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Abstract— We present a real-time, data-driven algorithm to
enhance the social-invisibility of robots within crowds. Our
approach is based on prior psychological research, which
reveals that people notice and–importantly–react negatively to
groups of social actors when they have high entitativity, moving
in a tight group with similar appearances and trajectories. In
order to evaluate that behavior, we performed a user study
to develop navigational algorithms that minimize entitativity.
This study establishes mapping between emotional reactions
and multi-robot trajectories and appearances, and further
generalizes the finding across various environmental conditions.
We demonstrate the applicability of our entitativity modeling
for trajectory computation for active surveillance and dynamic
intervention in simulated robot-human interaction scenarios.
Our approach empirically shows that various levels of entitative
robots can be used to both avoid and influence pedestrians
while not eliciting strong emotional reactions, giving multi-robot
systems socially-invisibility.

I. INTRODUCTION

As robots have become more common in social environ-
ments, people’s expectations of their social skills have
increased. People often want robots to be more socially
visible–more salient social agents within group contexts [17].
This social visibility includes being more capable of drawing
the attention of humans and evoking powerful emotions [22].
Cases of social visibility include tasks in which robots must
work collaboratively with humans. However, not all contexts
require socially visible robots. There are situations in which
robots are not used to collaborate with people but instead
used to monitor them. In these cases, it may be better for
robots to be socially invisible.

Social invisibility refers to the ability of agents to escape
the attention of other people. For example, psychological
research reveals that African Americans often go unnoticed
in social environments[11], especially reactions related to
threat. Evolution has attuned the human brain to respond
rapidly to threatening stimuli, thus the less a person–or
a robot–induces negative emotion, the less likely it is to
be noticed within a social milieu. The social invisibility
conferred by not inducing emotion is especially important in
surveillance contexts in which robots are expected to move
seamlessly among people without being noticed. Noticing
surveillance robots not only makes people hide their behav-
ior, but the negative emotions that prompt detection may
also induce reactance [9], which may lead to people to lash
out and harm the robots or even other people [12] Research
reveals a number of ways of decreasing negative emotional
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Fig. 1: Multi-robot systems (robots marked by blue trajec-
tories) are used among crowds for surveillance and mon-
itoring. Our novel navigation algorithm takes into account
various levels of physical and social constraints and use them
for: (a) Active surveillance including monitoring crowds (red
trajectories) while moving through them with no collisions;
(b) Dynamic intervention where the robots try to influence
the crowd behavior and movements and make the pedestrians
avoid the area marked by a yellow overlay. The dashed
red line indicates the predicted pedestrian trajectories if the
robots did not attempt to dynamically intervene.

reactions towards social agents [10], but one element may
be especially important for multi-robot systems: entitativity
[13], “groupiness”) is tied to three main elements, uniformity
of appearance, common movement, and proximity to one
another. The more agents look and move the same, and the
closer agents are to each other, the more entitative a group
seems, which is why a marching military platoon seems more
grouplike than people milling around a shopping mall.

The threatening nature of groups means that the more entita-
tive (or grouplike) a collection of agents seem, the greater the
emotional reaction they induce and the greater their social
visibility. As maximizing the social invisibility of collections
of agents requires minimizing perceptions of threat, it is im-
portant for multi-robot systems to minimize their entitativity.
In other words, if multi-robots systems are to move through
groups without eliciting negative reactions [16], they must
seem more like individuals and less like a cohesive and
coordinated group.
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Fig. 2: Our method takes a live or streaming crowd video as an input. We extract the initial set of pedestrian trajectories
using an online pedestrian tracker. Based on the level of social invisibility we want to achieve, we compute motion model
parameters of the robot group using a data-driven entitativity mapping (which we compute based on a user-study(Section
IV)).

Main Results: We present a novel, real-time planning
algorithm that seeks to optimize entitativity within pedestrian
environments in order to increase socially-invisible navi-
gation (by minimizing negative emotional reactions). First,
we conduct a user study to empirically tie trajectories of
multi-robot systems to emotional reactions, revealing that–as
predicted–more entitative robots are seen as more unnerving.
Second, we generalize these results across a number of
different environmental conditions (like lighting). Third, we
extract the trajectory of each pedestrian from the video and
use Bayesian learning algorithms to compute their motion
model. Using entitativity features of groups of robots and
the pedestrians, we perform long-term path prediction for
the pedestrians. To determine these entitativity features we
establish a data-driven entitativity mapping (EDM) between
the group robot motion and entitativity measure from an
elaborate web-based perception user study that compares the
participants’ emotional reactions towards simulated videos
of multiple robots. Specifically, highly entitative collections
of robots are reported as unnerving and uncomfortable. The
results of our mapping are well supported by psychology
literature on entitativity [34].

