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Abstract— Multirobot domains are a challenge for learning
algorithms because they require robots to learn to cooperate
to achieve a common goal. The challenge only becomes greater
when robots must perform heterogeneous tasks to reach that
goal. Multiagent HyperNEAT is a neuroevolutionary method
(i.e. a method that evolves neural networks) that has proven
successful in several cooperative multiagent domains by exploit-
ing the concept of policy geometry, which means the policies of
team members are learned as a function of how they relate to
each other based on canonical starting positions. This paper
extends the multiagent HyperNEAT algorithm by introducing
situational policy geometry, which allows each agent to encode
multiple policies that can be switched depending on the agent’s
state. This concept is demonstrated both in simulation and in
real Khepera III robots in a patrol and return task, where
robots must cooperate to cover an area and return home when
called. Robot teams that are trained with situational policy
geometry are compared to teams that are not and shown to
find solutions more consistently that are also able to transfer
to the real world.

I. INTRODUCTION

Training multiple robots to cooperate and accomplish a
goal is difficult because each robot must learn to perform
a complementary task. Multiagent HyperNEAT [1], [2] is a
learning method that addresses this challenge by exploiting
a concept called policy geometry. Inspired by real-life teams,
the idea in policy geometry is that the policies of team
members are derived from their canonical location within the
team (e.g. at the start of a match). For example, on a soccer
team, the goalie is the most defensive player and closest to
the edge of the field while the players become more offensive
who start closer to the midfield. Thus, rather than learning
individual policies for each agent, the approach of multiagent
HyperNEAT is to learn a pattern of policies and how they
relate to one another based on the team’s policy geometry. In
this way teams trained by multiagent HyperNEAT can share
basic or important skills without the need for each agent to
independently discover them.

The problem of multirobot learning is further complicated
when robots must switch between tasks during operation.
To do so, the policy of the robot must encode the ability
to perform all the desired tasks in addition to knowing the
appropriate time to switch between them, which may be
difficult in noisy or uncertain environments. In addition, such
problems can be deceptive to the learning algorithm because
of local optima caused by solving one task at the expense

of solving the others. While there are existing approaches to
this problem such as decomposing the tasks [3], exploiting
modular structures [4], or training plastic networks [5], the
problem of training autonomous robots to switch between
tasks remains challenging.

To address this challenge, this paper introduces an ex-
tension to multiagent HyperNEAT and the standard policy
geometry concept called situational policy geometry that
generates multiple policies for the same agent, among which
it can switch depending on its current state. That way,
individual robots can learn how to perform multiple fasks by
learning how they relate to each other, which is similar to the
way multiagent HyperNEAT learns the policies of multiple
agents.

This paper tests the idea of training teams using both
standard policy geometry and situational policy geometry to
create robust multirobot teams in a patrol and return domain
both in simulation and with robots in the real world. In
this task robots must work together to cover an area, but
must return home when called, which means that there are
two similar tasks with different goals. To demonstrate the
benefit of exploiting situational geometry, teams trained with
situational geometry will be compared with those that are
trained with the standard multiagent HyperNEAT method
that does not incorporate information about the relationship
among tasks.

The main conclusion is that methods that take advantage of
situational policy geometry find solutions more consistently
than those that cannot and that those solutions are robust
enough to transfer to the real world.

II. BACKGROUND

This section reviews popular approaches to multiagent
learning, highlighting several robotics applications, past work
in task-switching, and the NEAT and HyperNEAT methods
that form the backbone of multiagent HyperNEAT.

A. Traditional Cooperative Multiagent Learning

There are two primary traditional approaches to multia-
gent learning. The first, multiagent reinforcement learning
(MARL), encompasses several specific techniques based on
off-policy and on-policy temporal difference learning [6]—
[8]. The basic principle that unifies MARL techniques is
to identify and reward promising cooperative states and



actions among a team of agents [9], [10]. The other major
approach, cooperative coevolutionary algorithms (CCEAs),
is an established evolutionary method for training teams of
agents that must work together [10]-[12]. The main idea is
to maintain one or more populations of candidate agents,
evaluate them in groups, and guide the creation of new
candidate solutions based on their joint performance.

