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Kitting in the Wild through Online Domain Adaptation

Massimiliano Mancini?1,2, Hakan Karaoguz?3, Elisa Ricci2,4, Patric Jensfelt3, Barbara Caputo1,5

Abstract— Technological developments call for increasing
perception and action capabilities of robots. Among other
skills, vision systems that can adapt to any possible change
in the working conditions are needed. Since these conditions
are unpredictable, we need benchmarks which allow to assess
the generalization and robustness capabilities of our visual
recognition algorithms. In this work we focus on robotic kitting
in unconstrained scenarios. As a first contribution, we present
a new visual dataset for the kitting task. Differently from
standard object recognition datasets, we provide images of
the same objects acquired under various conditions where
camera, illumination and background are changed. This novel
dataset allows for testing the robustness of robot visual recog-
nition algorithms to a series of different domain shifts both
in isolation and unified. Our second contribution is a novel
online adaptation algorithm for deep models, based on batch-
normalization layers, which allows to continuously adapt a
model to the current working conditions. Differently from
standard domain adaptation algorithms, it does not require any
image from the target domain at training time. We benchmark
the performance of the algorithm on the proposed dataset,
showing its capability to fill the gap between the performances
of a standard architecture and its counterpart adapted offline
to the given target domain.

I. INTRODUCTION

Robot technology is already an integral part of the man-
ufacturing industry. Robots are currently being used in va-
riety of tasks such as machine loading, part inspection, bin
picking, kitting, and assembly. In this work, we consider the
task of kitting which is the process of grouping related parts
such as gathering components of a personal computer (PC)
into one bin for assembly [1]. The kitting task requires the
recognition of the parts in the environment, the ability to pick
objects from the bins and placing them at the correct location
[2]. All of these subtasks are very challenging on their own
but the recognition of the parts is crucial for the robot to
sequentially perform the other subtasks. Already in today’s
factory settings, object recognition tasks possess challenges
such as environmental effects (illumination, viewpoint, etc),
varying object material properties and cluttered scenes [3].
In order to simplify the recognition task, some approaches
use machine vision in rather isolated settings for decreasing
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Fig. 1: Our approach for performing kitting in arbitrary
conditions. Given a training set. we can train a robot vision
model offline. As the robot performs the task, we gradually
adapt the visual model to the current working conditions, in
an online fashion and without requiring target data during
the offline training phase.

the environmental variability [4]. Liu et. al [3] proposed
a specially designed camera system and estimation based
on 3D CAD models to robustly detect and verify the type
and the pose of the object. Kaiba et. al. [5] proposed an
interactive method where a remote human operator resolves
ambiguities in the perception system. Unfortunately, none of
the above methods are generic enough to be applied in a
truly unconstrained setting. In this paper we are primarily
concerned with solving the object recognition problem for
kitting using vision in the wild, i.e. in non-isolated settings
exhibiting large variations. Right now, most of the robots in
manufacturing industry are operating in isolation, primarily
because of safety concerns. However, many future scenarios
have robots and humans working closer together, moving
robots into new areas of applications, beyond mass produc-
tion and preprogrammed behavior. For this to happen, not
only safety, but perception will be a major challenge.

In the last years deep neural networks [6] have become
the new dominant learning paradigm in visual recognition,
establishing the new state of the art in various visual
tasks such as object classification [7] and object detection
[8]. Similarly deep architectures have been applied on real
robots [9], [10], leading to significant improvements on a
variety of robot vision tasks [11], [12], [13]. One known
challenge with DNNs is that they are data hungry. This is
particularly problematic for robotic scenarios where the data
collection process can be costly or even unfeasible, thus the
amount of training data is limited. Some authors proposed to
overcome this issue by leveraging over synthetic data [14],
but while this approach seems promising for depth data,



it is questionable if it will work on RGB images. Domain
Adaptation (DA, [15]) attempts to circumvent this issue by
adapting a model from a given domain for which sufficient
training data is available, denoted as source domain, to a
domain for which few or no labeled data are available, called
the target domain. Despite the remarkable performances
achieved by DA algorithms in computer vision [16], [17],
and their growing popularity in robot vision [18] they require
the presence of images from the target domain in advance
during training. This is a huge limitation due to the likely
unpredictable conditions of the environment in which a robot
is employed.

