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Abstract— Behavior Trees (BTs) are becoming a popular tool
to model the behaviors of autonomous agents in the computer
game and the robotics industry. One of the key advantages of
BTs lies in their composability, where complex behaviors can
be built by composing simpler ones. The parallel composition
is the one with the highest potential since the complexity of
composing pre-existing behaviors in parallel is much lower than
the one needed using classical control architectures as finite
state machines. However, the parallel composition is rarely used
due to the underlying concurrency problems that are similar
to the ones faced in concurrent programming.

In this paper, we define two synchronization techniques to
tackle the concurrency problems in BTs compositions and we
show how to exploit them to improve behavior predictability.
Also, we introduce measures to assess execution performance,
and we show how the design choices can affect them.

To illustrate the proposed framework, we provide a set of
experiments using the R1 robot and we gather statistically-
significant data.

I. INTRODUCTION

Modeling robot’s behaviors using Behavior Trees (BTs) is
becoming an appreciated practice. Applications span from
manipulation [1], [2] to non-expert programming [3]–[5].
Other works include task planning [6], learning [7]–[9], and
UAV systems [10], [11]. Using BTs, the designer creates
robots behaviors by composing together actions and con-
dition in a hierarchical fashion. There are different ways to
create such compositions, each with its own semantic. A very
powerful composition is the parallel one, where the designer
can easily encode the concurrent execution of several sub-
behaviors. Unfortunately, the parallel composition is the
least used composition due to its underlying concurrency
problems [12]–[14].

In this paper, we show how recent advances in BT compo-
sitions allow extending the use of BTs to those applications
that either requires synchronized concurrent actions or pre-
dictable execution times.

The choice of using BTs to model robot behaviors is
often driven by the fact that BTs are modular, flexible,
and reusable [12]. Moreover, they have also been shown
to generalize successful robot control architectures such as
the Subsumption Architecture [15] and the Teleo-Reactive
Paradigm [12]. Using BTs, the designer can compose simple
behaviors using the so-called control flow nodes. The most
common control flow nodes, which will be described in
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this paper, are Sequence, Fallback, and Parallel. The parallel
execution of independent behaviors can arise several concur-
rency problems in any modeling language and BTs are no
exception. However, the parallel composition of BTs is less
sensitive to dimensionality problems than a classical finite
state machine [12].

Real robots often require to execute behaviors concur-
rently, for efficiency or constraints satisfaction, as we will
show in this paper. The presence of concurrent behaviors
requires to face the same issues affecting concurrent pro-
gramming. The solutions adopted in concurrent program-
ming made a tremendous impact on software development,
increasing their applicability and performance to the scale
that it is now a common practice in modern software.

Another issue faced in computer programming is pre-
dictability. Predictability is required in applications with
safety-critical constraints. Similarly, we desire robots with
predictable behaviors, especially at the developing stage,
where actions may run with a different speed in the real
world and in a simulation environment. Increasing pre-
dictability reduces the difference between simulated and real-
world robots execution.

Concurrent behaviors are also well studied in the Human-
Robot Interaction (HRI) community, where they show evi-
dence of more “believable” robots’ behaviors in the presence
of coordinated movements [16] (e.g. the robot moves the
arm to point at an object while moving the head to look
at it.), coordinated robots and human movements [17], and
coordinated gestures and diaogues [18].

In our recent work [13], we partially addressed the afore-
mentioned issues by defining Concurrent BTs, where nodes
expose information regarding progress and resource used and
allow actions to have progress that depends on each other. In
this paper, we extend our previous work by discriminating
between absolute and relative synchronization techniques and
show how we can exploit such synchronizations to improve
behavior predictability. In addition, we introduce measures to
assess execution performance and show how design choices
affect them.

The remainder of this paper is structured as follows: In
Section II we overview the related work. In Section III we
present the background. Then, in Section IV, we formulate
two different synchronization techniques to coordinate ac-
tions and increase behavior predictability. In Section V we
show the proposed performance measure and analyze their
dependency on design choices. In Section VI, we provide
an experimental evaluation with different use cases. We
conclude the paper in Section VII.
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II. RELATED WORK

The parallel composition has found relatively little use,
compared to the other compositions, due to the intrinsic con-
currency issues similar to the ones of computer programming
such as race conditions and deadlocks. Current applications
that make use of the parallel composition assume either
that the BTs executed in parallel lie on orthogonal state
spaces [1], [19] or the that BTs executed in parallel have a
predefined priority assigned [20] where, in conflict situations,
it is executed only the BT with the highest priority. Other
applications impose a mutual exclusion of actions in BTs that
are executed in parallel if they have potential conflicts (e.g.
sending commands to the same actuator) [12] or they assume
that BTs that are executed in parallel are not in conflict by
design.