While reinforcement learning and evolution are mainly
the focus of separate communities, Panait, Tuyls, and Luke
[13] showed recently that they share a significant common
theoretical foundation. One key commonality is that they
break the learning problem into separate roles that are
semi-independent and thereby learned separately through
interaction with each other. Although this idea of separating
multiagent problems into parts is appealing, one problem is
that when individual roles are learned separately, there is
no representation of how roles relate to the team structure
and therefore no principle for exploiting regularities that
might be shared across all or part of the team. Thus in cases
where learning has been applied to real-world applications, it
usually exploits inherent homogeneity in the task [14], [15].

The multiagent HyperNEAT approach extended in this
paper addresses this challenge and is augmented to switch
tasks. Prior approaches to task switching are reviewed next.

B. Prior Work in Task Switching

There are many approaches to solving problems in which
agents must perform multiple tasks. One important strategy is
to decompose the main task into hierarchies of subtasks [3].
In this approach agents can focus on these specific subtasks
and complete them according to the hierarchy. However, the
tasks must be decomposed by the experimenter. Another
method is to learn modular controllers [4] wherein different
parts of the controller (e.g. different sets of outputs) are
active depending on the state of the robot. Evolving adaptive
artificial neural networks (ANNG5) is another significant tech-
nique [5], wherein local learning rules facilitate the policy
transition from one task to the other.

Despite the abundance of methods, task switching is still
a difficult problem, especially for cooperative multiagent
learning. Such systems tend to be less robust because if
a single robot fails to perform as expected the entire team
can fail. The extension of multiagent HyperNEAT in this
paper overcomes this obstacle. The next section reviews the
Neuroevolution of Augmenting Topologies (NEAT) method,
the foundation for multiagent HyperNEAT.

C. Neuroevolution of Augmenting Topologies

The multiagent HyperNEAT method that enables learning
from geometry in this paper is an extension of the NEAT
algorithm for evolving ANNs. NEAT performs well in a
variety of control and decision-making problems [16], [17]. It
starts with a population of small, simple neural networks and
then increases their complexity over generations by adding
new nodes and connections through mutation. By evolving
networks in this way, the topology of the network does
not need to be known a priori; NEAT searches through

increasingly complex networks to find a suitable level of
complexity. Furthermore, it allows NEAT to establish high-
level features early in evolution and then later elaborate on
them.

The important property of NEAT for this paper is that it
evolves both the topology and weights of a neural network.
Because it starts simply and gradually adds complexity,
NEAT tends to find a solution network close to the minimal
necessary size. In principle, another method for learning the
topology and weights of networks could also fill the role
of NEAT in this paper. Nevertheless, what is important is
to begin with a principled approach to learning both such
features, which NEAT provides. Stanley and Miikkulainen
[16], [17] provide a complete overview of NEAT.

The next section reviews the HyperNEAT extension to
NEAT that is itself extended in this paper to generate
multiagent teams.

D. HyperNEAT

A key similarity among many neuroevolution methods,
including NEAT, is that they employ a direct encoding, that
is, each part of the solution’s representation maps to a single
piece of structure in the final solution. Yet direct encodings
impose the significant disadvantage that even when different
parts of the solution are similar, they must be encoded and
therefore discovered separately. This challenge is related to
the problem of reinvention in multiagent systems, which
occurs when similar skills must be learned for agents that
otherwise differ: After all, if individual team members are
encoded by separate representations, even if a component
of their capabilities is shared, the learner has no way to
exploit such a regularity. Thus this paper employs an indirect
encoding instead, which means that the description of the
solution is compressed such that information can be reused,
allowing the final solution to contain more components
than the description itself. Indirect encodings are powerful
because they allow solutions to be represented as a pattern of
policy parameters, rather than requiring each parameter to be
represented individually [18]-[20]. HyperNEAT, reviewed in
this section, is an indirect encoding extension of NEAT that
is proven in a number of challenging domains that require
discovering regularities [21]-[23], including several robotics
applications [24], [25]. For a full description of HyperNEAT
see Stanley et al. [22] and Gauci and Stanley [23].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [19]) instead of ANNs. CPPNs, which are also
networks, are designed to encode compositions of functions,
wherein each function in the composition (which exists in
the network as an activation function for a node) loosely
corresponds to a useful regularity. For example, a Gaussian
function induces symmetry. Each such component function
also creates a novel geometric coordinate frame within which
other functions can reside. For example, any function of the
output of a Gaussian will output a symmetric pattern because
the Gaussian is symmetric.