This paper attempts to advance the state of the art in
kitting in realistic deployments with two contributions. First,
we propose a novel kitting dataset which contains images
of objects taken under varying illumination, viewpoint and
background conditions from a robotic platform. This dataset,
that upon acceptance of the paper will be made publicly
available through a dedicated website, provides the commu-
nity with a novel tool for studying the robustness of robot
vision algorithms to drastic changes in the appearance of
the input images, and assess progress in the field. We are
not aware of existing, publicly available kitting databases
covering this range of visual variability.

Second, we propose a novel approach for achieving online
adaptation of a deep model. Differently from classical DA
approaches, our algorithm can adapt a deep model to any
target domain on the fly, without requiring any target domain
data before-hand. We benchmark the performance of our
algorithm on the presented dataset, showing how this model
is able to produce large improvements on the target domain
performances compared to the base architecture trained on
the source domain, and matching what would be achieved
by having all data from the target available beforehand.

The outline for the rest of the paper is as follows. In Sec-
tion II-B we give an overview of related work. In Section III
we present the new dataset, describing the collection process
and the data contained. Section IV describes our online DA
method and Section V presents the result of our evaluation.
Finally, Section VI gives conclusions and outlines avenues
for future research.

II. RELATED WORK

A. Kitting task

Robotic kitting and bin picking are similar and well known
problems. Several methods have been proposed to solve
these problems by either using specialized setups [3], high-
level frameworks [2], [4] or using human-robot collaboration
[1], [5]. Liu et al. in [3] use a customized camera for
extracting edges of the objects in a bin and then using shape-
matching to detect objects and estimating their poses. The
proposed algorithm is computationally efficient so that it can
be deployed in real robot scenario. Holz et al. in [2] propose a
high-level framework that is composed of individual modules
such as object detection, planning etc. to automatically
perform kitting task in real world scenarios. Similarly in [4]
a high-level framework that combines virtual and real setups

is proposed. Virtual setup helps to optimize the actual system
without any risk of collisions. Therefore the real system can
be setup in more economical way with less number of actual
trials. Banerjee et al. in [1] employ human-robot interaction
for performing the kitting task. They first present a common
ontology for representing all the required subtasks for kitting.
Then these subtasks are optimally partitioned between the
robots and humans to complete the whole task faster and
with less failures. Kaipa et al. in [5] present a method where
a remote human operator assists the robot for selecting the
object when the automated perception system fails.

B. Online Domain Adaptation

Recent years have witnessed great advances in domain
adaptation both in computer [19], [17], [16] and robot vision
[18], [12], [20]. Adapting a model from one domain to
another requires to bridge the gap between the two different
distributions generating the data of different domains. In deep
learning architectures this is usually achieved by minimizing
the difference between the features produced by images
of different domains, e.g. through domain confusion losses
or by minimizing discrepancy measures [19], [21], [22].
Recently, it has been shown how batch-normalization (BN)
layers [23] can be employed to match the source and target
data distributions by applying different BN layers for each
domain [16], [24], [17]. Our method develops from this last
research trend, with BN statistics adapted to the images of the
experienced novel domain. Differently from [16], [24], [17]
it does not require any target domain data during training.

We would like to remark that, despite its simplicity, our
approach is the first deep domain adaptation method that
operates in an online setting, without requiring any prior
about the target domain.

Another related research trend is domain generalization
(DG). DG frameworks [25], [20] aim at generalizing a model
from multiple, given, source domains, to any target domain,
with no data of the target domain available at training time.
Differently from these techniques, we assume to have only
one source domain during training, without the need of
multiple data acquisition and labeling processes.

III. KTH HANDTOOL DATASET

Fig. 2: The 2-arm stationary robot platform.