The parallel composition found large use in the BT-based
task planner A Behavior Language (ABL) [21] and in its
further developments. ABL was originally designed for the
game Façade, and it has received attention for its ability to
handle planning and acting at different deliberation layers, in
particular, in Real-Time Strategy games [20]. ABL executes
sub-BTs in parallel and resolves conflicts between multiple
concurrent actions by defining a fixed priority order. This
solution threatens the reusability and modularity of BTs and
introduces the risk of starvation (i.e. the execution of an
action with low priority may be perpetually denied to execute
an action with higher priority).

The parallel composition found use also in multi-robot
applications [22] where a single robot BT is extended to
a so-called multi-robot BT, resulting in improved fault tol-
erance and other performances. The parallel node involves
multiple robots, each assigned to a specific task using a
task-assignment algorithm. The task-assignment algorithm
ensures the absence of conflicts.

None of the work above addressed properly the synchro-
nization issues that arise when using a parallel BT node.

A recent work [14] proposed BTs for executing actions
in parallel, even when they lie on the same state space (e.g.
they use the same robot arm). The coordination mechanism
is conducted by activating and deactivating motion primitives
based on their conditions. Such framework avoids that more
actions access a critical resource concurrently. In our work,
we are interested in synchronizing the progress of actions
that can be executed concurrently.

In our recent work [13], we address the aforementioned
issue by defining BT nodes that expose information regarding
progress and resource uses. We also defined a relative
synchronized parallel BT node execution and we provided
theoretical validation of the proposed nodes. In this paper,
we extend our previous work by defining absolute relative
synchronization and we define and study their performance.

To conclude, there is currently no work in exploiting and
analyzing the performance of the synchronized parallel node.
This makes our paper fundamentally different than the ones
presented above and the BT literature.

III. BACKGROUND

In this section, we briefly present the classical formulation
of BTs and we introduce the concepts for synchronization
barriers and predictability. A more detailed description of
BTs is available in [12] while a more detailed description of
concurrent programming is available in [23].

A. Behavior Trees

A BT is a graphical modeling language used as a repre-
sentation for actions orchestration. A BT is as a directed
rooted tree where the internal nodes represent behavior
compositions and leaf nodes represent actuation or sensing
operations.

The children of a BT node are placed below it, as in
Figure 5(a), and they are executed in the order from left
to right. The execution of a BT begins from the root node.
It sends ticks, which are activation signals, with a given
frequency to its children. A node in the tree is executed
if and only if it receives ticks. When the node no longer
receives ticks, its execution is aborted. The child returns to
the parent a status, which can be either Success, Running, or
Failure according to the node’s logic. Below we present the
most common BT nodes and their logic.

Fallback: When a Fallback node receives ticks, it sends
ticks to its own children in order from the left. It returns a
status of Success or Running whenever it finds a child that
returns Success or Running respectively. It returns Failure
whenever all the children return Failure. When a child returns
Running or Success, the Fallback node does not send ticks
to the next child (if any). The Fallback node is represented
by a square with the label “?”, as in Figure 5(a).

Sequence: When a Sequence node receives ticks, it
sends ticks to its own children in order from the left. It
returns Failure or Running whenever it finds a child that
returns Failure or Running respectively. It returns Success
whenever all the children return Success. When a child
returns Running or Failure, the Sequence node does not
send ticks to the next child (if any). The Sequence node
is graphically represented by a square with the label “→”,
as in Figure 5(a).

Parallel: The Parallel node sends ticks to all its chil-
dren. It returns Success if all children return Success, it
returns Failure if at least one child returns Failure, and it
returns Running otherwise. The parallel node is graphically
represented by a square with the label “⇒”.

