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Abstract— In this work we present a novel approach which
compensates the destabilising effects of the time delay intrinsic
in the control loop of an admittance-controlled robot employed
for satellite dynamics simulation. The method is based on
an energy storing element, the tank, which is exploited by
the controller to preserve the passivity of the system and
to avoid instability. Furthermore, we compare the perfor-
mance of the proposed method with existing energy-based
approaches, namely time-domain-passivity and wave variable
transformation. The performance comparison and robustness
of the methods are analysed in a Montecarlo simulation and
validated experimentally.

I. INTRODUCTION

A key role for the success of an OOS (On-Orbit Servicing)

space mission is played by the validation of the algorithms

and controls prior to the launch. Hence, having a reliable

simulator, which can reproduce micro-gravity conditions on

ground is of utmost importance. Within this context, several

technologies can be adopted to recreate zero gravity condi-

tions on ground and these can be classified into: air bearing

systems, neutral buoyancy, 0-g parabolic flights, cable off-

loaders and hardware-in-the-loop simulators [1].

In simulation with hardware in the loop, a computer-based

dynamic model of the whole space system is considered and

a hardware system, capable of delivering a six dimensions

Cartesian motion, is used to reproduce the desired behaviour.

Usually, the simulator which exploits this technology is a

robot(s) equipped with a force-torque sensor at the end-

effector and a satellite mock-up [2]. The force-torque sensor

is used to measure external interaction.

In recent years, such kind of simulators have been em-

ployed in the aerospace field and there are several facil-

ities exploiting this technique available in literature. The

Special Purpose Dexterous Manipulator (SPDM) facility is

composed of two arms with a total of 15 degrees of freedom

(dof) and it is employed for verification of robotic tasks per-

formed on the international space station [3]. The Lockheed

Martin SOCS (Space Operation Simulation Center) facility

is composed of two robots with six degrees of freedom

each capable of simulating a full-scale spacecraft motion

relative to an other object [4]. EPOS (European Proximity

Operation Simulator) is composed of two industrial robots,

which can be used to simulate rendezvous and docking [5].

INVERITAS is a robotic facility used for the simulation of

rendezvous and capture of satellites [6].

1 The author is with the Institute of Robotics and Mechatronics, German
Aerospace Center (DLR), 82234 Wessling, Germany.

2 The authors are with the University of Modena and Reggio Emilia,
41100 Modena, Italy. Contact: marco.destefano@dlr.de

Fig. 1: Client robot of the OOS-Sim facility exploited for satellite
dynamics simulation. The industrial robot is equipped with a force-
torque sensor at the end-effector.

An other example is the OOS-Sim facility, which is

composed of two industrial robots employed for testing a

complete on-orbit servicing task (e.g. grasping of a satellite)

on ground [7]. One of the robots is shown in Fig. 1 and it

is equipped with a force-torque sensor exploited for satellite

dynamics simulation under interaction forces. The force and

torque signals measured by the sensor represent the input to

the model-based dynamics whose output is commanded to

the robot that moves in Cartesian space. However the time

delay from a hardware contact (measured by the sensor) to

the corresponding simulation driven reaction is recognised

as a limitation for the robotic simulators when they are

employed for satellite dynamics simulation [2]. In particular,

the time delay in the control loop might lead the system to

become unstable [8], [9].

The field of teleoperation has exploited approaches based

on passivity to deal with instabilities due to time delay in

communication channels [10]. Three popular and effective

approaches are time domain passivity approach (TDPA),

wave variables (WV) and energy tanks [11]. The TDPA

is based on an energy observer and a passive controller to

compensate the effect of the time delay [12]. In the context

of satellite simulation using robots, [13] and [14] extend the

TDPA treatment for an admittance controlled robot emulating

the dynamics of a satellite. In [15] and [16], the effects due to

the discrete-time integration are compensated exploiting the

TDPA method. Related to the wave variable transformation,

[17] proposes a passivity-based formalism which allows one

to guarantee stability and energy conservation for teleoper-

ation system with time delay. The concept of wave variable

was generalised in [18] for mechanical and robotic systems.