The KTH Handtool Dataset1 is collected for evaluating
the object recognition/detection performance of robot vision
methods in varying viewpoint, illumination and background
settings, all crucial abilities for robot kitting in unconstrained,
real-world settings. Instead of having general household
objects, the dataset consists of hand tools in order to rep-
resent a workshop setting in a factory. It consists of 9
different hand tools for 3 different categories; hammer, plier
and screwdriver. The images are collected with a 2-arm
stationary robot platform shown in Fig. 2. Dataset consists
of 3 different illuminations, 2 different cameras (One Kinect
camera and one webcam) with different viewpoints and 2
different background settings that correspond to 12 (3x3x2)
domains in total. For each hand tool, approximately 40
images with different poses are collected for each camera
and domain setting. Table I shows example images from
different domains. In total, approximately 4500 RGB images
are available in the dataset.

IV. ONLINE DOMAIN ADAPTATION

In this section we present our strategy for performing
online domain adaptation by exploiting Batch Normalization
(BN) [23]. After giving a formal definition of Domain
Adaptation (section IV-A), we recall the basic principles
of BN and discuss how it can be exploited into a neural
architecture for reducing the domain shift (section IV-B).
Then, we describe our approach for online adaptation of a
deep model to novel domains (section IV-C).

A. Domain Adaptation

Suppose we collected a set of images using a robotic
platform with the aim of training a robot vision model
with it. Since the image collection has been acquired in the
real world, the resulting model will be biased towards the
particular conditions (e.g. illumination, environmental) under
which the images have been acquired. Because of this, if we
employ such a system and the current working conditions are
different from those of the training set, the performances of
the model will degrade due to the presence of a substantial
shift between the training and test data. In this situation, to
increase the generalization capabilities of the robot we can
remove the acquisition bias either by collecting more training
data in a large variety of conditions, which is extremely
expensive, or by developing algorithms able to bridge the
gap between the training and test data, aligning the original
model to the novel scenario. The latter is the goal of domain
adaptation.

Formally, we assume to have a source domain S =
{Isi , ysi }Ni=1, where Isi is an image and ysi ∈ {1, · · · , C} the
associated semantic label. Together with the domain S, at
training time we assume to have collected a set of images,
even unlabeled, of our target domain T = {It1, · · · , ItM}.
The aim of DA algorithms is to build a deep model fθ, with
θ denoting the network parameters, able to correctly classify
images of the target domain T by exploiting the labeled data

1https://www.nada.kth.se/cas/data/handtool/
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Fig. 3: The statistics of the BN layers are initialized offline,
by training the network on the images of the source domain.
At deployment time, the input frames are processed using
the global estimate of the statistics (red lines). However the
robot collects each nt input frames to compute partial BN
statistics, using these estimated values to gradually update
the BN statistics for the current scenario.

provided for S. In the standard scenario, the set of semantic
labels is shared between S and T .

As discussed in section II-B, one of the most successful
stream of recent works has addressed DA through BN. Next
section summarizes this approach, that will give us the
fundamental tools for our ONline DA (ONDA) algorithm.

B. Domain Adaptation with Batch Normalization

BN [23] is a common strategy for avoiding internal
covariate shift within deep learning architectures. It works by
normalizing the input features to a fixed, target distribution,
i.e. a standard Gaussian distribution. Formally, let us denote
with xl,k the activations of the kth channel of a layer
l. In order to perform the normalization, the BN layer
requires to compute the mean µl,kX and standard deviation
σl,kX over the training set X for the activations xl,k. Since
the formulation is layer and channel independent, in the
following we will remove the superscript l, k for sake of
clarity. The normalization is performed as follows:

x̂ = γ
x− µX√
σ2
X + ε

+ β , (1)

where γ is a scale factor and β is a bias term, while ε is a
constant introduced for numerical stability.