The appeal of this encoding is that it allows spatial
patterns to be represented as networks of simple functions
(i.e. CPPNs). Therefore NEAT can evolve CPPNs just like
ANNs; CPPNs are similar to ANNSs, but they rely on more
than one activation function (each representing a common
regularity) and act as an encoding rather than a network.

The indirect CPPN encoding can compactly encode pat-
terns with regularities such as symmetry, repetition, and
repetition with variation [19], [26]. For example, while
including a Gaussian function, which is symmetric, can
cause the output or part of the output to be symmetric, a
periodic function such as sine creates segmentation through
repetition. Most importantly, repetition with variation (e.g.
such as the fingers of the human hand) is easily discovered by
combining regular coordinate frames (e.g. sine and Gaussian)
with irregular ones (e.g. the asymmetric x-axis). For example,
a function that takes as input the sum of a symmetric function
and an asymmetric function outputs a pattern with imperfect
symmetry. In this way, CPPNs produce regular patterns with
subtle variations. The potential for CPPNs to represent pat-
terns with motifs reminiscent of patterns in natural organisms
has been demonstrated in several studies [19] including an
online service on which users collaboratively breed patterns
represented by CPPNs [26].

The main idea in HyperNEAT is that CPPNs can naturally
encode connectivity patterns [22], [23]. That way, NEAT can
evolve CPPNs that represent large-scale ANNs with their
own symmetries and regularities. This capability will prove
essential to encoding multiagent policy geometries in this
paper because it will ultimately allow connectivity patterns
to be expressed as a function of team geometry, which means
that a smooth gradient of policies can be produced across
possible agent locations.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes
are situated in n dimensions, where n is the number of
dimensions in a Cartesian space. Consider a CPPN that takes
four inputs labeled z1,y;,x2, and ys; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (z1,y;) and (22, y2), and the output
of the CPPN for that input thereby represents the weight
of that connection (Fig. 1). By querying every possible
connection among a set of points in this manner, a CPPN can
produce an ANN, wherein each point is a neuron position.
Because the connection weights are produced by a function
of their endpoints, the final structure is produced with
knowledge of its geometry. In effect, the CPPN is painting
a pattern on the inside of a four-dimensional hypercube that
is interpreted as the isomorphic connectivity pattern, which
explains the origin of the name hypercube-based NEAT
(HyperNEAT). Connectivity patterns produced by a CPPN
are called substrates to verbally distinguish them from the
CPPN itself, which has its own internal topology.

Each queried point in the substrate is a node in a neural
network. The experimenter defines both the location and role
(i.e. hidden, input, or output) of each such node. Nodes
should be placed on the substrate to reflect the geometry of
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Fig. 1. CPPN-based Geometric Connectivity Pattern Encoding. A
collection of nodes, called the substrate, is assigned coordinates that range
from —1 to 1 in all dimensions. (1) Every potential connection in the
substrate is queried to determine its presence and weight; the dark directed
lines in the substrate depicted in the figure represent a sample of connections
that are queried. (2) Internally, the CPPN (which is evolved by NEAT) is
a graph that determines which activation functions are connected. As in an
ANN, the connections are weighted such that the output of a function is
multiplied by the weight of its outgoing connection. For each query, the
CPPN takes as input the positions of the two endpoints and (3) outputs the
weight of the connection between them. Thus, CPPNs can produce regular
patterns of connection weights in space.

the task [22]-[24]. That way, the connectivity of the substrate
is a function of the the task structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot. Outputs for moving left or right
can also be placed in the same order, allowing HyperNEAT
to understand from the outset the correlation of sensors
to effectors. In this way, knowledge about the problem
geometry can be injected into the search and HyperNEAT
can exploit the regularities (e.g. adjacency, or symmetry) of
a problem that are invisible to traditional encodings.

