
Toward Achieving Formal Guarantees for Human-Aware Controllers in
Human-Robot Interactions

Rachel Schlossman1, Minkyu Kim, Ufuk Topcu, Luis Sentis

Abstract— With the primary objective of human-robot in-
teraction being to support humans’ goals, there exists a need
to formally synthesize robot controllers that can provide the
desired service. Synthesis techniques have the benefit of pro-
viding formal guarantees for specification satisfaction. There
is potential to apply these techniques for devising robot con-
trollers whose specifications are coupled with human needs.
This paper explores the use of formal methods to construct
human-aware robot controllers to support the productivity
requirements of humans. We tackle these types of scenarios
via human workload-informed models and reactive synthesis.
This strategy allows us to synthesize controllers that fulfill
formal specifications that are expressed as linear temporal
logic formulas. We present a case study in which we reason
about a work delivery and pickup task such that the robot
increases worker productivity, but not stress induced by high
work backlog. We demonstrate our controller using the Toyota
HSR, a mobile manipulator robot. The results demonstrate the
realization of a robust robot controller that is guaranteed to
properly reason and react in collaborative tasks with human
partners.

I. INTRODUCTION

As robots become more embedded into our everyday lives
and begin to collaborate with humans, a large potential
emerges to boost human productivity by eliminating un-
necessary human chores in workplaces [1]. This potential
can only be realized by robot control systems that process
and react to human needs. A survey of human-aware robot
navigation shows that many researchers have studied motion
and task plan generation for socially-aware robots, for ac-
tivities ranging from operating in human-occupied areas to
engaging in social cues [2]. However, these methods often
lack robustness to disturbances and/or formal guarantees of
goal achievement. Formal methods have been leveraged in
robotic applications, but there is a growing need to apply
these techniques to robots that continuously and directly in-
teract with humans. Our work takes a step toward addressing
this need.

Reactive synthesis has been applied in contexts where
disturbances are unavoidable, such as the DARPA Robotics
Challenge [3] and other challenging setups [4], to provide
formal guarantees for specification realizability. There is a
gap in robotics and formal method literature with respect
to applying these methods to direct human-robot interaction
(HRI). In reactive synthesis problems, humans are often

*This work was supported by NASA Space Technology Research Fel-
lowship 80NSSC17K0188.

1rachel.schlossman@utexas.edu
Authors are with The Departments of Mechanical Engineering (R.S.,

M.K.) or Aerospace Engineering (U.T., L.S.), University of Texas at Austin,
Austin, TX 78712-0292, USA

(b)(a)

Fig. 1. (a) The Toyota Human Support Robot, which we use as our exper-
imental platform for human-informed work delivery, picking up completed
work. (b) The HSR dropping off completed work at the Inventory Station.

framed as randomly or periodically interfering with the
robot’s goal [4], [5]. In [6], a reactive synthesis problem
is formulated to generate a policy for a robot to reach a goal
position in a simulated kitchen scenario, but the only human
interaction involves avoiding two moving chefs. We seek to
be robust to a larger variety of disturbances, and to generate
policies in which humans and robots continuously interact.

There is much interest in the HRI community for robot
controllers to consider human factors to boost human produc-
tivity [7], [8]. Several research groups are exploring formal
verification methods for robots to interactively support hu-
mans [9], but few groups have incorporated human factors
into these methods. In [10], the authors verify whether a
robot assistant can reach commanded positions and deliver
medicine. In addition to these types of interactions, we
also explore additional knowledge of human requirements to
improve collaborative task execution. Ref. [11] takes a step
in this direction: A cognitive model of trust is incorporated
into a stochastic multi-player game and probabilistic rational
temporal logic specifications are proposed, but probabilistic
model checking is left as future work. In [12], social norms
for a hand-off task are represented as transition systems,
and model checking is performed to verify successful task
completion. In contrast to this work, our framework uses
reactive synthesis to prevent specification violations, while
being robust to uncertainties.

Although it is impossible to generalize human behavior,
works like [13], [14] still demonstrate the insight to be gained
by considering human models for decision-making. For
example, in [15], hypothetical human models that consider
human proficiency and stress are employed to synthesize
paths for semi-autonomous operation of drones with human
operators. Similarly, we focus on studying the implications
of incorporating human models. Our approach provides the

ar
X

iv
:1

90
3.