Action: Whenever an Action node receives ticks, it
performs some operations. It returns Success whenever the
operations are completed and Failure if the operations cannot
be completed. It returns Running otherwise. When a running
Action no longer receives ticks, its execution is aborted. An
Action node is graphically represented by a rectangle, as in
Figure 5(a).

Condition: Whenever a Condition node receives ticks, it
checks if a proposition is satisfied or not. It returns Success or
Failure accordingly. A Condition is graphically represented
by an ellipse as in Figure 5(a).



The state-space formulation of BTs [12] was defined to
study them from a mathematical standpoint. In that formula-
tion, the tick is represented by a recursive function call that
includes both the return status, the system dynamics, and the
system state. This formulation allows us to define concepts
of progress and safeguarding BTs, used in this paper.

Definition 1 (Behavior Tree [12]): A BT is a three-tuple

Ti = {fi, ri,∆t}, (1)

where i ∈ N is the index of the tree, fi : Rn → Rn is the
right hand side of a difference equation, ∆t is a time step
and ri is the return status that can be equal to either Running,
Success, or Failure. Finally, let xk = x(tk) be the system
state at time tk, then the execution of a BT Ti is described
by the following equations:

xk+1 = fi(xk), (2)
tk+1 = tk + ∆t. (3)

Definition 2 (Progress Function [13]): The function p :
Rn → [0, 1] is the progress function. It indicates the progress
of the BT’s execution at each state.

Definition 3 (Safeguarding [12]): A BT is Safeguarding,
with respect to the step length d, the obstacle region O ⊂ Rn,
and the initialization region I ⊂ R, if it is safe, and finite
time successful with region of attraction R′ ⊃ I [12] and a
success region S such that I surrounds S in the following
sense:

{x ∈ Rn : inf
s∈S1

||x− s|| ≤ d} ⊂ I. (4)

B. Concurrent Programming

Concurrent programming deals with the execution of sev-
eral concurrent processes that need to be synchronized to
achieve a task or simply to avoid being in conflict with
one another. The main uses of synchronization are producer-
consumer relationship, where a consumer process has to wait
until a producer provides the necessary data, and exclusive
use of resources, where multiple processes have to use
or access a critical resource and a correct synchronization
strategy ensures that only one process at a time can access
the resource [23]. The use of barriers is one popular way
to implement correct synchronization strategies [23]. The use
of barriers allows concurrent processes to wait for each other
at a specific point of execution.

C. Predictability

Predictability represents the ability to ensure the execu-
tion of an application without concern that outside factors
will affect it in unpredictable ways. In other words, the
application will behave as intended in terms of functionality,
performance, and response time.

Predictability is highly appreciated in real-time systems. A
real-time system must behave in a way that can be predicted
in time to estimate the likelihood that a task can be completed
before a given deadline.

Algorithm 1: Pseudocode of an absolute synchronized
parallel node with N children.

1 Function Tick()
2 for i← 1 to N do
3 minProgress ← min(minProgress, pi)

4 for b ∈ B do
5 if b >minProgress then
6 current-barrier ← b
7 break

8 forall i← 1 to N do
9 if pi ≤ current-barrier then

10 childStatus[i] ← child(i).Tick()

11 if Σi:childStatus[i]=Success1 = N then
12 return Success
13 else if Σi:childStatus[i]=Failure1 > 0 then
14 return Failure

15 return Running

IV. PARALLEL SYNCHRONIZATION OF BT

In this section, we present the first contribution of this
paper. We extend our previous work on parallel synchro-
nization of BTs [13] by introducing absolute and relative
synchronized parallel nodes and we show how they can
be used to synchronize actions with both durative (with
a given duration and progress) and perpetual (without a
given duration and progress) actions. Moreover, we show
how to use these synchronization techniques to improve the
predictability of the progress of a BT.

A. Absolute Synchronized Parallel Node

Absolute synchronization is achieved by setting, a-priori,
a finite ordered set B of values for the progress. These
values are used as barriers at the task level (see Section III-
B). Whenever a node in this parallel composition has the
progress equal to or greater than a progress barrier in B it no
longer receives ticks until all the other nodes of the parallel
composition have the progress equal to or greater than the
value of that the barrier.

