly accurate estimates can

be used to modify separation results with inaccurate

estimates since the harmonic structure has an overtone

structure.

2) We can extract the harmonic structure relatively easily

because it does not overlap frequently since it has a

sparse power distribution.

3) The proper separation of the harmonic structure, which

has high power, is important since MFCC depends on

high-power time-frequency regions.

4) The harmonic structure, most of which is contained

in low-frequency areas, is important since MFCC is

calculated using mel-scaled frequency.

We present a method that is based on the L1-norm

separation explained in Subsubsection II-C and we use this

as a baseline. We found that this L1-norm separation method

has a disadvantage in that the accuracy of dominant source

estimation depends on the frequency, and that causes acoustic

feature values to be distorted. We improve this situation using

constraints that involve the harmonic structure, and obtain

results with less distortion. Note that our method does not

need harmonic structure as an additional input, because it

can estimate the harmonic structure internally.

B. Outline of Our Method

Fig. 3 outlines our proposed method. First, we use the

L1-norm method and obtain a tentatively separated sounds.

Second, we extract the harmonic structure from these sounds.
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Fig. 3. Outline and flow of our method

Finally, we separate the speech mixtures again, with con-

straints that involved the harmonic structure. We will refer

to these two separations as first and second separations.

The first separation is only done to obtain the tentatively

separated sounds in order to extract the harmonic structure,

and the second separation is done to obtain the output sounds.

Our method divides the extraction of the harmonic struc-

ture into two phases: the first is the phase to estimate

the fundamental frequency, and the second is the phase to

estimate the harmonic structure. The reason we use this

two-phase approach is that the tentative sound is the sound

separated by the L1-norm method, i.e., sound with spectrum

lacks and leakage noise. We improve the robustness for

extracting the harmonic structure by using these two phases.

Another arrangement with our method is to make the

second separation similar to the first one. Speech separation

should be done quickly because our system will be deployed

in robots. Since we make the second separation similar to

the first, we can reuse the calculated results from the first

separation, and reduce the additional cost in time to use the

harmonic structure.

Since the essential part of our method is the second sep-

aration, we first introduce this separation, and after that, we

introduce the method for extracting the harmonic structure

robustly.

C. Separation with Constraints

This subsection introduces the separation method when

the harmonic structure is already known. Since the harmonic

structure has high power, we add constraints where the set

of dominant sources, K, must include sources that have a

harmonic structure in the time-frequency region. In other

words, when we define P as the set of sources that has a

harmonic structure in the time-frequency region, P ⊆ K

must be true. When more than M harmonic structures exist

in one time-frequency region, (|P | > M), we cannot define

K by using the above constraints. In this case, we can use

constraints where sources without a harmonic structure in the

time-frequency region are not included in K, i.e., K must

be included in P (P ⊃ K).
Using the above constraints, the combinatorial optimiza-

tion problem can be written as follows.
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Fig. 4. Dataflow for extraction of the harmonic structure

� �

Kopt = argmin
K

M
∑

i=1

|ŝki
| (13)

where

ŝK = H
−1

K x (14)

HK = [hk1
,hk2

, ...,hkM
] (15)

K = {k1, k2, ..., kM} (16)

(1 ≤ k1 < k2 < ... < kM ≤ N)

P ⊆ K (|P | ≤ M) (17)

P ⊃ K (|P | > M) (18)

� �
The difference between this combinatorial optimization prob-

lem and the L1-norm method discussed in Subsection II-

C is existence of Eq. (17) and (18). When we take into

consideration the time-frequency region which does not have

harmonic structure (P = φ), these constraints do not take

effect; thus, we can reuse the separation results in the

first separation. In addition, even when we consider time-

frequency P 6= φ, we can omit the matrix operations in Eq.

(14) by memorizing and reusing the calculation results in the

first separation for each K.

D. Extraction of Harmonic Structure Using Fundamental

Frequency

Fig. 4 shows the flow of the harmonic structure extraction.

In this paper, we first estimate the fundamental frequency

using the cepstrum and detect the existence of the harmonic

structure. After that, we estimate the shape of the harmonic

structure using the estimated fundamental frequency.

1) Fundamental Frequency Estimation Using Cepstrum:

Here, we introduce fundamental frequency estimation using

the cepstrum. In this method, the fundamental frequencies

in each time frame are estimated independently. By apply-

ing a Discrete Fourier Transform (DFT) to the logarithm

power spectrum of one time frame, we obtain a quefrency

expression. Since we have to handle human speech signals,

we choose a quefrency whose values are maximized in

the quefrency region corresponding to 80-350 Hz, which

contains almost all the fundamental frequency. Since the

quefrency value has a positive correlation to the harmonic
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Fig. 5. Flowchart for detection of harmonic structure

structure, a large quefrency value means the existence of a

harmonic structure.