We highlight the benefits of our data-driven metric for use
of multiple robots for crowd surveillance and active interfer-
ence. We attempt to provide maximally efficient navigation
and result in maximum social invisibility. In order to pursue
different sets of scenarios and applications, we highlight the
performance of our work in multiple surveillance scenarios
based on the level of increasing social interaction between
the robots and the humans.

Our approach has the following benefits:

1. Entitativity Computation: Our algorithm accurately pre-
dicts emotional reactions (entitativity) of pedestrians towards
robots in groups.

2. Robust computation: Our algorithm is robust and can
account for noise in pedestrian trajectories, extracted from
videos.

3. Fast and Accurate: Our algorithm involves no pre-

computation and evaluates the entitativity behaviors at in-
teractive rates.

The rest of the paper is organized as follows. In Section 2,
we review the related work in the field of psychology and
behavior modeling. In Section 3, we give a background on
quantifying entitativity and introduce our notation. In Section
4, we present our interactive algorithm, which computes
the perceived group entitativity from trajectories extracted
from video. In Section 5, we describe our user study on the
perception of multiple simulated robots with varying degrees
of entitativity.

II. RELATED WORK

Human beings are inherently social creatures, making inter-
acting with and perceiving others an important part of the
human experience. Complex interactions within brain regions
work harmoniously to navigate the social landscape [36].
Interesting patterns emerge when attempting to understand
how humans view groups of people.

A. Psychological Perspectives on Group Dynamics

A long-standing tenet of social psychology is that people’s
behaviors hinge upon their group context. Importantly, the
impact of social dynamics is highly influenced by group
contexts [38]–often for the worse. Decades of psychological
research reveals that people interact more negatively with
groups than with individuals [34], expressing more hostility
towards and feeling more threatened by a group than an
individual [16]. Such reactions to groups have real world
implications, especially when onlookers have the ability to
act violently. At the heart of these anti-social actions are
negative emotional reactions, which can be directed at any
social agent, whether human or robot [19]. Most often, these
emotions are unease [8], threat [19], and fear [30].

B. Human-Aware Robot Navigation

Many approaches have been applied towards the navigation
of socially-aware robots [31], [7], [3], [15], [25], [29], [18],



[26], [24]. This type of navigation can be generated by pre-
dicting the movements of pedestrians and their interactions
with robots [26], [4], [40], [33], [2]. Some algorithms use
probabilistic models in which robots and human agents coop-
erate to avoid collisions [39]. Other techniques apply learning
models which have proven useful in adapting paths to social
conventions [27], [32], [35], [6]. Yet other methods model
personal space in order to provide human-awareness [1]. This
is one of many explicit models for social constraints [37],
[23]. While these works are substantial, they do not consider
psychological constraints or pedestrian personalities.

C. Behavior Modeling of Pedestrians

There is considerable literature in psychology, robotics, and
autonomous driving on modeling the behavior of pedestri-
ans [5], [15], [14]. Other techniques have been proposed to
model heterogeneous crowd behaviors based on personality
traits [20].

III. SOCIAL INTERACTION

In this section, we present our interactive algorithm for
performing socially-invisible robot navigation in crowds.
Our approach can be combined with almost any real-time
pedestrian tracker that works on dense crowd videos. Figure
2 gives an overview of our approach. Our method takes a
live or streaming crowd video as an input. We extract the
initial set of pedestrian trajectories using an online pedestrian
tracker. Based on the level of social invisibility we want to
achieve, we find motion model parameters of the robot group
using a data-driven entitativity mapping (which we compute
based on a user-study(Section IV)).

A. Entitativity

Entitativity is the perception of a group comprised of in-
dividuals as a single entity. People sort others into entities
like they group together objects in the world, specifically by
assessing common fate, similarity, and proximity [13]. When
individuals are connected by these properties, we are more
likely to perceive them as a single entity. Larger groups are
more likely to be perceived as entities, but only when there
is similarity among the groups individual members [28].