Algorithm 1 shows the pseudocode of the absolute syn-
chronized parallel node. At each tick, the node first assesses
the minimum progress of its children (Lines 2-3), then it
finds, among the predefined barriers contained in B, the cur-
rent barrier (i.e. the barrier of smaller value that the progress
of at least one child has not reached) (Lines 4-7). Then it
sends ticks only to those actions whose progress did not
exceed the value of the current barrier (Lines 8-10). Finally,
it computes its return status (Lines 11-15). The absolute
synchronized parallel node is graphically represented by a
square with the label “⇒A”.

We now present a use case example for the absolute
synchronized parallel node.

Example 1 (Door Pulling): A humanoid robot has to pull
a door open. This task requires the synchronization of two



Algorithm 2: Pseudocode of a relative synchronized
parallel node with N children.

1 Function Tick()
2 minProgress ← 1
3 for i← 1 to N do
4 minProgress ← min(minProgress, pi)

5 forall i← 1 to N do
6 if pi ≤ minProgrees + ∆ then
7 childStatus[i] ← child(i).Tick()

8 if Σi:childStatus[i]=Success1 = N then
9 return Success

10 else if Σi:childStatus[i]=Failure1 > 0 then
11 return Failure

12 return Running

actions, the arm movement to pull the door and the mobile
base movement to make the robot move away from the door
while this opens. To succeed in the task, the arm movement
and the mobile base must be synchronized.

B. Relative Synchronized Parallel Node

Relative synchronization is achieved by setting a-priori
a threshold value ∆ ∈ [0, 1]. Whenever a node in this
parallel composition has a progress that exceeds the min-
imum progress, among all the other nodes of the parallel
composition, by ∆, it no longer receives ticks.

Algorithm 2 shows the pseudocode of the relative synchro-
nized parallel node. At each tick, the node first assesses the
minimum progress of its children (Lines 2-4), then it sends
ticks only to those actions whose progress did not exceeds
the minimum progress by the predefined offset ∆ (Lines 5-
7). Finally, it computes its return status (Lines 8-12).

The relative synchronized parallel node is graphically
represented by a square with the label “⇒R”.

We now present a use case example for the relative
synchronized parallel node.

Example 2 (Relative): A service robot has to give direc-
tions to visitors of a museum. To make the robot’s motions
look natural, whenever the robot gives a direction, it points
with its arm to the direction while moving the head to such
direction. The arm and head may require different times
to perform the motion. By imposing a relative progress
synchronization we avoid the unnatural behavior where the
robot looks first to a direction and then points at it, or the
other way round.

The relative synchronized parallel node can be used also to
impose coordination between perpetual action, (i.e. an action
that even in the ideal case, do not have a fixed duration, hence
a progress profile), as in the following example.

Example 3 (Perpetual Actions): A service robot has to
carry around different tools in a workshop and it uses a cart
to carry them. This behavior can be described as the relative
parallel BT composition of two actions: one for holding
the cart straight, and one for navigation. While the robot is

pushing the cart forwards, the cart may drift sideways, just
like any ordinary cart. Since the navigation and manipulation
actions are executed concurrently in two independent actions
the robot may move too fast and the cart may drift away
before the robot can align it. By setting the progress of both
actions to 1 whenever the error of, respectively, arm or base
reference position is within a boundary and 0 otherwise, the
base movements stops while the robot is aligning the cart.
We will present the implementation of the example above in
Section VI.

Remark 1: Designing a single action that operates both
arm and base represents an easier synchronized solution.
However, creating the single action for composite behaviors
reduces the reusability of single behaviors and the whole BT.

C. Improving Predictabity

Progress synchronization can be used to impose a given
progress profile constraint. The idea is to define an artificial
action with the desired progress profile (over time) defined
a priori and putting it as a child of an absolute synchronized
parallel node with the actions whose progress is to be
constrained. However, since we are allowed to only stop
actions (i.e. BTs have no means to speed up actions), we can
only define such artificial action as the ideal upper bounds
of the other actions progresses.

Example 4: An industrial robot has to perform several
manipulation tasks. Depending on the tool used, the move-
ments have to take different progress profile.
We will present the implementation of the example above in
Section VI.

Remark 2: This type of progress-profile creation may
become very useful at the developing stage, since the actions
may run with a different speed in the real world and in
a simulation environment. Improving predictability reduces
the difference between simulated and real-world robots exe-
cution.