01
35

0v
1 

 [
cs

.R
O

] 
 4

 M
ar

 2
01

9



flexibility to update the human model for effective and
personalized human-robot interactions.

The goal of this paper is to demonstrate a proof-of-
concept for devising control policies via reactive synthesis
that consider and improve human working behavior. In doing
so, we generate a controller that is robust to disturbances
and provides formal guarantees for specification satisfaction
in an HRI scenario. The main contribution of our work is a
study on reactive synthesis that incorporates human factors
for human-aware robot cooperative tasks. We consider an
HRI case study in which we construct a model of human
workers in a workplace as transition systems to devise a robot
controller to deliver and pick up work while considering the
human’s needs. To this end, we formalize system specifica-
tions using linear temporal logic. We use reactive synthesis
to automatically construct a controller that meets all system
specifications and a human’s productivity needs. We then
demonstrate the reactive controller on the Toyota Human
Support Robot (HSR) (Fig. 1). Ultimately, we explore the
question of how robots can make humans more productive
by limiting unnecessary human tasks

II. PRELIMINARIES

Our notation employs the formalisms of [16], which are
summarized below:

Definition 1: A transition system, TS, is a tuple TS =
(S,Act,→, I, AP,L) where S is a set of states, Act is a set
of actions, →⊆ S × Act× S is a transition relation, I ⊆ S
is a set of initial states, AP is a set of (Boolean) atomic
propositions, and L : S 7→ 2AP is a labeling function.

Definition 2: An infinite path fragment, π = s0s1s2...,
for si ∈ S, is an infinite sequence of states such that si+1 ∈
{s′i ∈ S : ∃α ∈ Act | si

α−→ s′i} ∀i ≥ 0. An infinite path
fragment is a path if the initial state, s0 ∈ I . The set of paths
in TS is denoted as Paths(TS).

Definition 3: The trace of π, trace(π) =
L(s0)L(s1)L(s2)..., is a sequence of sets of atomic
propositions that are true in the states along the
path. The set of traces of TS is defined by
Traces(TS) = {trace(π) : π ∈ Paths(TS)}

Definition 4: A linear-time (LT) property, P , over atomic
propositions in AP , is a set of infinite sequences over 2AP .
TS satisfies P , represented by TS |= P , iff Traces(TS) ⊆
P .

Definition 5: Linear-temporal logic (LTL) is a formal
language to represent LT properties. The operators used in
this paper to construct LT formulas are conjunction (∧),
disjunction (∨), next (©), eventually (♦), globally (�),
implication (→), and negation (¬). Let Φ be an LTL formula
over AP . TS satisfies Φ, represented by TS |= Φ, iff π |= Φ
for all π ∈ Paths(TS).

III. WORK DELIVERY WITH HUMAN BACKLOG MODEL

This case study examines a robot operating in a work
environment and is inspired by [17]. The robot drops off
new work (“deliverables”) at the Human Workstation, picks
up completed work from the Human Workstation, and drops

the completed work off at the Inventory Station. The robot’s
contributions thereby eliminate unnecessary movement by
the human to pick up and drop off work. The goal is for the
robot to operate with an awareness of the human’s backlog,
defined as the amount of uncompleted work at the Human
Workstation. Assessing human backlog is an ongoing area of
research [18]. We take backlog to be an indicator of stress
levels, as too little work can cause boredom and too much
work can result in higher levels of frustration [19]. We seek
to synthesize a controller that guarantees, despite system
disturbances, that the human always has work to complete
and is not over-stressed by work demands.

A. Modeling

1) Human Model: In this scenario, the human is always
present in the Human Workstation. (Work breaks are ad-
dressed in Sec. IV.) The human’s backlog, BL, can range
from 0% to 100%, relative to the maximum amount of
uncompleted work that can be present in the workstation.
When the robot is not present in the Human Workstation,
the human works whenenever there is uncompleted work.
We consider a simple, discrete linear BL model that is a
function of ∆T time steps that each last td seconds:

BL(∆T ) = BLinit − γ∆T, ∆T ∈ {0, 1, 2, ...}, (1)

where BLinit is the initial amount of backlog at the Human
Workstation, and γ is the work reduction rate per td seconds.
The value of BLinit is updated each time the robot comes
to the Human Workstation to deliver work.