In [19] the wave variable transformation was exploited to

modulate the energy and improve the transparency of a tele-

operation system. Regarding the energy tank, [20] proposes

an impedance control with time-varying stiffness to guaran-

tee system passivity. For admittance controlled robots, [21]

exploits the tank for controlling a robotic arm for surgical

application and [22] extends the method considering interac-

tions with the environment. However, energy tank methods

have not been applied on admittance control robot used

for free-floating dynamic simulation. Furthermore, although

TDPA, energy tank and wave variable represent three of the

main control actions that can be found in literature, very

few works related to the comparison have been proposed.

Quantitative studies comparing the performances of several

bilateral control methods can be found in [23] and [24].

In [25] a comparison of the performance using TDPA and

wave variable transformation was performed. However the

energy tank method was not considered and the analysis was

performed only for a time-delayed teleoperation system.

The contribution of this paper is threefold. First, we design

a method based on an energy tank to compensate the time

delay in the control loop of an admittance-controlled robot

exploited for the simulation of satellite dynamics. Second,

the performance and robustness of the method are compared

with two other existing energy-based methods (TDPA and

WV) in a Montecarlo simulation. Third, we validate the

methods on a real robot.

The paper is structured as follows. Sec. II introduces the

problem statement and Sec. III provides a background on the

common energy-based method (TDPA and wave variables)

which will be considered for the comparison. The proposed

method is described in Sec. IV. Results and comparison with

the other methods are presented in Sec. V with experiments1

in Sec. V-B. The robustness analysis is performed in Sec. VI

and Sec. VII concludes the paper.

II. PROBLEM STATEMENT

Industrial robots can be controlled only by means of

position commands and this factor imposes an admittance

causality on the controller architecture for rendering the dy-

namics of a satellite. In this case, the model-based dynamics

of the satellite provides desired velocity set-points to the

robot and it moves in Cartesian space.

We assume that the industrial robot can perfectly track the

desired velocity set-points. This is a common assumption and

it can be achieved by properly tuning the gains of the low

level controllers [26]. However, the internal control of the

robot and the inverse kinematics calculation might require

several sampling steps for the computation of the desired

set-point. Therefore, these factors introduce time delays in

the corresponding motion of the robot [13].

A schematic of the industrial robot used for rendering

the satellite dynamics is shown in Fig. 2 where the time

delay, TD, is located in the control loop and it represents

1Experiments related to the control based on energy-tank can be seen
also in the video accompanying the paper.
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Fig. 2: Admittance model of the robotic simulator. Sat.Dyn is the
model-based dynamics, TD is the robot seen as time delay in the
loop and E is the environment.

the robot. The robot receives the velocity signals, ẋ(k), from

the satellite dynamics model (later defined) and its resulting

velocity, ẋ(k − µ), is delayed by a quantity µ, where µ is

the number of discrete-time steps of sampling time Ts. Note

that both variables are available, ẋ(k) being the commanded

velocity and ẋ(k − µ) the measured one.

The commanded velocity value is provided by the satellite

dynamics, represented by the block Sat. Dyn in Fig. 2.

In the analysis we will consider the translational dynamics

represented by the following equation,

ẍ = M−1Fe, (1)

where, ẍ ∈ R
3 is the acceleration, M ∈ R

3×3 is the

mass matrix and Fe ∈ R
3 is the external measured force.

Therefore, the commanded velocity, ẋ(k) ∈ R
3 is obtained

by integration of (1). The block E represents the environment

with which the robot can interact and the force Fe is the

external force vector, which can be measured using a force

sensor.

The effect of the time delay in the control loop (for the

scenario shown in Fig. 2) can be seen in the following

example. Let us consider a rigid-body motion described

by (1) which collides against two virtual walls, where the

generated forces are modelled as spring-damper system.

Fig. 3 (top) compares the velocity ẋi in the ideal case

(no time delay), with the velocity where a time delay of

20 ms is located in the loop, i.e. ẋtd. As can be seen, the

velocity increases its magnitude after each contact and the

system might become unstable. Furthermore, the simulated
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Fig. 3: Velocity and energy comparison. Increase in velocity and
energy due to the time delay in the loop.



motion results to be physically inconsistent. Indeed, the delay

introduces extra energy in the system, as can be seen in Fig. 3

(bottom) which compares the energy in the ideal case, Ei,

and the energy with the time delay in the loop, Etd.