Entitativity is the extent to which a group resembles a
single entity versus of collection of individuals; in other
words, it is the groups “groupiness” or “tightness” [13], [21].
Overall, entitativity is driven by the perception of three main
elements:

1. Uniformity of appearance: Highly entitative groups have
members that look the same.

2. Common movement: Highly entitative groups have mem-
bers that move similarly.

3. Proximity: Highly entitative groups have members that
are very close to each other.

B. Notation and Terminology

Notation used in the rest of the paper will be presented in
this section. A collection of agents is called a crowd. The
agents in a crowd are called pedestrians, while the agents
that must navigate through a crowd are called robots. Each
agent has a state describing its trajectory and movement
parameters. These parameters dictate the agent’s movement
on a 2D plane. An agent’s state is defined as x ∈ R6:

x = [p vc vpref ]T, (1)

where p is the agent’s position, vc is its current velocity,
and vpref is the preferred velocity on a 2D plane. The
preferred velocity describes the velocity that the agent takes
if there are no other agents or obstacles nearby. In real-world
situations, other agents and obstacles in an agent’s vicinity
cause a difference between vpref and vc, which indicates the
degree of the agent’s interactions with its environment. The
current state of the environment, denoted by S, describes
the states of all other agents and the current positions of
obstacles in the scene. The state of the crowd, defined
as the union of each pedestrian’s state, is represented as
X =

⋃
i xi, where subscript i denotes the ith pedestrian.

Within a crowd, pedestrians can be partitioned into groups
(also called clusters) based on their motion. We represent a
group of pedestrians as G =

⋃
j xj where subscript j denotes

the jth pedestrian in the group.

The motion model is the local navigation rule or scheme that
each agent uses to avoid collisions with other agents or obsta-
cles and has a group strategy. The parameters of the motion
model is denoted P ∈ R6. We based our model on the RVO
velocity-based motion model [41]. In this model, the motion
of each agent is governed by these five individual pedestrian
characteristics: Neighbor Dist, Maximum Neighbors, Plan-
ning Horizon, (Radius) Personal Space, and Preferred Speed
and one group characteristic: Group Cohesion. We combine
RVO with a group navigation scheme in Section 4.2. In our
approach, we mainly analyze four parameters (GP ∈ R4):
Neighbor Dist, (Radius) Personal Space, Group Cohesion,
and Preferred Speed.

Entitativity Metric: Prior research in psychology takes
into account properties such as uniformity, common move-
ment, and proximity, and models the perception of entitativity
using the following 4-D feature vector:

E =



Friendliness
Creepiness
Comfort
Unnerving


 (2)

Friendliness, Creepiness, Comfort and Unnerving (ability to
unnerve) are the emotional impressions made by the group on
observers. Using Cronbach’s α (a test of statistical reliability)
in pilot studies we observed that the parameters were highly
related with α = 0.794, suggesting that they were justifiable
adjectives for socially-invisible navigation.



Fig. 3: We generate a variety of simulated robot groups using our motion model. Based on our precomputed EDM, we
classify the entitativity of each cluster or group of pedestrians based on the four components: friendliness, creepiness,
unnerving, and comfort.

IV. DATA-DRIVEN ROBOT ENTITATIVITY (EDM)

In order to evaluate the impact of the group motion model
parameters on the perception of entitativity of a group of
robots, we performed a user study using simulated trajecto-
ries. We provide the details of this user study in this section.

Fig. 4: Varying Levels of Entitativity: Parameters of the
group motion model affected the entitativity of multiple
simulated robots. Agents having the same speed and similar
trajectories were perceived to be highly entitative (top)
whereas agents walking at different speeds and varying
trajectories were perceived as less entitative (bottom).

A. Study Goals

The aim of this study was to understand how the perception
of multiple pedestrians is affected by the parameters of the
group motion model. We use the results of this user study
to compute a statistical EDM between the group motion
model parameters and the perception of groups in terms of
friendliness, creepiness, and social comfort.

B. Experimental Design

Here, we provide details of the design of our experiment.

1) Participants: We recruited 100 participants (78 male,
x̄age = 32.85, sage = 10.10) from Amazon Mechanical Turk.

2) Procedure: A web-based study was performed in which
participants were asked to watch pairs of simulated videos
of robots and compare their entitativity features. Each video
contained 3 simulated agents with various settings of the
group motion model parameters. We consider variations in
four group motion models parameters(GP): Neighbor Dist,
Radius, Pref Speed, and Group Cohesion. In each pair, one
of the videos corresponds to the default values of the parame-
ters. The other video was generated by varying one parameter
to either the minimum or the maximum value. Thus each
participant watched 8 pairs of videos corresponding to the
minimum and the maximum value for each motion model
parameter. The participants watched the two videos side
by side in randomized order and compared the entitativity
features of the robots groups in the two videos. They could
watch the videos multiple times if they wished. Demographic
information about participants’ gender and age was collected
at the beginning of the study.