We now formalize the way BL may change between time
steps. There is uncertainty in how much BL decreases during
each state transition, as the reduction value depends on how
much time the robot requires to transition between states
in the real-world execution. The worker’s BL can decrease
by integer multiples of γ each time step. We assume that
BL may decrease by up to 5γ, based on the maximum
amount of time the robot requires for its most challenging
manipulation task. We consider two possibilities for how BL
may shrink. When the robot is traveling between locations
in the workspace, we define the formula v1 such that the
following holds:

© v1 ,
2∨
k=0

(BL− kγ). (2)

It may require more time for the robot to drop off com-
pleted work at the Inventory Station than to travel between
locations, and so we allow for greater BL reductions between
time steps for this task:

© v2 ,
5∨
k=0

(BL− kγ). (3)

The human transitions from the “work” state to the “wait”
state if the human has completed all of her work and the
robot has not yet arrived to deliver more work. The human
transitions to the “refill” state when the robot is present in the
Human Workstation and delivers more work. The robot being



work

wait

refill
start

©BL = 0% ∧ ¬ (© RS = N) / v2

© RS = N / v3

©BL > 0% ∧ ¬ (© RS = N) / v2

© RS = N / v3

¬ (© RS = N) / v4

¬ (© RS = N) / v1

© RS = N / v4

Fig. 2. Human Model with three states. Transitions are triggered by guards,
g, and there are corresponding outputs, y. In this transition system, edges
are labeled in a g / y format. In this system, the outputs are described by
v2, v3, and v4.

in the Human Workstation is equivalent to the robot state,
RS, being equal to N. When the robot arrives at the Human
Workstation, BL grows by δ. The human then returns to the
working state when the robot departs from the workstation.
As seen in Fig. 2, there are guards based on BL and robot
behaviors which determine allowable state transitions. The
BL variable is tracked, and grows and shrinks according to
v1, v2, v3, and v4. The formula v3 captures BL growth when
the robot arrives at the Human Workstation:

© v3 , BL+ δ, (4)

and v4 captures when BL does not change between time
steps:

© v4 , BL. (5)

Fig. 2 demonstrates the possible non-determinism in how
BL changes with each time step, and planning for this
uncertainty is discussed further in Sec. III-B.

2) Robot Model: The robot moves in a 1D grid. There are
N+1 grid spaces, with the grid spaces labeled as 0 through N.
Space 0 corresponds to the Inventory Station, and (3) is valid
in this location when the robot drops off completed work.
As discussed in the previous section, space N is the Human
Workstation. The robot’s actions are GoSj, which indicate
that the robot is currently moving to position j ∈ 0,1,...,N in
the grid. The robot is free to move within this grid, except for
when there is an obstacle present in a grid space blocking
a path. We define the atomic proposition, “an obstacle is
present in State j,” as Oj ∀j = 1,2,...,N-1. The transition
system is shown in Fig. 3.

3) Full HRI System Model: A transition system is then
formulated to capture that the robot drops off deliverables
and picks up completed work at the Human Workstation,
and drops off completed work at the Inventory Station.
The robot also operates with an awareness of the human’s

0start 1

23

¬g1 / GoS1

(g1 ∨ ¬g1) / GoS0

(g2 ∨ ¬g2) / GoS0

(g2 ∨ ¬g2) / GoS1

¬g2 / GoS2 ¬g1 / GoS1

(g1 ∨ ¬g1) / GoS2

(g1 ∨ ¬g1) / GoS3

¬g2 / GoS2
g2 / GoS3

Fig. 3. Robot Model with N = 3. State 0 is the Inventory Station and
State 3 is the Human Workstation. Each edge of the TS is labeled with a
guard and an action. The presence of an obstruction in one of the robot’s
adjacent positions can restrict the robot’s next action. The guards express
whether or not there is an obstacle blocking the robot from proceeding to
a neighboring state, and we define g1 , O1 and g2 , O2