The increase in velocity and in energy causes an unstable

behaviour to the robotic simulator and an energy inconsistent

motion. In the following section passivity techniques are

introduced to deal with this phenomenon.

III. PASSIVITY AND TIME-DELAY COMPENSATION

METHODS

In this section the concept of passivity is introduced

and a background on the methods, which can compensate

the time delay in the loop is provided. In particular, the

considered methods are Time Domain Passivity Approach

(TDPA), which was proposed in [13] and the wave variable

transformation [17]. These two methods will be compared

with the proposed control, later presented in Sec. IV.

A. Passivity property

Passivity is a sufficient condition for achieving stability

[27] and it is based on input/output characteristic of a system.

The passivity condition for a generic system with power port

(F (k), ẋ(k)) ∈ R
n can be expressed as in [28, §2] and it is

reported below,

E(m) = E(0) +

m∑

k=0

ẋT (k)F (k)Ts ≥ 0, (2)

where E(0) represents the initial energy stored in the system

and Ts is the sampling time. Equation (2) states that the

system can not produce energy more than its initial storage

and the input energy. Otherwise the system results to be

active, i.e. E(m) < 0, and it will produce energy which

can destabilise the system [29].

The presence of time delay in the loop breaks the passivity

of the system because it introduces extra energy. In particular

this can be seen in Fig. 3 (bottom) where the presence of

time delay in the loop violates the passivity condition given

in (2), (see the negative trend of energy Etd).

B. Control Methods for Time-delay Compensation

The compensation of the time delay has been tackled in

teleoperation where usually the control of a remote robot

is affected by delays in the communication channel [10]. A

popular method to compensate the lag in the signals is based

on wave variable transformation. Other existing methods are

available and these are based on the passivity characteristic

of the system, namely energy-tank and TDPA.
1) TDPA: This methods relies on two main elements, a

Passivity Observer (PO) which monitors the energy in the

system and a Passivity Controller (PC) which acts when

passivity property given in (2) is violated. The passivity

observer can monitor the energy injected by the time delay in

the system. For the case shown in Fig. 2, the energy observer

is defined as,

Eobs(k) = Eobs(k − 1) + Fe(k)
T (ẋ(k)− ẋ(k − µ))Ts

+ β(k − 1)Fe(k − 1)TFe(k − 1)Ts, (3)

where the second term on the right side is the energy due to

the time delay of the network and the last term, the energy

due to the passivity controller, later defined.

The passivity controller is based on an admittance causal-

ity with a variable damping factor β, which varies as a

function of the observed energy flow. In the admittance con-

figuration, the velocity is modified to produce the dissipation

and a corrected velocity value is commanded to the robot as

follows,

ẋc(k) = ẋ(k)− β(k − 1)Fe(k)
︸ ︷︷ ︸

ẋpc(k)

, (4)

where β(k − 1) is the time varying damping factor enabled

when the passivity condition is violated and it is given as,

β(k) =

{

− Eobs(k)
Fe(k)T Fe(k)Ts

if Eobs(k) < 0

0 else.
(5)

Note that the time-varying damping is free of mathematical

singularity because it acts only when the Fe 6= 0.

Therefore, the final velocity sent to the robot, ẋc, will be

modified according to the time-varying damping. Thus the

system with the passive control action is rendered to be stable

[13]. Fig. 4 shows the architecture of the robotic simulator

endowed with the PO-PC architecture. The PO is defined in

(3) and the PC is the time-varying damping in (5). Finally,

the robot receives a corrected velocity ẋc given in (4).

Fe(k)

Fe(k)

Sat.Dyn. TD+
− E

ẋ(0)

ẋ(k) ẋ(k − µ)ẋc(k)

ẋpc(k)
(Ind. Robot)

PC
PO

Fig. 4: Admittance model of the robot simulator with time delay
(TD) in the loop and PO-PC architecture.

2) Wave variable: Wave variable is a common method

utilised in teleoperation [30] for time delay compensation.