In summary, the capabilities of HyperNEAT are important
for multiagent learning because they provide a formalism for
producing policies (i.e. the output of the CPPN) as a function
of geometry (i.e. the inputs to the CPPN). As explained next,
not only can such an approach produce a single network but
it can also produce a set of networks that are each generated
as a function of their location in space.

ITI. APPROACH: EXTENDING MULTIAGENT
HYPERNEAT

The multiagent HyperNEAT algorithm was first introduced
by D’Ambrosio and Stanley [2] and D’ Ambrosio et al. [1].
However, it has never been applied to a real-world patrol
task like the one in this paper and its evolved controllers
have never been transferred to the real world before now.
These achievements are made possible in this paper by
introducing the extension of situational policy geometry.
Thus this paper shows how the ideas of indirect encoding
and policy geometry can impact real-world problems. This
section summarizes the details of the standard multiagent
HyperNEAT method that encodes a team based on policy
geometry and then explains the extension to the method that
allows multiagent HyperNEAT to exploit situational policy
geometry.
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Fig. 2. Multiagent HyperNEAT. The CPPN and substrates that multiagent
HyperNEAT employs for this paper are shown. The CPPN (b) evolves a
pattern that describes the connectivity and weights of the neural network
controllers for each agent on the team. The CPPN queries all possible
connections in the team substrate (c), which is made up of several individual
substrates (a). Each of these is located at a different z-coordinate, which
represents the team’s policy geometry. The S node in (a) is intentionally
elevated to reflect its special status as the “come home” signal. The
additional B output on the CPPN allows it to encode biases in addition
to the usual connection weight output W.

A. Standard Policy Geometry

The policy geometry of a team is the relationship between
the canonical starting positions of agents on the field and
their behavioral policies. Multiagent HyperNEAT is based
on the idea that policy geometry is an effective level of
description for a team because it can be encoded naturally as
a pattern. This section describes how multiagent HyperNEAT
extends HyperNEAT to encode heterogeneous teams as a
pattern of policies.

To generate a controller for a single agent, a CPPN
accepts inputs x1,y1, 2, and yo and queries the weights
of all possible connections for the single controller (Fig.
2a), as described in the previous section (Fig. 1). For a
single CPPN to encode a set of networks in a pattern,
thereby exploiting policy geometry, changes must be made
to both the CPPN and the substrate. In the CPPN, additional
inputs are added to represent the dimensions of the policy
geometry. In this paper only one additional input 2 is added
(Fig. 2b) to give a one-dimensional policy geometry, but in
principal there is no limit to the number of dimensions of
the policy geometry. Additionally, the HyperNEAT substrate
is composed of multiple (three in this paper) single-agent
substrates stacked along the z-axis (Fig. 2c), representing
the three agents in the team.

The main idea is that the CPPN is able to create a pattern
based on both the agent’s internal geometry (x and y) and its
position on the team (2) (Fig. 2a,c). That way, each network
is encoded as a function of both its internal geometry and
its position (z) on the team. The CPPN can thus emphasize
connections from z for increasing heterogeneity or minimize
them to produce greater homogeneity. Furthermore, because
z is a spatial dimension, the CPPN can literally generate
policies based on their positions on the team.

The team substrate (Fig. 2c) formalizes the idea of en-
coding a team as a pattern of policies. This capability
is powerful because generating each agent with the same
CPPN means they can share tactics and policies while still
exhibiting variation across the policy geometry. In other

words, policies are spread across the substrate in a pattern
just as role assignment in a human team forms a pattern
across a field. However, even as roles vary, many skills are
shared, an idea elegantly captured by indirect encoding. The
complete multiagent HyperNEAT algorithm is enumerated in
Algorithm 1.