work backlog, which will allow for controller synthesis that
considers BL. To combine and synchronize the human and
robot systems, the two separate human and robot models
were used to create states which represent both the human
and robot at each time step. The transition system, shown in
Fig. 4, is expressed as TSHRI = (S1, Act1,→, I1, AP1, L1)
where:
• S1 = {jwork, jwait, Nrefill} ∀ j = 0,1,...,N-1
• Act1 = { GoSj } ∀ j = 0,1,...,N
• I1 = {0work}
• L1(0work) = L1(0wait) = Robot is at Inventory Station.
• L1(Nrefill) = Robot is at Human Workstation.

B. Reactive Synthesis

It is necessary to incorporate robustness to uncertainty
in our approach in order for the robot to pick up com-
pleted work, drop off deliverables, and reason about the
human’s BL in a real environment. We consider a two-
player game in which the robot’s actions are controllable.
Obstacle interference, success of dropping off completed
work, and the backlog reduction rate act as the uncontrollable
environment. The robot and the environment take turns
executing actions, and we seek to automatically synthesize a
robot controller strategy that allows a system specification
to be realizable despite any antagonistic actions executed
by the environment. To meet the system requirements while
handling external disturbances, we formulate this scenario
as a reactive synthesis problem in which plant actions are
controllable and environment actions are uncontrollable. We
seek to find a strategy that will uphold a specification no
matter how the environment selects its actions for all time
[20].

To automatically synthesize a controller, we must formal-
ize the specifications that describe the possible environment
behaviors. It is possible in a work environment that people
may pass through states Sd = {jwork, jwait} ∀j : 0 <
j < N and obstruct the robot from proceeding into an
adjacent position in the workspace. We impose as a safety



0workstart

0wait

1work

1wait

2work

2wait

3refill
g4/GoS0/v2

g3/GoS0/v2
g3/GoS1/v1

g4/GoS1/v1

GoS0/v4

GoS1/v4

g4/GoS1/v1

g3/GoS1/v1

g3/GoS0/v2

g3/GoS2/v1

g4/GoS2/v1g4/GoS0/v2

GoS1/v4

GoS2/v4

GoS0/v4

g4/GoS2/v1

g3/GoS2/v1

GoS3/v3
g3/GoS1/v1

g4/GoS1/v1

GoS2/v4

GoS3/v3

GoS2/v4

GoS2/v1

GoS3/v4

Fig. 4. HRI Work Delivery and Pickup Transition System with N = 3. The edges of the transition system are labeled first by guards (g3, g4), then by
actions, and lastly by pertinent output variables (v1, v2, v3, v4). The guards which determine whether the human is working or waiting are expressed by
g3 , ©BL > 0% and g4 , ©BL = 0%. As illustrated in Fig. 3, the robot cannot move to a neighboring state if it contains an obstacle, but we do not
show this guard due to space limitations.

specification on the robot that it will not proceed toward a
position that contains an obstacle. We also assume that if
the human sees the robot moving to a workspace position,
she will not intentionally move to block the robot’s desired
workspace position:

Φd1 ,©RS = j →©¬Oj ∀j = 1,2,..N-1. (6)

In our implementation, if there is a human occupying one
of the robot’s neighboring positions, the robot will ask her
not to block the workspace. Thus, we assume that the person
will move out of the way by the next time step:

Φd2 , Oj →©¬Oj ∀j = 1,2,..N-1. (7)

We also account for the possibility that the robot may
not successfully drop off completed work in the Inventory
Station on its first try. At all robot states, the robot either is
or is not manipulating completed work (“hand full” , HF
is true or false). When RS = 0, if the robot is currently
manipulating completed work, it will be successful (S) or
unsuccessful (¬S) at dropping off the completed work in
that time step. In order to prevent the environment from
interfering indefinitely with a successful dropoff, we assume
that no more than two consecutive tries are required to
be successful. The associated specifications are written as
follows:

Φd3 ,(¬(RS = 0) ∧©RS = 0 ∧HF )→ (8)
© (HF ∧ tries = 1 ∧ (¬S ∨ S)),

Φd4 ,(RS = 0 ∧HF ∧ ¬S∧ tries = 1)→ (9)
© (HF ∧ tries = 2 ∧ S), and

Φd5 , (RS = 0 ∧HF ∧ S)→©(¬HF ). (10)

As discussed in Sec. III-A.1, when the robot is not
dropping off deliverables, there is uncertainty in how much
BL will decrease as the robot transition between states in
the real environment. This uncertainty will impact the value
of BL at the next time step when the human is working.
To express the specifications for BL reduction, we define a
formula that describes the situations in which the robot will
attempt to drop off completed work:

g4 ,
[
{¬(RS = 0)∧©RS = 0}∨ (tries = 1∧¬S)

]
∧HF.

(11)
We now distinguish between the robot moving within

the workspace and performing the dropoff behavior. For
workspace motions, we define

Φd6 , ¬(©RS = N) ∧ ¬g4 ∧ ¬wait→©v1, (12)

where v1 is as defined in (2). During dropoff at the Inventory
Station the following specification holds:

Φd7 , g4 ∧ ¬wait→©v2, (13)

where v2 is as defined in (3). We desire that the robot always
eventually drops off completed work at the Inventory Station.
Unless BL decreases, there would be no guarantee that the
robot would always eventually have completed work to pick
up from the human and drop off at the Inverntory Station.
We add the assumption that if BL stays constant in two
consecutive time steps, then BL will decrease in the next
time step:

Φd8 , ¬(©RS = N) ∧ v4 ∧ ¬wait→© (

5∨
k=1

(BL− kγ)),

(14)



where v4 is as defined in (5). We synchronize the real robot’s
motion with the BL model so that this assumption is valid
in our implementation.

C. Controller Synthesis

The reactive synthesis problem was implemented using
Slugs [21] with N = 3. (We consider four states for our
proof-of-concept hardware implementation in Sec. IV, but
the underlying techniques of our approach can handle a
much larger number of states.) By formulating the problem
as a two-player game, Slugs can construct a reactive robot
controller that upholds our specification of interest within
TSHRI .

In the simulation, the robot starts at State 0, γ = 3.3%,
and δ = 50%. In order to strike a balance between
state space fineness and computational efficiency, BL is
represented in Slugs as 0,1,2,...,30, which corresponds to
0%,3.3%,6.7%,...,100%. Slugs was used to synthesize a con-
troller that always satisfies the specification that the human’s
backlog never reaches 0% and never exceeds 87%. In this
manner, the human always has work to complete, but the
robot does not seek to stress her. It is also desired that the
robot will return to the Inventory Station infinitely often to
drop off completed work. Since BL can vary from 0 to 30
in Slugs, we express the system specification as:

Φ1 = (�BL ≤ 26) ∧ (�BL > 0) ∧�♦(RS = 0 ∧HF )
(15)

We provide as an initial condition that BLinit is between
30% and 86.7% (9 ≤ BLinit ≤ 26), as we found that outside
of this BLinit range, (15) is not realizable. We synthesize a
strategy using a quad-core Intel Core i7 processor and 12GB
of RAM. Slugs computes in less than five seconds that the
specification is realizable, and devises a high-level controller
that guarantees that the robot will react properly to its
environment while upholding the system specification. The
controller is in the form of a decision tree, with nodes that
capture all possible combinations of robot and environment
behaviors, and the possible transitions from each node. Based
on the robot’s present state and the environment’s behavior,
the decision tree determines the appropriate next robot action.
We now have a policy that can be leveraged for online
decision-making.