In particular, it is based on a simplified transformation of

the standard variables (ẋ, Fe) to the wave variables (u,v),

where u is the forward wave, from master to slave, and v
the returning wave, from the slave to master. The model

described in Fig. 2 can be augmented with the wave variable

transformation and it is shown in Fig. 5.

The wave variable layers (WV ) introduced in the scheme

compute the wave characteristics defined as follows:

ul =
bẋ(k) + FWV (k)√

2b
,

vl =
FWV (k)− bẋ(k)√

2b
,

ur =
Fe(k)− bẋ(k − µ)√

2b
,

vr =
bẋ(k − µ) + Fe(k)√

2b
,

(6)
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Fig. 5: Admittance model of the robot simulator with time delay
(TD) in the loop and wave variable transformation.

where ul and ur are the input waves of the respective port

and vl and vr are the output waves. The parameter b ∈ R
+ in

(6) is the characteristic impedance and it represents a critical

role in determining the system response because it represents

a trade off between the velocity and the force.

The set of equations given in (6) is commonly used in

wave variable formulation, see [17] and it has been adapted

for the considered scenario. However, for the analysed sce-

nario the time delay is only in the forward wave and not in

the backward wave. Therefore, the input force to the satellite

dynamics in Fig. 5 expressed in wave variable transformation

is defined as,

FWV (k) =
√
2bvl + bẋ(k). (7)

It is worth to notice that a low-pass filter is introduced in

the control loop shown in Fig. 5. Indeed, the wave variable

transformation might be affected by high-frequency noise

and a common approach to improve the performance is given

by using a filter. The phase lag that the filter might cause

is considered within the wave variable transformation layer

and therefore does not influence the stability [18].

IV. PASSIVITY CONTROL WITH ENERGY TANK

APPROACH

In this section the design of the proposed method which

compensates the time delay in the control loop is presented.

The method is based on an energy storing element, the tank,

which will be used by the controller to maintain the passivity

properties. Therefore, we augment the dynamic model in

(1) with an energy tank, whose role is to store the energy

dissipated by the controlled system. Formally, the augmented

dynamics is given by the following,






Mẍ− wxt = Fe

ẋt = −wT ẋ
y = (ẋT , xt)

T

(8)

The term xt ∈ R is the state associated with the tank

and the energy stored in the tank is given by the following

equation,

T (xt) =
1

2
x2
t , (9)

where the energy T (xt) needs to be initialized with a value

xt(0) > 0 in order to avoid singularities.

The parameter w ∈ R
3 is the control input (later defined)

through which is possible to control the exchange of energy

between the main admittance model (the satellite dynam-

ics) and the tank. Thus, the augmented admittance model

consists of a mechanical system and a tank energetically

coupled through the input w. Note that the exchange of

energy between the tank and the mechanical system is power

preserving, i.e. the energy injected (or extracted) in the tank

is the same as the one extracted (or injected) by the system,

see [21] for details. Indeed, the total variation of energy in

the system, Ẇ , is given by

Ẇ = V̇ + Ṫ , (10)

where V̇ is the energy variation of the system and Ṫ is the

variation of energy in the tank. In particular, from

V (x, ẋ) =
1

2
ẋTMẋ, (11)

it follows that

V̇ = ẋTMẍ = ẋTFe + ẋTwxt. (12)

The variation of energy in the tank results to be,

Ṫ = xtẋt = −xtw
T ẋ. (13)

Then, it is straightforward to calculate Ẇ , as the sum of (12)

and (13), to find

Ẇ = ẋTFe, (14)

which means that the system is passive according with (2).

A. Control Input for the energy tank

The method based on energy tank has the flexibility of

choosing any control input [29]. Therefore, two common

control inputs are considered for the analysed scenario. The

first one is based on a spring-damper behaviour and the

second one on a spring behaviour only.