Parameters (GP) min max default
Neighbor Distance (m) 3 10 5
Radius (Personal Space) (m) 0.3 2.0 0.7
Preferred speed (m/s) 1.2 2.2 1.5
Group Cohesion 0.1 1.0 0.5

TABLE I: Default values for simulation parameters used in
our experiments

3) Questions: For each trial, the participant compared the
two videos (Left and Right) on a 5-point scale from Left
(-2) - Right (2). We used the following questions to record
participants’ responses on friendliness, creepiness, or social
comfort experienced:

1) In which of the videos did the characters seem more
friendly?

2) In which of the videos did the characters seem more
creepy?

3) In which of the videos did you feel more comfortable
around the characters?

4) In which of the videos did you feel more unnerved by
the characters’ movement?

These questions were motivated by previous studies [34]. We
define an entitativity feature corresponding to each question.



Thus we represent the entitativity features of a group as a
4-D vector: Friendliness, Creepiness, Unnerving (Ability to
Unnerve), Comfort.

C. Analysis

We average the participant responses to the each video pair to
obtain 8 entitativity feature data points (Ei, i = 1, 2, ..., 8}).
Table II provides the correlation coefficients between the
questions for all the participant responses. The high cor-
relation between the questions indicates that the questions
measure disjoint aspects of a single perception feature, enti-
tativity. As expected, creepiness and unnerving are inversely
correlated with friendliness and comfort. Principal Compo-
nent Analysis of the four entitativity features also reveals
that only 2 principal components are enough to explain over
96% of the variance in the participants’ responses. We still
use the four features instead of the principal components
because they provide more interpretability.

Friendliness Creepiness Comfort Unnerving
Friendliness 1 -0.829 0.942 -0.802
Creepiness -0.829 1 -0.906 0.858

Comfort 0.942 -0.906 1 -0.833
Unnerving -0.802 0.858 -0.833 1

TABLE II: Correlation Between Questions: We provide
the correlation coefficients between the questions. The high
correlation between the questions indicates that the questions
measure different aspects of a single perception feature,
entitativity.

We vary the motion model parameters one by one between
their high and low values (while keeping the other parameters
at default value). Given the entitativity features obtained
using the psychology study for each variation of the motion
model parameters, we can fit a generalized linear model to
the entitativity features and the model parameters. For each
video pair i in the gait dataset, we have a vector of parameter
values and a vector of entitativity features Ei. Given these
parameters and features, we compute the entitativity mapping
of the form:


Friendliness
Creepiness
Comfort
Unnerving


 = Gmat ∗




1
14
(Neighbor Dist− 5)
1
3.4

(Radius− 0.7)
1
2
(Pref. Speed− 1.5)

1
1.8

(Group Cohesion− 0.5)




(3)
We fit the matrix Gmat using generalized linear regression

with each of the entitativity features as the responses and
the parameter values as the predictors using the normal
distribution:

Gmat =



−1.7862 −1.0614 −2.1983 −1.7122
1.1224 1.1441 1.7672 −0.2634
−1.0500 −1.2176 −2.1466 −0.9220
1.1948 1.7000 0.9224 0.3622


 .

(4)

We can make many inferences from the values of Gmat.
The negative values in the first and third rows indicate
that as the values of motion model parameters increase, the
friendliness of the group decreases. That is, fast approaching
and cohesive groups appear to be less friendly. This validates
the psychological findings in previous literature [34]. One
interesting thing to note is that creepiness increases when

group cohesion decreases. When robots walk in a less
cohesive group, they appear more creepy but they may appear
less unnerving.

We can use our data-driven entitativity model to predict
perceived entitativity of any group for any new input video.
Given the motion parameter values GP for the group, the
perceived entitativity E can be obtained as:

E = Gmat ∗GP (5)

D. Socially-Invisible Navigation

To provide socially-invisible navigation, we use the enti-
tativity level of robots. We control the entitativity level
depending on the requirements of the social-invisibility. We
represent the social-invisibility as a scalar s ∈ [0, 1] with
s = 0 representing very low social-invisibility and s = 1
representing highly socially-invisible robots. Depending on
the applications and situations, the social-invisibility can be
varied.

We relate the desired social-invisibility (s) to entitativity
features E as follows:

s = 1− ‖E− Emin‖
‖Emax − Emin‖

(6)

where Emax and Emin are the maximum and minimum
entitativity values obtained from the psychology study.