Algorithm 1 Multiagent HyperNEAT
1) Set the substrate to contain the number of agents.
2) Initialize a population of minimal CPPNs with random
weights that correspond to the chosen substrate.
3) Repeat until a solution is found or the maximum
number of generations are reached:

a) For each CPPN in the population:

i) Query its CPPN for the weight of each con-
nection in the substrate within each agent’s
ANN. If the absolute value of the output
exceeds a threshold magnitude, create the
connection with a weight scaled proportion-
ally to the output value (Fig. 1).

ii) Assign the generated ANNS to the agents and
run the team to ascertain fitness.

b) Reproduce the CPPNs according to the NEAT
method to create the next generation’s population.

B. Situational Policy Geometry

Situational policy geometry allows agents to learn to
switch to different policies depending on their current state.
That way, not only can multiagent HyperNEAT exploit
similarities among tasks, but the solutions for individual
subtasks are likely to be simpler (and thus more easily
discovered) than a single policy that must solve all tasks.

To exploit situational policy geometry the CPPN must
be made aware of it. Thus new inputs are added to the
CPPN that represent the dimensions of the tasks (Fig. 3b),
similarly to how inputs are added to the CPPN to represent
the standard policy geometry that represents dimensions of
the team (Fig. 2b). For example, in this paper a single new
dimension S is added, which is either 1 or -1, depending
on whether the robot must come home or not. Because the
signal is now a part of the CPPN (Fig. 3b), the controller for
an individual robot (Fig. 3a) does not need the signal input.
Also, because the CPPN now has an extra dimension, there
are now two stacks of controllers (one for each value of the
signal) instead of one (Fig. 3c). In effect, each agent now
has two brains that it can switch between depending on their
current task.

IV. PATROL AND RETURN EXPERIMENT

To demonstrate that multiagent HyperNEAT can produce
teams that are robust enough to function in the real world
and to explore the capabilities of situational policy geometry,
teams are evolved to solve a patrol and return task in which
robots must spread out and observe an environment and then
return home when signaled to do so. Patrolling tasks are
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Fig. 3. Multiagent HyperNEAT with Situational Policy Geometry. The
CPPNs and substrates that multiagent HyperNEAT employs for exploiting
situational policy geometry in this paper are shown. The main difference
between this situational setup and the standard setup in Fig. 2 is that the
CPPN (b) has an additional input S that describes the location in the
situational policy geometry, which is formalized in the new S-axis as the
situational team substrate (c). Thus the network stack to the left along S
is team policies for one situation while that on the right is policies for a
different situation.

common in multiagent learning [8], [27] because they require
agents to cooperate to ensure that they do not collide with
each other and to achieve uniform coverage of the area. The
task in this paper is made more complex by the fact that the
robots must return home on command, meaning that each
agent must effectively learn two roles and remember how
to return home. This requirement also makes the task more
realistic: If a group of robots were sent to patrol a building,
recalling them after a period of time to recharge batteries
or when the patrol is over would be preferable to manually
collecting the robots.

Unlike other approaches to multiagent patrolling [27],
[28] the robots in this task cannot communicate with each
other. This limitation means that the agents must learn a
priori roles to maximize coverage and minimize overlaps.
By exploiting the policy geometry, multiagent HyperNEAT
can accomplish this goal by finding a general patrolling and
collision-avoidance policy for all the agents, and at the same
time by varying the policy for each agent so that they patrol
different areas. Also, the patrolling robots must respond to
a “come home” signal, requiring a robust dual policy that
keeps them deployed until the signal, at which point they
must quickly return home. By exploiting situational policy
geometry, the idea is that robots can employ separate yet
related policies for these conflicting tasks.

A. Robots

The robots used in these experiments are three Khepera
IlIs outfitted with KoreBot II extensions (Fig. 4a), which
make it possible for the neural network controllers to run on
the robots themselves, thereby minimizing command latency
and reducing the need for communication with a base station
to only general broadcast signals (i.e. start and return). The

(a) Khepera III

(b) Front Sensors

Fig. 4. Khepera III with Korebot II. The Khepera III mobile robots
(a) in these experiments come equipped with a Korebot II extension that
runs an embedded Linux operating system and allows the robots to receive
broadcast communications over a wireless network. Although the Khepera
III has many sensors available, only the front six infrared rangefinders (b)
are utilized in these experiments.