2) Two-Threshold Method to Detect Existence of Har-

monic Structure: Here, we introduce a method for detecting

the existence of a harmonic structure. Since we extract the

harmonic structure from sound that is separated by the L1-

norm method, i.e., sound with spectrum lacks and leakage

noise, it is difficult to detect the existence of a harmonic

structure. If we have clean speech signals, we can use a sim-

ple threshold for the quefrency value because the quefrency

value of time frame without a harmonic structure is quite

small. In our case, however, we only have speech signals

with interference. This means that the quefrency value of

the time frame without a harmonic structure might be high

because of leakage noise, and the quefrency value of the time

frame with the harmonic structure might be low because of

the lack of spectra.

This paper proposes a method that uses two thresholds

and the relation of the fundamental frequency between two

consecutive time frames. The two thresholds are called T1

and T2 . T1 is large enough and T2 is small enough to detect

the existence of the harmonic structure: if the quefrency value

is more than T1 , we consider that the time frame has a

harmonic structure, and if the quefrency value is less than T2

, we consider that the time frame does not have a harmonic

structure. If the quefrency value is between T1 and T2 , we

use the fundamental frequency to detect the existence of a

harmonic structure. Details on this algorithm are below.

Fig. 5 has a the flowchart for this method. First, we take

a time frame whose quefrency value is more than T1 , and

call this time frame Frame 1 . Next, we take an adjacent
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Fig. 6. Estimation of shape of harmonic structure

time frame whose quefrency value is between T1 and T2

, and call this time frame Frame 2 . Now, there are two

possibilities for Frame 2 : the first is that while Frame

2 has a harmonic structure, the lack of spectra decreases

the quefrency value of this frame. The second is that while

Frame 2 does not have a harmonic structure, leakage noise

increases the quefrency value of this frame. Since we cannot

decide which is true by only using the quefrency value, we

use the estimated fundamental frequencies of Frame 1 and

Frame 2 . Since we know Frame 1 has a harmonic structure,

if the fundamental frequencies of Frame 1 and Frame 2 are

similar, Frame 1 and Frame 2 have a connected harmonic

structure. On the other hand, if the fundamental frequencies

of these two frames are different, Frame 2 does not a have

harmonic structure and it contains leakage noise. This is how

we detect the existence of a harmonic structure in Frame

2 . In addition, when this method finds Frame 2 has a

harmonic structure, we overwrite variable Frame 1 with

variable Frame 2 and apply this method recursively. This

enables us to detect a harmonic structure when there is a

large amount of interference.

3) Estimating Shape of Harmonic Structure: While a

harmonic structure has an overtone structure, we can estimate

the shape of the harmonic structure from the estimated fun-

damental frequency. We think about up to the J th overtone

of the fundamental frequency, and regard F frequency bins

from center of each overtone are in the harmonic structure.

Fig. 6 shows this estimation process visually. The black bold

line means the estimated fundamental frequency, and the

black thin lines indicate the overtones. We consider the areas

surrounded by the blue lines to be time-frequency regions

that have a harmonic structure. After estimating the harmonic

structure, we separate the speech mixtures using the method

we proposed in Subsection III-C.

IV. EXPERIMENTS

To verify improvements obtained with our proposed

method, we carried out two experiments using synthesized

sounds. Table II lists the experimental conditions and Fig.

7 outlines the arrangement for the microphones and loud

speakers.

TABLE II

EXPERIMENTAL CONDITIONS

N , M 3 talkers, 2 microphones

Sampling frequency 16 kHz

Impulse response Recorded in anechoic chamber

Sound sources JNAS 200 sentences (males and females)

Talkers’ loudness Same loudness

STFT frame length 1024 points (64 ms)

STFT shift width 256 points (16 ms)

Other parameters T1 =0.03, T2 =0.01, J=6, and F =2

Speech recognizer Julius 3.5 fast

Acoustic model PTM triphone, 3 state HMM

Language model Statistical model, 20k words

Acoustic feature MFCC 12 + ∆MFCC 12 + ∆Pow

Analysis window size 400 points (25 ms)

window shift size 160 points (10 ms)
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Fig. 7. Arrangement of microphones and talkers

Our evaluations use two kinds of measurements: the first

is the signal-to-noise ratio to establish whether our method

can accurately separate mixed speech signals, and the second

is ASR correctness to establish whether output sounds are

suitable for ASR.

A. Evaluation Using Signal-to-Noise Ratio

Fig. 8 shows the original signal, the separation results

with the L1-norm method, estimated harmonic structure,

and the separation results with our proposed method. It

only shows the low-frequency region because most of the

estimated harmonic structure is in the low-frequency region.

The black in the lower left figure means the estimated

harmonic structure, and blue means low power and red

means high power in the other three figures. The results from

the L1-norm method, 8(b), indicate that since the accuracy

of estimating the dominant source was poor in the 0-200

Hz region, there are some spectrum lacking in the areas

surrounded by the black circles. Additionally, there is some

leakage noise in the areas surrounded by the black rectangles.