IV. EXPERIMENTS

A. Toyota Human Support Robot

The Toyota Human Support Robot (HSR), which com-
prises an omni-directional base and a 5-DOF single manipu-
lator, was adopted as the hardware platform for experimenta-
tion. The HSR uses two different computers: The main PC is
for primary perception, navigation, and manipulation tasks.
An Alienware laptop (Intel Core i7-7820HK, GTX 1080) is
used for running OpenPose1, a real-time convolution neural
network based algorithm used for human detection. All robot
sub-programs communicate with each other via the Robot

1https://github.com/CMU-Perceptual-Computing-Lab/openpose

High-Level
Decision Tree

Environment

Sub-Task
Controller

Robot

(a) (c)

(d)

(f), (g)

(e)

(h)

(b)

Fig. 5. The communication protocols between the the robot and the sub-
task (SMACH) and high-level (Slugs) controllers. The systems communicate
by repeating (a)-(h), where: (a) Track and command sequential tasks;
(b) Perceive, navigate, and manipulate; (c) Sequential tasks complete; (d)
Request next action; (e) Subscribe to ROS environment topics; (f) Check
for human at workstation. Update RS and BL when worker is present; (g)
Select next action from look-up table. (h) Respond with next action.

Operating System (ROS) interface. An overview of the HSR
skills used for controller implementation is provided below.

1) Perception: A laser range scanner is used on both sides
of the mobile base to detect whether there is an obstacle
within approximately one meter of the base. To simulate a
more realistic working environment, the robot also perceives
if there is a human in the workstation or if she has left to
take a break. A depth camera for RGB-D video streaming is
located on the HSR’s head. Recognition of whether or not
there is a human in the workstation, based on the RBG-D
data, is executed by OpenPose. We created a ROS action so
that the HSR turns its head toward the workstation every five
seconds to check for worker presence.

2) Navigation: All basic navigation functions, including
wheel-joint control and avoiding obstacles, are included in
the ROS navigation stack. It is assumed that given a goal
position, the robot can safely navigate to this location, while
avoiding dynamic obstacles via a re-planning scheme.

3) Manipulation: The robot’s manipulator is used to pick
up completed work from the human, and to drop off com-
pleted work at the Inventory Station. For pickup, the robot
moves its end effector near to the human’s right hand so that
the human can hand over her work. To distinguish between
S and ¬S during dropoff, as discussed in Sec. III-B, we use
a force sensor mounted at the end effector to judge whether
or not the object successfully made contact with the counter.

B. Controller Implementation

The decision tree produced by Slugs serves as an online
look-up table during robot operation. After transitioning to
the next commanded state, the HSR will update its knowl-
edge of the environment (mainly, any obstacles, if a dropoff
action was successful, and the human’s current BL). We used
SMACH2 to implement a finite-state machine framework that
bridges the gap between the high-level action policy from
Slugs and the robot’s lower-level sequential task executors.

Once the Slugs planner determines the next desired ac-
tion, the robot’s required skills are executed sequentially by
the sub-task controller that is associated with a particular
SMACH state. In other words, the sub-task control layer is

2http://wiki.ros.org/smach



Robot at State 2

Obstacle at State1
Inventory (State 0)

Workstation (State 3)

Fig. 6. Experimental setup with four positions in the workspace, corre-
sponding to RS = 0 (Inventory Station), 1, 2, and 3 (Human Workstation).
The HSR transports deliverables in its satchel and carries completed work
in its manipulator back to the Inventory Station. A human obstructs its path,
causing it to remain in State 2 until the next time step, by which time the
human will have departed.

responsible for decomposing the desired Slugs action into
the sequential, lower-level required skills. For example, when
the robot has completed work, the action GoS0 first contains
navigation (move to counter at State 0), then manipulation
(drop off object), and finally navigation (move back from
counter) skills. The sequence of behaviors thus requires
recognition of when the previous sub-task succeeds. All robot
sub-tasks are programmed with the structure of ROS actions
in order to be flexible to sub-task execution times. Once
a high-level action is completed, or the first dropoff try is
unsuccessful, SMACH requests the next desired action from
the Slugs planner. The system architecture is shown in Fig.
5.

C. Results

Through experimentation, we sought to verify that our
automatically-synthesized, high-level controller properly re-
acts to its environment while maintaining (15). Fig. 6 shows
the layout of our experimental setup and the positions of
States 0 through 3. Referring to the BL model in (1), we
take td = 10s.