Since the optimization of the network is usually performed
using mini-batches, the statistics of a mini-batch are used as
a local estimate of the true BN statistics {µX , σ2

X }. Given
a batch B with nb samples, the approximate statistics are
computed as:

µB =
1

nb

nb∑
i=1

xi σ2
B =

1

nb

nb∑
i=1

(xi − µB)2

where xi denotes the activations of the ith sample in the
mini-batch. The above statistics are exploited to progres-
sively update the global estimate {µX , σ2

X }.
Recent works [16], [24], [17] have shown how BN layers

can be exploited to perform domain adaptation in a tradi-
tional batch setting. The main idea behind these works is
to create a deep architecture with two parallel branches,



TABLE I: Example Images from KTH Handtool Dataset

Camera Type Illumination
Artificial Cloudy Directed

Kinect

Webcam

one for the source and the other for the target domain. The
two branches share the same parameters but embed different
domain-specific BN layers. These layers compute different
statistics for the source and the target domains, resulting
into domain-specific normalizations. In other words, the
domain-specific BN layers allow the distributions of features
of different domains to be aligned to the same reference
distribution, achieving the desired domain adaptation effect.

C. ONDA: ONline Domain Adaptation

In this paper we adopt the same idea proposed in [16],
[24], [17] but we consider an online setting. Instead of having
a fixed target set available during training, we propose to
exploit the stream of data acquired while the robot is acting
in the environment and continuously update the BN statistics.
In this way, we can gradually adapt the deep network to a
novel scenario.

Formally, we consider a different scenario with respect
to standard DA algorithms. Opposite to traditional domain
adaptation in a batch setting, during training we have only
access to the source domain S and we do not have any data
or prior information about the target domain T , apart from
the set of semantic labels which is assumed to be shared.
When the robot is active, the current working conditions
will compose the target domain and we will have access
to the automatically acquired sequence of images T =
{It1, · · · , ItT }. In this scenario, in order to adapt the network
parameters θ to this novel domain, we must exploit the
incoming test images collected by the robot on the fly.

If the network contains BN layers, following the idea
of previous works [16], [24], [17], we can perform the
adaptation by simply updating the BN statistics with the
incoming images of the novel domain. Specifically, we start
by training the network on the source domain S, initializing
the BN statistics at time t = 0 as {µ0, σ

2
0} = {µS , σ2

S}.
Assuming that the set of network parameters θ are shared
between the source and target domain except for the BN
statistics, we can adapt the network classifier fθ by updating
the BN statistics with the estimates computed from the
sequence T . Defining as nt the number of target images
to use for updating online the BN statistics, we can compute

a partial estimate {µ̂t, σ̂2
t } of the BN statistics as:

µ̂t =
1

nt

nt∑
i=1

xi σ̂t
2 =

1

nt

nt∑
i=1

(xi − µ̂t)2

The global statistics at time t can be updated as follows:

σ2
t = (1− α)σ2

t−1 + α
nt

nt − 1
σ̂2
t

µt = (1− α)µt−1 + αµ̂t

where α is the hyper-parameter regulating the decay of the
moving average.

The above formulation achieves a similar adaptation effect
of the methods [16], [24], [17] but with three main advan-
tages. First, no samples of the target domain, neither labeled
nor unlabeled, are used during training. Thus, no further
data acquisition and annotation efforts are required. Second,
since we do not exploit target data for training, contrary to
standard DA algorithms, we have no bias towards a particular
target domain. Third, since the adaptation process is online,
the model can adapt itself to multiple sequential changes
of the working conditions, being able to tackle unexpected
environmental variations (e.g. sudden illumination changes).

The reader might wonder if other possible choices may
be considered for initializing {µ0, σ

2
0}, such as exploiting

a first calibration phase where the robot collects images of
the target domain in order to produce a first estimate of the
BN statistics. Here we choose to use the statistics estimated
on the source domain because 1) we want a model ready to
be employed, without requiring any additional preparation
at test time; 2) the robot may occur in multiple domains
during employment and if a shift occurs (e.g. illumination
condition changes) our method will automatically adapt the
visual model to the novel domain starting from the current
estimated statistics: initializing {µ0, σ

2
0} = {µS , σ2

S} allows
to check the performance of the algorithm even for multiple
sequential shifts and long-term applications. Obviously our
method can benefit from a calibration phase or initializations
of the statistics closer to the target working conditions: we
plan to analyze these aspects in future works.