According to Equation 6, there are multiple entitativity
features E for the desired social-invisibility s. This provides
flexibility to choose which features of entitativity we wish
to adjust and we can set the desired entitativity Edes that
provides the desired social-invisibility level. Since Gmat is
invertible (Equation 5), we can compute the motion model
parameters GPdes that achieve the desired entitativity:

GPdes = Gmat
−1 ∗ Edes (7)

These motion model parameters GPdes are the key to
enabling socially-invisible collision-free robot navigation
through a crowd of pedestrians. Our navigation method
is based on Generalized Velocity Obstacles (GVO) [42],
which uses a combination of local and global methods. The
global metric is based on a roadmap of the environment.
The local method computes a new velocity for each robot
and takes these distances into account. Moreover, we also
take into account the dynamic constraints of the robot in
this formulation - for example, mechanical constraints that
prevent the robot from rotating on the spot.

At a given time instant, consider a robot i with posi-
tion pc

roboti
and preferred velocity vpref

roboti
(Figure 6). The

preferred velocity is computed from the global navigation
module of GVO and represents the velocity it would have
for navigating to its goal position in the absence of social
constraints. In each time step, it must choose a velocity
that navigates it closer to its (current) goal while remaining
as socially invisible as permissible. If it were to use the
predicted positions ppred

human of pedestrians to update its
own velocity to vpred

roboti
, it would certainly avoid collisions



Fig. 5: Example robot trajectory navigating through the crowd in the Hotel dataset. Red circles/trajectories represent
current pedestrian positions and blue circles/trajectories are the current positions of the robot. The left figure computes
paths based on only physical constraints (collision-handling, smooth trajectory computation, sensor errors and uncertainty,
and dynamics) at the cost of higher social constraints (zero social invisibility); the middle figure minimizes social constraints
(i.e. entitativity) at the cost of longer paths; the right figure (our algorithm) balances social and physical constraints, and
computes appropriate trajectories for the robot (in blue).

with both pedestrians and scene obstacles, but may fail at
its assigned task. For example, if a robot is tasked with
preventing pedestrians from encroaching on a demarcated
zone, it is not enough to predict their positions in the
upcoming time step and update its own velocity accordingly.
We therefore sacrifice some level of social invisibility by
increasing the entitativity of the robots so as to dynamically
intervene in pedestrian movement. The aim in such a scenario
is to induce pedestrians to walk away from the restricted zone
by presenting them with a more entitative group of robots.
Concretely, we use the motion model parameters GPdes

discussed earlier to compute a goal position ppred+inv
roboti

for the
pedestrian and a new velocity vpred+inv

roboti
for the robot. The

robot velocity vpred
roboti

computed from the nave approach may
lead to pedestrians intruding on restricted zones, whereas the
velocity vpred+inv

roboti
computed from our entitative approach

will prevent this while crucially maintaining a desired level
of social invisibility for the robots.

Fig. 6: To provide socially-invisible navigation, we use the
entitativity level of robots. We control the entitativity level
depending on the requirements of the social-invisibility.

V. APPLICATIONS

We present some driving applications of our work that are
based on use of multi-robot systems for crowd surveil-
lance and control. In these scenarios, our method opti-

mizes multi-robot systems so that they can interact with
such crowds seamlessly based on physical constraints (e.g.
collision avoidance, robot dynamics) and social invisibility.
We simulate our algorithm with two sets of surveillance
scenarios based on the level of increasing social interaction
between the robots and the humans:

1) Active Surveillance: This form of patrolling or surveil-
lance includes autonomous robots that share a physical
space with pedestrians. While performing surveillance and
analysis, these robots will need to plan and navigate in a
collision-free manner in real-time amongst crowds. In this
case, the robots need to predict the behavior and trajectory
of each pedestrian. For example, marathon races tend to
have large populations, with a crowd whose location is
constantly changing. In these scenarios, it is necessary to
have a surveillance system that can detect shifting focal
points and adjust accordingly.

In such scenarios, the robots need to be highly socially-
invisible (s = 0). We achieve this by setting the entitativity
features to the minimum E = Emin (Equation 6).

2) Dynamic intervention: In certain scenarios, robots will
not only share a physical space with people but also influence
pedestrians to change or follow a certain path or behavior.
Such interventions can either be overt, such as forcing people
to change their paths using visual cues or pushing, or subtle
(for example, nudging). This type of surveillance can be
used in any scenario with highly dense crowds, such as a
festival or marathon. High crowd density in these events
can lead to stampedes, which can be very deadly. In such
a scenario, a robot can detect when density has reached
dangerous levels and intervene, or “nudge” individuals until
they are distributed more safely.