To test the robustness of the controller, we allowed the
HSR to operate autonomously for 30 minutes. During this
time, the robot reacted to obstacles, interacted with the
worker at the workstation, and returned to the Inventory
Station several times to drop off completed work, as shown
in Fig 7. While we did not account for the human taking
a break in our reactive synthesis problem, we incorporated
this consideration for our experiments. If the HSR does not
sense a human at the workstation, the HSR waits until she
reappears, and then proceeds with its actions according to
the Slugs planner.

It is also of interest to investigate the high-level controller
behavior for differing BLinit values. Fig. 8 shows the results
with BLinit = 30% (BLinit = 9

30 in Slugs).3 We also
highlight whether the robot is manipulating completed work,
and the implementation of the work dropoff logic at State
0. Fig. 9 shows the robot’s behavior with BLinit = 86.7%

3This experiment is shown in the included video, which is also available
at https://youtu.be/My6WIiZZCsM.

2

0

1

0.2

0.4

0.6

0.8

10 20 300

R
ob

ot
St

at
e

B
ac

kl
og

Time (min)

3

break

Human Obstacle

Fig. 7. Robustness test with BLinit = 40%. Human obstacles that appear
in States 1 and 2 and depart by the next time step are marked by black
x’s. The worker moves out of the workspace for three minutes, which is
highlighted in pink. The robot waits for the human to return at RS = 2,
but does not update RS and the environment variables in the Slugs planner
until the human returns to work.

2

0

1

0.2
0.4

0.6

0.8

R
ob

ot
St

at
e

B
ac

kl
og

3

2 4 60
Time (min)

break

tries = 1
tries = 2

HF
¬HF

Fig. 8. Robot behavior with BLinit = 30%. When RS = 1 and HF
at 1.75 minutes, the SMACH sub-task controller tracks the amount of time
the robot takes to travel from State 1 to State 0 and execute the dropoff
sub-tasks, during which time, tries = 1. If this time exceeds 35 seconds, ¬S
is communicated to the high-level controller. The Slugs planner updates the
tries value to be equal to 2, and commands that the robot continue to execute
its dropoff sub-tasks in the next time step. After the second try, the robot
successfully drops off the work, and the robot’s manipulator is empty again.

2

0

1

0.2

0.4

0.6

0.8

R
ob

ot
St

at
e

B
ac

kl
og

3

2 4 60
Time (min)

Fig. 9. Robot behavior with BLinit = 86.7%. The circular markers indicate
the times at which the sub-task controller calls the high-level decision tree
to request the next robot action. Excluding its initial movement to and from
State 1, the robot elects to wait at State 0 until it moves to deliver work,
even when there are no obstacles present.



(BLinit = 26
30 in Slugs). We note that the robot first moves

to State 1, moves back to State 0, and remains at this
position until it proceeds to the workstation to provide deliv-
erables. The initial movement to and from State 1 upholds
a winning strategy in the two-player game, but provides no
useful output. Additional specifications could be imposed in
the reactive synthesis problem to incorporate robot energy
efficiency as a consideration to eliminate unnecessary robot
movements.

In all three experiments, the robot successfully maintains
human BL needs and can autonomously reason about and
react to its environment. In the situations considered, the
BL value reaches 86.7%, but does not exceed 87%, as
desired. It is interesting to note that the controller strategies
drive the robot to wait in State 0 until it moves to deliver
new work. The robot does not wait in States 1 or 2 for
extended periods of time. This behavior is sufficient to
satisfy system specifications, but optimizing where the robot
waits could be needed in other work environments. For the
experimental setup considered, we have verified that our
proposed controller offers robustness and flexibility for a
real-time, human-centered application.

V. DISCUSSION

Human factors are often neglected in formal methods
when devising robot controllers, at the expense of having
no formal guarantees that the robot can actually realize a
human-centered goal. In this paper, we leverage reactive
synthesis to devise a controller that supports a human’s and
a robot’s collaborative goal. By formulating a work delivery
scenario as a two-player game, we automatically synthesize a
controller that considers a human’s work needs and supports
robustness to system disturbances. Experimental validation
on the HSR hardware demonstrates that the high-level con-
troller strategy enables the robot to operate autonomously
and robustly, while considering the activities and productivity
of the human worker.