V. EXPERIMENTS

A. Networks and training protocols

We perform our experiments with the AlexNet [6] archi-
tecture pre-trained on ImageNet [26]. We train 3 additional
models: a variant of AlexNet with BN, the DA architecture
DIAL from [24] and our ONline DA model (ONDA). Fol-
lowing [24], we add BN layers or its variants after each
fully-connected layer. Both the standard AlexNet, AlexNet
with BN and DIAL are trained with a batch-size of 128. We
implemented [24] by splitting the batch-size between images
of source and target domain proportionally to the number
of images for each set, as in [24], without employing the
entropy-loss for target images [24], [17]. We highlight that
DIAL is our upper-bound in this case, since it shares the
same philosophy of ONDA but with the assumption that
images of the target domain are available at training time.

As preprocessing, we rescale all the images in order to
ensure a shortest side of 256 pixels, preserving the aspect
ratio and subtracting the mean value per channel computed
over the ImageNet database. As input to the network we use
a random crop of 227×227 at training time, employing a
central crop with the same dimensions during test. No ad-
ditional data augmentation is performed. For all the variants
of the architecture, we fine-tune the last layers for 30 epochs
with an initial learning rate of 0.001 for fc6, fc7 and of
0.01 for the classifier, with a weight decay of 0.0005 and
momentum 0.9. The initial learning rates are scaled by a
factor of 0.1 after 25 epochs.

In order to apply our method, we start from the weights of
AlexNet with BN, training on the given source domain. Then,
we perform one iteration over the target domain, without
updating any parameter other than the BN statistics. As a
trade-off between stability of the statistics and fastness of
adaptation we set nt = 10 and α = 0.1. We will detail the
impact of these choices in the following sections.

In all the experiments, we consider the task of object
recognition in the fine-grained setting, with all the 9 classes
considered as classification objective. We report the average
accuracy between 5 runs, shuffling the order of the input
images in each run of our model.

B. Domain Adaptation results

In this subsection, we will present the results of our
algorithm. In order to analyze the particular effect that each
possible change may have to the adaptation capabilities of
our model, we isolate the sources of shift. To this extent,
we consider two sample starting source domains: in the
first case (Figure 4a), the acquisition conditions are artificial
light, Kinect camera and white background; in the second
case we consider cloudy illumination, webcam and brown
background (Figure 4b). From these source domains we start
by changing only one of the acquisition conditions (left
part of the figures) and gradually increasing the number
of changes to 2 and 3 conditions (middle and right parts
respectively). We report the results for our model after 25%,
50% and 90% of the target data processed.

As the figures show, our model is able to fill the gap
between the BN baseline (red bars) and the DA upper bound
DIAL (green bars) in almost all settings. Only in few cases,
where the shift between the performances of BN and DIAL is
lower, this does not happen (i.e. Figure 4a, target artificial-
Kinect-brown and directed-Kinect-White). In all the other
settings the gains are remarkable: considering both figures,
the average difference between the performance of BN and
ONDA-90 are of 15%, 18% and 20% for the single, double
and triple shift cases respectively. We stress that the gain
increases with the amount of shift between the source and
target domains, underlying the importance of applying DA
adaptation methods in changing environments. As expected,
the statistics computed in the first stages (i.e. ONDA-25)
are not always sufficiently representative of the true estimate
since they may be still biased by the statistics computed
over the source domain. However the estimate becomes
more precise as more images of the target domain are
processed (i.e. ONDA-50 and ONDA-90), gradually covering
the gap with the estimate computed by DIAL. The fastness
of adaptation and the quality of the estimates depend on the
two hyper-parameters α and nt. In the next subsection we
will analyze their impact to the final performances of the
algorithm.