Khepera III is equipped with both long-range, ultrasonic
and short-range infrared rangefinder sensors; however for
this task only the front six infrared sensors are utilized
(Fig. 4b). The sensors can detect both walls and robots,
but cannot distinguish between them. The Khepera III can
achieve speeds of up to 30cm/sec, but because of the size of
the environments and to avoid damage to the robots during
testing the motors were run at a reduced speed with an
approximate velocity of 6cm/sec. For more information on
the Khepera III see http://www.k-team.com/.

Each robot is controlled by a separate neural network
(either Fig. 2a or Fig. 3a depending on whether or not they
are learning situational policy geometry) generated by the
same CPPN (either Fig. 2b or Fig. 3b). If the robot is using
situational policy geometry, it has six input nodes corre-
sponding to the six rangefinder sensors. The robots without
situational policy geometry have one additional input (called
S in Fig. 2a) that indicates whether the robot should return
home or continue patrolling. The rangefinders on the robot
return values between 0 and 4,000; larger numbers represent
farther distances. Preliminary experiments indicated that the
sensor values beyond four inches are very noisy and that the
response curve of the sensors is non-linear. Therefore, before
the values are fed into the neural network, the raw sensory
input is modified to clip values beyond four inches, to be
more linear, and to be scaled between zero and one through
the function 1.43 — (log(;)ifo‘sl), where s is the raw sensor

.25
value returned by the robot.

A robot can select from one of three actions: go forward,
turn left, or turn right. The action is selected based on
the values of the three network outputs in Fig. 2a or Fig.
3a; the output with the highest value is the action for that
timestep. The robots are allowed to select actions every 33
milliseconds because that is the update rate of the Khepera
IIT’s infrared sensors. Robots also have a collision avoidance
policy to reduce the chance of damaging themselves that
overrides the robot’s forward command: If either of the two
leftmost sensors fall below 0.25, the robot turns right; the
opposite is true for the two rightmost sensors and if either
of the front sensors fall below the threshold, the robot stops.

Training teams through artificial evolution with real robots
would be time consuming and could potentially damage



the robots. Instead the teams are trained in a custom sim-
ulator made in our research group (available at: http:
//eplex.cs.ucf.edu/software.html). Only sim-
ple two-dimensional kinematics are simulated with an update
rate of 33msec. This approach is faster than modeling and
simulating three-dimensional motion and/or realistic physics,
and was nevertheless found to be just as accurate as trans-
ferring from e.g. Webots [29] in real-world transfer in pre-
liminary experiments. The Khepera IlIs are modeled based
on manufacturer specifications and preliminary calibration
experiments.

B. Environments

Each team is trained in the same environment to encourage
robots to adopt specific roles, but in the real world they
are also tested on a variant of that environment to ensure
generality. The training environment is called the plus (Fig.
5a) and is made of an entrance that leads to three branching
paths. Branches are approximately 29cm wide and 77.5cm
long. To cover this environment, the robots must split up and
take separate paths, even though they cannot communicate
with each other. Thus the robots must have some a priori
bias that allows them to cooperate. The testing environment
is called the asymmetric plus (Fig. 5b) and is similar to the
plus, but with several changes. First, the left path is shortened
to approximately 48.43cm and the right and center paths are
1.5 times as long as in the regular plus. Also, the right branch
is shifted up by 77.5cm These changes cause very different
sensor activations where robots would typically turn and
stop, thereby testing the generality of the learned policies.
The environments are designed to capture the general idea
of patrolling, while not being too complex to build physically
(out of bricks) in the real world.

For the real robots, the environments are constructed out
of red 7§in><3§in><2%in bricks with a carpet base, which are
the same dimensions as in the simulator. The three robots are
placed in the starting branch of the environment, 30cm apart.
They are then simultaneously started and begin patrolling. A
good solution is for all agents to reach the end of a different
branch and stop. After all agents are stopped, they are called
back by activating their “come home” signal in the order that
they left. Only one agent is called back at a time to maintain
as much coverage as possible. When the agent returns home,
its signal is turned off and it is placed back at the home point
facing the environment so that it can return to patrolling and
the next robot can be called back.