However, in the results obtained with our proposed method,

8(d), the spectra in the black circles are recovered, and

leakage noise in the black rectangles is reduced. This means

that our method improves the accuracy of dominant source

estimation and reduces the interference from other talkers.

Fig. 9 has a histogram for the signal-to-noise ratio of

the center talker. We can see that there is a peak for the
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(a) Original speech
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(b) Results with L1-norm method
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(c) Estimated harmonic structure
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(d) Results with proposed method

Fig. 8. Spectrograms and estimated harmonic structure
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Fig. 9. Distribution of signal-to-noise ratio (Red:baseline Green:proposed)

L1-norm method near 6-7 dB, and there is a peak for our

proposed method near 7-8 dB; thus, our method seems to

improve the signal-to-noise ratio. However, when we take

into consideration the 1-3 dB region, there are very few

improvements. This is because our method cannot estimate

the harmonic structure accurately when the output of L1-

norm method is severely broken.

Table III lists the average signal-to-noise ratio for each

talker. When we take into consideration the center talker,

the improvement with our method is about 0.8 dB, which

is similar to the movement of the peak in Fig. 9. However,

when we take into account the left and right talkers, the

improvements in the signal-to-noise ratio are only about 0.2

dB.

B. Evaluation Using Continuous Speech Recognition

Table IV lists the average ASR correctness. Note that

our evaluation did not use isolated word recognition, but

continuous speech recognition. In this table, “(c) optimum

harmonic” means the correctness when a harmonic structure

was given in all time frames. “(d) optimum all TF” means

the correctness when dominant sources were given in all

time-frequency regions; thus, this is the upper bound for

TABLE III

AVERAGE SIGNAL-TO-NOISE RATIO (DECIBEL)

Speaker Left Center Right

(a) L1-norm method 8.2 6.6 8.6

(b) Proposed method 8.4 7.4 8.8

Improvements 0.2 0.8 0.2

TABLE IV

AVERAGE ASR CORRECTNESS (%)

Talker Left Center Right

(a) L1-norm method 64.9 59.7 69.6

(b) Proposed method 69.0 63.6 71.5

(c) Optimum harmonic 74.4 68.7 77.5

(d) Optimum all TF 82.3 82.5 85.0

ASR correctness under our experimental condition. The

difference between the “(a) L1-norm method” and the “(d)

optimum all TF”, about 15-23 points, means there is room for

improvement with the L1-norm method. The improvement

with our proposed method can be seen in the difference

between the “(a) L1-norm method” and the “(b) proposed

method”: when we take into consideration the left and center

talkers, this is about four points, and when we take into

account the right talker, it is about two points.

C. Discussion

These two evaluations demonstrated that our proposed

method improves both signal-to-noise ratio and ASR cor-

rectness. However, the signal-to-noise ratio improvements

with the left and right talkers were negligible. The reason is

that our method improves the separation results only for the

time-frequency region that have a harmonic structure, while

signal-to-noise ratio is calculated from all time-frequency

regions with equal weights.

In contrast to signal-to-noise ratio, the improvements to

ASR correctness for the left and right talkers were nearly as

much as that for the center talker, and these improvements

are meaningful. We conclude that our approach, which puts

emphasis on the harmonic structure, is a good way to

separate mixed speech signals with less distortion of acoustic

features.

V. CONCLUSIONS AND FUTURE WORK

We proposed a speech separation method that can be

used to achieve a simultaneous speech-recognition system.

Since the L1-norm method involves the problems where there

are some frequency bands whose estimates of the dominant

source are inaccurate, the separation results from the L1-

norm method contain spectrum lacking and leakage noise.

Such interference greatly distorts acoustic features; thus, the

ASR results for these sounds are not good.

We focus on the fact that the harmonic structure has a

high-power overtone structure, and we improve the estima-

tion of the dominant source using the harmonic structure.
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More concretely, first, we use the L1-norm method and

obtain tentatively separated sounds. Second, we extract the

harmonic structure from these sounds. Finally, we separate

the speech mixtures again, with the constraint that the har-

monic structure is always powerful. The experiment revealed

that our proposed method improved the correctness of ASR

by about four points compared to the baseline method.

In future work, we intend to add new constraints for

voiceless consonants, which do not have a harmonic struc-

ture. Since voiceless consonants have high power in the

high-frequency region, we can expect that new constraints

will improve the high-frequency region, which our proposed

method cannot do. Another area we need to tackle is the

reverberation environment. Even though our experiments

were carried out using impulse responses in an anechoic

chamber, developing a method that works properly in a

standard reverberation room is essential for robots that work

in real environments.

In addition, we need to take into consideration the speech-

recognition module. We expect that a recognition system

that can place more stress on the harmonic structure can

improve the ASR results since our proposed method could

separate the harmonic structure very well. Another way is

to use missing feature theory [15], which would enable us

to reduce the effect of interference or enable us to recover

feature values that are distorted.
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