C. Ablation study

In this subsection we analyze the impact of the two hyper-
parameters, the update frequency nt and the decay α, on
the number of images needed by ONDA to estimate the
statistics for the target domain. We use a sample scenario
of Figure 4b, where cloudy illumination, webcam camera
and brown background are the source domain conditions and
artificial light, Kinect camera and white background are the
target domain ones. In the first experiment, we fix nt to
10, varying the value of α. We start by a single pre-trained
model of AlexNet with BN repeating the experiments for 5
runs, shuffling the order of the input data, and reporting the
average accuracy for each update step.

Results are shown in Figure 5: increasing the value of
α to 0.2 (green line) or 0.5 (black line) allows the model
to achieve a faster adaptation to the target conditions, with
the drawback of a noisier estimation of the statistics. Thus,
increasing α leads to an unstable convergence of the per-
formance. On the other hand, choosing too low values of α
(e.g. 0.05 or 0.01, purple and gold lines respectively) allows a
more stable convergence of the model, but with the drawback
of slower adaptation to the novel conditions.

Regarding the hyper-parameter nt, we follow the same
protocol of the first experiment, fixing α to 0.1 and varying
the number of images collected before updating the statistics,
nt, reporting how the accuracy changes with respect to the
number of frames processed. As Figure 6 shows, low values
of nt (e.g. nt = 2) allows a faster adaptation, due to
the higher update frequency, but at the price of a noisier
estimation of the statistics, which is harmful to the final
accuracy achieved by the model. At the same time, high
values of nt (e.g. 20, 30) allow for a more precise estimate of



(a) Source Domain: Artificial light, Kinect camera and White background

(b) Source Domain: Cloudy light, Webcam camera and Brown background

Fig. 4: Experiments on isolated shifts. The labels of the x-axes denote the conditions of target domain, with the first line
indicating the light condition, the second the camera and the third the background. We underlined the changes between the
source and target domains.

Fig. 5: Accuracy vs number of updates of ONDA for
different values of α fixing nt = 10 in a sample scenario.
The red line denotes the BN lower bound of the starting
model, while the yellow line the DIAL upper bound.

the statistics, highlighted by the smoothness of the respective
lines in the graph, with the drawback of a lower speed of
adaptation to the novel domain, caused by the lower update
frequency.

The speed of adaptation and the final quality of the BN
statistics is obviously a consequence of the values chosen
for both hyper-parameters. Obviously α and nt are not
independent from each other: for a lower nt a lower α should
be selected in order to preserve the final performance of the
algorithm and conversely for a higher nt, a higher α will
allow a faster adaptation of the model. As a trade-off between
fast adaptation and good results, we found experimentally
that choosing nt = {5, 10, 20} and α = {0.05, 0.1} worked
well for both short and long term experiments.

3
Fig. 6: Accuracy vs number of frames processed of ONDA
for different values of nt fixing α = 0.1 in a sample scenario.
The red line denotes the BN lower bound of the starting
model, while the yellow line the DIAL upper bound.

VI. CONCLUSIONS

In this work, we presented a novel dataset for addressing
the kitting task in robotics. The dataset takes into account
multiple variations of acquisition conditions such as cam-
era, illumination and background changes which may occur
during the robot employment. This dataset is intended for
testing the robustness of robot vision algorithms to changing
environments, providing a novel benchmark for assessing the
robustness of robot vision systems.

Together with the dataset, we proposed an algorithm which
is able to perform online adaptation of deep models to unseen
scenario. The algorithm, based on the update of the statistics
of batch-normalization layers, is able to continuously adapt
the model to the current environmental conditions of the



robot, providing more robustness to unexpected working
conditions. Experiments on the newly proposed dataset,
confirm the ability of our algorithm to fill the gap between
a standard architecture and its domain adapted counterpart
without requiring any additional target data during training.

As future works, we plan to enlarge the dataset, including
more source of variations and more objects. We further
plan to provide a deeper analysis of our algorithm with
more architectures, as well as exploring possible extensions
which could exploit knowledge coming from previously met
scenarios.
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