In simulation fitness is assigned to each team based on
two criteria: If a robot receives the signal to come home,
minimizing distance to home is rewarded, but if it does not
yet have the signal, minimizing distance to the end of a
hall is rewarded. For every simulated second each robot is
given a score of %, where D is the maximum possible
distance to either the end of a hall or home, depending on
the state of that robot’s signal, and d is the current distance
to that objective. If the robots have not reached the end of
the hall when the signal activates, their fitness for returning
home is divided by ten, so that solutions that never leave

LiHER R Lt 2
(b) Asymmetric Plus (Testing)
Fig. 5. Real-World Environment. The real environments with which the
robots interact are constructed out of red bricks on a carpet with the same
dimensions used in the simulator. The plus (a) is the environment the robots
are trained on, and the asymmetric plus (b) tests the generality of the learned
policies. In both cases robots are placed 30cm apart in the open branch and

then sent a signal to begin patrolling. Individual robots can then be called
back by the experimenter by broadcasting a command to them.

home are discouraged. Similarly, teams in which all agents
do not change position or heading after they receive the
signal or were still moving forward when they received it
have their fitness for patrolling divided by 10 to encourage
them to respond to the signal. These scores are summed over
each robot over each second (out of 45) to give the overall
fitness of a team for that trial. Thus the maximum fitness
is three times the number of seconds of the trial, although
in practice such a fitness is not possible to reach because
the robots spend time moving between points. To simplify
training, evaluations in simulation are carried out slightly
differently than in the real world: Instead of calling the robots
one by one, all robots are called simultaneously when half
of the evaluation time has passed and robot-to-robot sight
and collision are turned off. This method tests the essential
requirements of the policies to return home, while speeding
up evaluation significantly.

C. Experimental Parameters

Because HyperNEAT differs from original NEAT only in
its set of activation functions, it uses the same parameters
[16]. Both experiments were run with a modified version
of the public domain SharpNEAT package [30]. The size
of each population was 500 with 20% elitism. The num-
ber of generations was 1,000. Sexual offspring (50%) did
not undergo mutation. Asexual offspring (50%) had 0.96
probability of link weight mutation, 0.03 chance of link
addition, and 0.01 chance of node addition. The coefficients
for determining species similarity were 1.0 for nodes and
connections and 0.1 for weights. The available CPPN ac-



tivation functions were sigmoid, Gaussian, absolute value,
and sine, all with equal probability of being added to the
CPPN. Parameter settings are based on standard SharpNEAT
defaults and prior reported settings for NEAT [16], [17].
They were found to be robust to moderate variation through
preliminary experimentation.

V. RESULTS

Fifteen independent runs of multiagent HyperNEAT were
conducted in the simulated plus environment with situational
policy geometry and with standard policy geometry. In the
simulator, a solution to an environment is a policy that
successfully navigates each of the three robots to the end
of a different wing of the map, where they each wait until a
signal is sent to them, and then navigate back to the starting
location after the signal is received. In each of the fifteen runs
with situational policy geometry a solution was evolved in
264.6 generations on average (stdev=246.28). However, with
standard policy geometry only three solutions were evolved.
This difference is significant (p < 0.0001; Fischer’s exact
test), highlighting the advantage that can be gained from
recognizing and exploiting situational regularities.

Note that evolution did not stop when the first solution
was found, so each successful run actually produced a
number of viable solutions. To determine which solutions
from these successful runs to evaluate in the real world,
a generalization test was developed. This test averages the
performance of an evolved policy in 25 additional evaluations
on the plus environment with varying levels of noise in the
robots’ sensors, stochastic turning and locomotion, and small
random perturbations of the initial location and heading of
the robots. The idea is that the policies that are more general
will perform better in the real world because they will be
more robust to the inevitable slight discrepancies between
an imperfectly modeled simulated environment and reality.