For dynamic intervention with pedestrians or robits, we
manually vary the entitativity level depending on urgency
or agent proximity to the restricted area. In these situations,
we restrict the entitativity space by imposing a lower bound



smin on the social-invisibility (Equation 6):

smin ≤ 1− ‖E− Emin‖
‖Emax − Emin‖

. (8)

A. Performance Evaluation

We evaluate the performance of our socially-invisible nav-
igation algorithm with GVO [42], which by itself does
not take into account any social constraints. We compute
the number of times a pedestrian intrudes on a designated
restricted space, and thereby results in issues related to
navigating through a group of pedestrians. We also measure
the additional time that a robot with our algorithm takes
to reach its goal position, without the pedestrians intrud-
ing a predesignated restricted area. Our results (Table III)
demonstrate that in < 30% additional time, robots using our
navigation algorithm can reach their goals while ensuring
that the restricted space is not intruded. Table III also lists
the time taken to compute new trajectories while maintaining
social invisibility. We have implemented our system on a
Windows 10 desktop PC with Intel Xeon E5-1620 v3 with
16 GB of memory.

Dataset Additional Time Intrusions Avoided Performance
NPLC-1 14% 3 3.00E-04 ms
NDLS-2 13% 2 2.74E-04 ms
IITF-1 11% 3 0.72E-04 ms

NDLS-2 17% 4 0.98E-04 ms

TABLE III: Navigation Performance for Dynamic Inter-
vention: A robot using our navigation algorithm can reach
its goal position, while ensuring that any pedestrian does
not intrude the restricted space with < 15% overhead.
We evaluated this performance in a simulated environment,
though the pedestrian trajectories were extracted from the
original video. In all the videos we have manually annotated
a specific area as the restricted space.

We have also applied our algorithm to perform active surveil-
lance (Table IV). The pedestrian density in these crowd
videos varies from low-density (less than 1 robot per square
meter) to medium-density (1-2 robots per square meter), to
high-density (more than 2 robots per square meter).

Dataset Analyzed Input Performance
Pedestrians Frames

IITF-1 15 450 2.70E-04 ms
IITF-3 27 238 7.90E-04 ms
IITF-5 25 450 8.30E-04 ms
NPLC-1 17 238 3.80E-04 ms
NPLC-3 42 450 1.80E-04 ms
NDLS-2 38 238 1.90E-04 ms
Manko 16 373 1.01E-03 ms
Marathon 27 450 9.10E-04 ms
Explosion 28 238 5.80E-04 ms
Street 67 9014 1.0E-05 ms

TABLE IV: Navigation Performance for Active Surveil-
lance: Performance of our entitativity computation on dif-
ferent crowd videos for performing active surveillance. We
highlight the number of video frames used for extracted
trajectories, and the running time (in milliseconds).

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Drawing from work in social psychology, we develop a
novel algorithm to minimize entitativity and thus maxi-
mize the social invisibility of multi-robot systems within
pedestrian crowds. A user-study confirms that different en-
titativity profiles–as given by appearance, trajectory and
spatial distance–are tied to different emotional reactions,
with high entitativity groups evoking negative emotions in
participants. We then use trajectory information from low-
entitative groups to develop a real-time navigation algorithm
that should enhance social invisibility for multi-robot sys-
tems.

Our approach has some limitations. Although we did gen-
eralize across a number of environmental contexts, we note
that motion-based entitativity is not the only feature involved
in social salience and other judgments. People use a rich set
of cues when forming impressions and emotionally reacting
to social agents, including perceptions of race, class, religion,
and gender. As our algorithm only uses motion trajectories,
it does not exhaustively capture all relevant social features.
However, motion trajectories are an important low-level fea-
ture of entitativity and one that applies especially to robots,
who may lack these higher-level social characteristics.

Future research should extend this algorithm to model the
appearances of robots in multi-robot systems. Although many
social cues may not be relevant to robots (e.g., race), the
appearance of robots can be manipulated. Research suggests
that robots that march will have higher entitativity and hence
more social visibility. This may prove a challenge to manu-
facturers of surveillance robots, as mass production typically
leads to identical appearances. Another key future direc-
tion involves examining the interaction of the perceiver’s
personality with the characteristics of multi-robot systems,
as some people may be less likely to react negatively to
entitative groups of robots, perhaps because they are less
sensitive to general threat cues or, more specifically, have
more experience with robots.
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