V. PERFORMANCE ANALYSIS OF SYNCHRONIZED BTS

In this section, we present the second contribution of
this paper. We define measures for the concurrent execution
of BTs used to establish execution performance. We show
measures for both progress synchronization and predictabil-
ity. We also show how the design choices for relative and
absolute parallel nodes affect the performance.

A. Progress Synchronization Distance

Definition 4: The progress distance over a time window
[k1, k2] for a parallel node with N children is defined as:

π(k1, k2) ,
k2∑

k=k1

N∑
i=1

N∑
j=1

|pi(xk)− pj(xk)|
2

(5)

where pi ∈ [0, 1] is the progress of the i-th child, as in
Definition 2.

Intuitively, a small progress distance results in high perfor-
mance for both relative and absolute nodes synchronization.



B. Predictability Distance

A useful method to measure predictability is to set the
desired progress value and compute the average variation
from the expected and the true time instant in which the
action has a progress that is closest to the desired one.1 This
measure can be used to assess the deviation from the ideal
execution.

Definition 5: Let p̄ ∈ [0, 1] and T p̄ be the set of time
instances tk such that tk = argmin (p(x(tk))− p̄), collected
by running a BT a finite number of times. The time pre-
dictability distance relative to progress p̄ is defined as:

P (p̄) , mean(T p̄)− t̄k (6)
where t̄k is the time instance when p(x(tk)) is expected to
be equal to p̄.

C. Sensitivity Analysis

We are ready to show how the number of barriers in B
(for absolute synchronization) and the threshold value ∆ (for
relative synchronization) affect the performance, computed
using the measures defined in this section. For illustrative
purposes, we define custom made actions with difference
progress profiles. To collect statistically-significant data, we
ran the BT of each example 1000 times and we use plot
boxes to compactly show the minimum, the maximum, the
median, and the interquartile range of the measures proposed.

1) How the number of equidistant barriers affects the
performance of absolute synchronization: We now present an
example that highlights how the number of progress barriers
in B affects the performance of absolute synchronization. In
the example, we consider equidistant progress barriers.

Example 5: Let a BT T be an absolute parallel synchro-
nization with the actions A1, A2, and A3 as children. The
actions are such that the progress profile of each Ai holds
Equation (7) below:

pi(xk) =

{
0 if k = 0

pi(xk−1) + αi + ωi(xk), otherwise
(7)

with αis for each action Ai as: α1 = 1, α2 = 2, and α3 =
5; ωi(xk) ∈ [−ω̄, ω̄] a number, sampled from an uniform
distribution, in the interval [−ω̄, ω̄].

The model above describes an action whose progress
evolves with a fixed value (αi) and with some noise (ωi(xk)),
modeling possible uncertainties in the execution that affect
the progress.

Figure 1 shows the results of running 1000 times the
BT in Example 5 in different settings. We observe higher
performance with a large number of barriers and smaller
ω̄. This highlights that a higher number of barriers prevents
the progress of the actions to differ from each other (see
Algorithm 1 Line 5 and 9-10). Moreover, a larger ω̄ results
in an higher increase in the progress between one tick and
the next one, resulting in worse performance.

1It could be the case that the progress is defined only at discrete points
of execution.

(a) Progress distances with ω̄ = 0. (b) Progress distances with ω̄ = 1.

(c) Progress distances with ω̄ = 2. (d) Progress distances with ω̄ = 5.
Fig. 1. Plotbox for progress distance of Example 5 with different number
of barriers |B|. |B| = 0 refers to the unsynchronized parallel execution.

2) How the threshold value affects the performance of
relative synchronization: We now present an example that
highlights how the value of ∆ affects the performance of
relative synchronization.

Example 6: Let a BT T be a relative parallel synchroniza-
tion with the same actions of Example 5 as children. Figure 2
shows the results of running 1000 times the BT in Exam-
ple 6 in different settings. We observe that the performance
increases with a smaller ∆ and decreases with a larger ω̄.
This highlights that a smaller ∆ prevents the progress of the
actions to differ from each other (see Algorithm 2 Lines 3-7).
Moreover, a larger ω̄ result in a higher possible difference
in the progress of two actions between one tick and the next
one, resulting in worse performance.

(a) Progress distances with ω̄ = 0. (b) Progress distances with ω̄ = 1.