Confirming this motivation, the five most general solutions
from distinct runs with situational policy geometry were all
successfully transferred from simulation to the real world,
where the solution criteria was even more strict to make
sure teams are genuinely robust in real robots without further
training: Each robot must go out to its proper position,
return home upon receiving the signal, and then return back
to its position. In addition, when tested in the real world
in the asymmetric plus environment, for which they were
not trained, these five most general solutions still success-
fully patrolled and returned, thereby demonstrating that the
policies learned by multiagent HyperNEAT with situational
policy geometry were not specific to a single map. Videos
of such successful transfers from simulation to both the
real world plus and asymmetric plus environments are avail-
able at: http://eplex.cs.ucf.edu/patrolling.
html. Of the three runs without situational policy geometry
that solved the task, two transferred successfully to the
real-world symmetric environment, and only one solved the
asymmetric environment. Because so few runs could solve
the task at all without situational policy geometry even in
simulation, the sample size is too small to draw significant

conclusions on transferability of such solutions. However,
because the chance of even finding a solution is statistically
so much smaller without situational policy geometry, in
effect if the aim is to find a real-world solution, situational
policy geometry provides a significant advantage.

VI. DISCUSSION

Teams that were trained with situational policy geometry
outperformed those trained without it in both simulation and
in the real world. One reason for this advantage is that by
giving multiagent HyperNEAT situational policy geometry
information, it was able to exploit the regularities of the
tasks. For example, a major difference between leaving to
patrol and coming back is the direction the robot must turn.
Agents without situational policy geometry must utilize the
value of a specific input to decide how to turn, but those with
it utilize a different neural network once the signal fires. A
common strategy for situational teams was simply to invert
connection weights in the network, allowing them to keep a
similar policy, but with an opposite turning bias.

Because they can exploit situational regularities, the poli-
cies of the teams with situational policy geometry were
simpler than those represented by the teams with standard
policy geometry. That is, the agents without situational policy
geometry must effectively encode in the same network both
how to perform the tasks and how to switch between them.
Thus, it is possible for the robot to encounter situations
(e.g. those conflated or obscured by noise in robot sensors)
that cause it to switch tasks when it is not appropriate. In
fact, a frequent failure of these teams in the real world was
that they would come back too early or not come back
at all. In contrast, the situational teams with their simpler
task policies did not exhibit this behavior and were able
to transfer consistently to real robots in both the training
and testing environments. Thus these experiments verify the
utility of breaking up complex tasks into simpler subtasks as
in previous work and offer a new method by which to learn
these subtasks that exploits the regularities among them.

Another consequence of this work relates to generative and
developmental systems such as HyperNEAT. These systems
rely heavily on discovering and exploiting the regularities
of a problem such as how the leftmost sensor relates to the
left turn effector. However, sometimes there is information
that is critical to a problem that does not easily fit into
these patterns, such as the “come home” signal in this paper:
There is no simple geometric relationship between the signal
input and the sensors and effectors, so it is unclear where
exactly it should be placed on the substrate to best exploit the
geometry of the problem. By moving the signal to the CPPN,
this information is effectively incorporated into the pattern
without disrupting the existing geometry. Thus situational
policy geometry opens up a new possibility for indirect
encodings wherein information that does not clearly fit with
existing patterns can still be elegantly incorporated into the
encoding.

A future direction for this work is to investigate more
complex domains with larger numbers of tasks or subtasks.



Multiagent HyperNEAT should be able to discover the re-
lationships between varying numbers of tasks just as it is
able to do so among varying numbers of agents [1]. More
tasks can be added by either increasing the sampling rate
of a single dimension of situational policy geometry or by
introducing new dimensions, depending on the relationships
of the tasks. Another intriguing possibility is to allow the
agent to decide when to switch between tasks through an
output that could either determine when an agent wants to
switch tasks, or which task (i.e. S-coordinate) the agent
wants to perform. In this way, a continuum of tasks could
be automatically generated by sampling intermediate S-
coordinates, allowing agents to discover new and interesting
ways to divide work and cooperate.

VII. CONCLUSION

This paper presented an extension to the multiagent Hy-
perNEAT algorithm and standard policy geometry called
situational policy geometry. The new approach allows each
agent to encode multiple policies that can be switched de-
pending on the agent’s state, which are learned as a function
of their relationship to each other. These novel capabilities
were tested in a patrol and return task, demonstrating that
exploiting situational policy geometry leads to teams that find
efficient solutions more consistently and that these solutions
transferred to real Khepera III robots.
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