There are several interesting areas remaining for future
work. The human backlog model in this case study is a
toy model used for proof-of-concept. In the future, we are
interested to incorporate verified, dynamic human models
based on psychology and cognitive theory, to consider how
factors such as fatigue, training, motivation, and stress impact
backlog. We are also interested to study how we may extend
our work to produce not only feasible motions, but also
optimal motions. For now, our results support the feasibility
of designing robots that are formally guaranteed to reduce the
human share of work activities in the execution of everyday
tasks.

REFERENCES

[1] J. Sutherland and B. Bennett, “The seven deadly wastes of logistics:
applying toyota production system principles to create logistics value,”
White paper, vol. 701, pp. 40–50, 2007.

[2] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726–1743, 2013.

[3] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit, “Reactive high-level behavior synthesis for an atlas humanoid
robot,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 4192–4199.

[4] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive
synthesis for finite tasks under resource constraints,” in Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on. IEEE, 2017, pp. 5326–5332.

[5] Y. Zhao, U. Topcu, and L. Sentis, “High-level planner synthesis for
whole-body locomotion in unstructured environments,” in Decision
and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016,
pp. 6557–6564.

[6] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games,” in ICAPS, 2016, p. 536.

[7] A. Ramachandran, C.-M. Huang, and B. Scassellati, “Give me a
break!: Personalized timing strategies to promote learning in robot-
child tutoring,” in Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction. ACM, 2017, pp. 146–155.

[8] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa, “Planning
with trust for human-robot collaboration,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2018, pp. 307–315.

[9] B. Wu, B. Hu, and H. Lin, “Toward efficient manufacturing systems:
A trust based human robot collaboration,” in 2017 American Control
Conference (ACC). IEEE, 2017, pp. 1536–1541.

[10] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. L.
Koay, K. Dautenhahn, and J. Saez-Pons, “Toward reliable autonomous
robotic assistants through formal verification: a case study,” IEEE
Transactions on Human-Machine Systems, vol. 46, no. 2, pp. 186–
196, 2016.

[11] M. Kwiatkowska, “Cognitive reasoning and trust in human-robot
interactions,” in International Conference on Theory and Applications
of Models of Computation. Springer, 2017, pp. 3–11.

[12] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring
and verifying human-robot interactions,” in The 31st Annual ACM
Symposium on User Interface Software and Technology. ACM, 2018,
pp. 75–86.

[13] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 66–73.

[14] M. Rausch, A. Fawaz, K. Keefe, and W. H. Sanders, “Modeling
humans: A general agent model for the evaluation of security,”
in International Conference on Quantitative Evaluation of Systems.
Springer, 2018, pp. 373–388.

[15] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu, “Synthesis of
human-in-the-loop control protocols for autonomous systems,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 450–462, 2016.

[16] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[17] S. J. Jorgensen, O. Campbell, T. Llado, D. Kim, J. Ahn, and L. Sen-
tis, “Exploring model predictive control to generate optimal control
policies for hri dynamical systems,” arXiv preprint arXiv:1701.03839,
2017.

[18] J. Heard, C. E. Harriott, and J. A. Adams, “A survey of workload
assessment algorithms,” IEEE Transactions on Human-Machine Sys-
tems, no. 99, pp. 1–18, 2018.

[19] W. MacDonald, “The impact of job demands and workload on stress
and fatigue,” Australian Psychologist, vol. 38, no. 2, pp. 102–117,
2003.

[20] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive (1)
designs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2006, pp. 364–380.

[21] R. Ehlers and V. Raman, “Slugs: Extensible gr (1) synthesis,” in
International Conference on Computer Aided Verification. Springer,
2016, pp. 333–339.


	I INTRODUCTION
	II PRELIMINARIES
	III Work Delivery with Human Backlog Model
	III-A Modeling
	III-A.1 Human Model
	III-A.2 Robot Model
	III-A.3 Full HRI System Model

	III-B Reactive Synthesis
	III-C Controller Synthesis

	IV Experiments
	IV-A Toyota Human Support Robot
	IV-A.1 Perception
	IV-A.2 Navigation
	IV-A.3 Manipulation

	IV-B Controller Implementation
	IV-C Results

	V Discussion
	References