(c) Progress distances with ω̄ = 2. (d) Progress distances with ω̄ = 5.
Fig. 2. Plotbox for progress distance of Example 6 with different ∆. ∆ =
1 refers to the unsynchronized parallel execution.



Remark 3: The synchronization may deteriorate other de-
sired qualities. For example, since actions are waiting for one
another, the overall execution may be slower than the slowest
action. Moreover, a small value for ∆ or a larger number of
barriers can result in highly intermittent behaviors.

3) How the number of barriers affects the predictability:
We now present two examples that highlights how the
number of barriers for an absolute synchronized parallel node
affects the predictability of an execution.

Example 7: Let a BT T be an absolute parallel synchro-
nization that the actions A1 and A2 as children. A1 is an
artificial action that has the desired progress profile over time
(see Section IV-C), whose progress holds Equation (8) below:

p1(xk) =

{
0 if k = 0

p1(xk−1) + 0.1, otherwise
(8)

Hence, the desired progress profile is such that it starts as 0
and it increases by 0.1 at each time step. T2 is a the action
whose progress is to be imposed. Without constraints, the
progress of T2 holds Equation (9) below:

p2(xk) =

{
0 if k = 0

p2(xk−1) + 2 + ωi(xk), otherwise
(9)

Figure 3 reports the results of Example 7. We observe
worse performance with larger ω̄ and ∆.

(a) Predictability distances with p̄ =
0.6 and ω̄ = 2.

(b) Predictability distances with p̄ =
0.6 and ω̄ = 5.

Fig. 3. Plotbox for predictability distance for Example 7. B = 0 refers to
the unsynchronized parallel execution.

Note how, without synchronization, the predictability dis-
tance is negative. This is due to the fact that the action A2

has a progress that increases faster than the desired progress
profile.

4) Consideration on Safeguarding BTs: For each BT of
the Examples 5 and 6 above, the progress difference between
xk and xk+1 cannot exceed α + 2ω̄. This characteristic is
similar to the concept of safeguarding BTs (see Definition 3).
If the progress function is a monotonic increasing function,
then the step length can hint on the synchronization perfor-
mance. Consider the case in which p(xk) = xk, the BTs
of the examples above are safeguarding with respect to the
step length d = α+ 2ω̄. Intuitively, given the results in this
section, a safeguarding BT with smaller step length have
better performance.

VI. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
in four different realistic scenarios, one highlighting the
absolute progress synchronization (introduced in Section IV-
A), one highlighting the relative progress synchronization
(introduced in Section IV-B), one showing how to use the
proposed framework to impose coordination between perpet-
ual actions, and one predictability (introduced in Section IV-
C). To collect statistically-significant data, for we ran each
experiment 100 times and we show, plotboxes for the value of
the measure described in Section V. The experimental results
support the analysis done in Section V-C. A video showing
the execution of the experiments is publicly available.2

Experiment 1 (Absolute Progress Synchronization): An
object-seeking robot has to detect and recognize possible
objects, to clear them, on the floor of a hallway. The robot’s
behavior is described as the absolute parallel node of
two actions: swipe that makes the head periodically move
sideways while scanning possible objects, and navigate that
moves the mobile base through the hallway. The progress
of both actions increases in linear proportion to the part
of the hallway navigated or swept. Whenever the robot
finds an unidentified object, the swipe action stops moving
the robot’s head until the object is identified. To correctly
execute the task, the two actions are synchronized with
an absolute parallel synchronized node. Figures 6(a), 6(c),
and 6(e) show the steps executed by the robot without
a synchronization, whereas Figures 6(b), 6(d), and 6(f)
show the steps executed by the robot with synchronization.
Figure 4(a) shows the performance of the synchronized and
unsynchronized execution in different settings.

(a) Experiment 1. (b) Experiment 2.
Fig. 4. Plotbox of progress distance for Experiments 1 and 2. B = 0 refers
to the unsynchronized parallel execution.

Experiment 2 (Relative Progress Synchronization):
Consider the task on Experiment 1. The actions swipe and
navigate are now composed using relative synchronized
parallel node. Figure 4(b) shows the performance of the
synchronized and unsynchronized execution with different
settings.

Remark 4: At the design stage for single actions, we did
not specify any speed for the head or mobile base movement.
That gives freedom to the user to define any speed and reuse
a pre-used action. However, the remark of the safeguarding
BTs in Section V-C.4 must be taken into account.

2https://youtu.be/eDrZp7n3y-s

https://youtu.be/eDrZp7n3y-s


Experiment 3 (Synchronization of Perpetual Actions): A
service robot is tasked to carry tools inside a workshop.
When the tools are too many or too heavy, the robot uses
a cart to carry them. The robot’s behavior is described as a
relative parallel node with two actions as children: hold cart
and follow path. The progress of both actions is 1 whenever
the error of, respectively, arm or base reference position is
within a boundary, 0 otherwise.

While the robot is pushing the cart forwards, the cart may
drift sideways, just like any ordinary cart. To avoid rigidity,
the arms’ controllers are compliant, hence the drift of the
cart would make the arms move with the cart. Whenever the
cart drifts, the error of the action hold cart increases. To
avoid that the robot keeps moving while the cart drifts too
much, the BT is a relative synchronized parallel node of the
two actions.

Figures 7(a), 7(c), 7(e), and 7(g) show the steps executed
by the robot without synchronization, whereas Figures 7(b),
7(d), 7(f), 7(h) show the steps executed by the robot with
synchronization.

Experiment 4 (Predictability): An industrial robot has to
perform some specific manipulation operations. Depending
on the current tool used, some movements must follow
a straight-line profile (same movement’s speed throughout
the execution) some other follow a sigmoid profile (the
movements are first slow, then fast, then slow again). The
robot’s behavior is described by the BT in Figure 5(a), where
the action do task describes the manipulation task without
any specific progress profile. Figures 5(b) and 5(c) shows the
real and the desired progress profile in the two cases.

⇒A

Do Task ?

→

Straight
Profile

Straigth
Timeline

→

Sigmoid
Profile

Sigmoid
Timeline

(a) BT for Experiment 3. The parallel node is an absolute synchronized
parallel node with 50 barriers.
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(b) Straight progress profile case.
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(c) Sigmoid progress profile case.
Fig. 5. BT and progress profiles for Experiment 4.

VII. CONCLUSIONS

In this paper, we proposed two new BTs control flow nodes
for progress synchronization with different synchronization
policies, absolute and relative. We proposed measures to
assess the synchronization between different sub-BTs and
the predictability of robots execution. Moreover, we observed
how design choices for the synchronization may affect the
performance. Such observations are supported by experimen-
tal validation.

We showed the applicability of our approach in a simu-
lation system that allowed us to run the experiments several
times in different settings to collect statistically-significant
data.

(a) [Unsync] The robot’s head moves
too fast, making the robot miss the
first object.

(b) [Sync] The robot finds an
unidentified object on the floor.
The head movement stops, so does
the progress, the base movement is
paused accordingly.

(c) [Unsync] The robot finds an
unidentified object on the floor. The
head movement stops, but the robot
keeps moving, making the object be
out of the robot’s field of view.

(d) [Sync] The robot finds an-
other unidentified object on the floor.
The head movement stops, so does
the progress, the base movement is
paused accordingly.

(e) [Unsync] The robot misses the
other objects.

(f) [Sync] The robot recognized the
object and resumes the head move-
ment. The base movement is resumed
as well.

Fig. 6. Execution steps related to Experiment 1.



(a) [Unsync] The robot is holding the
cart while moving. The cart drifts in
such a way that the reference error
crosses the threshold value. The par-
allel node keep sending ticks to the
follow path action.

(b) [Sync] The robot is holding the
cart while moving. The cart drifts in
such a way that the reference error
crosses the threshold value. The par-
allel node stops sending ticks to the
follow path action and robot stops
moving.

(c) [Unsync] The robot does not stop
moving its mobile base and the cart
keeps drifting.

(d) [Sync] The robot aligns correctly
the cart. The navigation resumes.

(e) [Unsync] The cart slips out from
the robot’s hand.

(f) [Sync] The robot does not stop
moving its mobile base and the cart
keeps drifting.

(g) [Unsync] The cart slips out from
the robot’s hand.

(h) [Sync] The robot keeps pushing
correctly the cart.

Fig. 7. Execution steps related to Experiment 3.
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