It is worth to notice that the control input w imposes not

only a control action, but it is also associated with the state

of tank, see (8). Furthermore, it uses the available energy in

the tank to guarantee the passivity. In particular, the loss of

passivity is generated when an external force is involved in

the loop with the time delay (as shown in Sec. II). Therefore

when a force acts on the system, the control input w will

act. Formally, the control input using spring-damper for the

system (8) is defined as,

w =

{
− 1

xt
(Kx̃+D ˙̃x) T (xt) > ε

0 else
(15)

where K ∈ R
3×3 is the stiffness matrix and D ∈ R

3×3 the

damping. The term ˙̃x is the error in velocity between the

non-delayed values and the delayed one expressed as,

˙̃x = ẋ(k)− ẋ(k − µ), (16)

and x̃ is the respective variation of position, x̃ = x(k)−x(k−
µ). The value ε ∈ R

+ in (15) represents the minimum value

of the energy in the tank needed to implement the control

input in order to avoid singularities in the solution and it

needs to be set. The control input presented in (15) can be

reduced considering only the spring element as follows,

w =

{
− 1

xt
Kx̃ T (xt) > ε

0 else.
(17)
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Fig. 6: Admittance model of the robot simulator with time delay
(TD) in the loop and energy tank architecture.

Note that the system (8) under the control action given in (15)

or (17) results to be passive as demonstrated for a generic

input w, see (14). The schematic of the system endowed with

the energy tank is shown in Fig. 6. The dotted box highlights

the elements that belong to the energy tank method. The

satellite dynamics receives a correction in force, i.e. wTxt,

modulated by the tank, T , in (9) and the control input w
in (15) or (17). The control w (which receives as input the

difference in velocity ˙̃x(k)) is also exploited by the tank in

order to store the energy dissipated by the controller.

In the following subsection the results of the two control

inputs related to the energy tank method are presented.

B. Results with the Energy Tank Method

The two control inputs proposed in Sec. IV-A are verified

and compared in a simulation study, where the stiffness

parameter K is set the same for both controllers. The

simulation considers the following conditions.

Example 1: The simulated body has a mass of 100 kg

with an initial velocity of 0.1 m/s, the time delay in the

control loop is 20 ms and the sampling time is 1 ms. During

the motion, the body collides against virtual walls modelled

as spring elements in simulation producing forces. These

will be substituted by the real force sensor data during the

experiments.

Fig. 7 (top) shows the comparison of the velocity using the

control input (15), namely ẋ1 and the control input (17), i.e.

ẋ2. The velocities are also compared with the ideal case ẋi.

As can be seen the action of the energy tank control removes

the destabilising effect discussed in Fig. 3 and the velocity

is really close to the ideal one. Fig. 7 (middle) shows the

control action given in (15) and (17), which are indicated

with w1 and w2, respectively. The corresponding energies of

the tank for the control input (15) and (17) are shown in

Fig. 7 (bottom). The presence of more energy in the tank

for the control input (15), (see T1 in the plot) is given by

the presence of the damping term, therefore, more energy is

stored in the tank.

The two control inputs behave similarly and the trend of

velocity is really close to the ideal case ẋi, which considers

no delay in the loop. It is worth to compare Fig. 2 (without

the proposed method) with Fig. 7 (with the proposed method)

in order to understand the benefit of the controller.
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velocity ẋ2 with control input (17). Middle: Control input w1 given
in (15) and w2 in (17). Bottom: energy tank with corresponding
control input.

Notice that the control input (15) requires the setting of

two parameters, namely D and K . On the other hand (17)

requires only the setting of K . For the comparison in the

following section, we will consider the control input given in

(17) because it reduces the number of parameters obtaining

similar performance.

V. PERFORMANCE COMPARISON BETWEEN THE

ENERGY-BASED APPROACHES

In this section, we show the results of simulations and

experiments performed with the energy tank, wave variable

and TDPA methods. Since the considered dynamics is de-

coupled, the analysis will be performed for one degree of

freedom.

A. Simulation Results

The proposed controller based on energy tank (see (17)

and (8)) is compared with the TDPA and wave variable meth-

ods considering the same initial conditions and parameters

reported in Example 1.

Fig. 8 shows the velocities of the robot with the TDPA,

energy tank and wave variable method, ẋTDPA, ẋetank ,

ẋWV , respectively. Furthermore, the velocities are compared

with the ideal case velocity ẋideal. It is worth to notice how

the trend of the velocities is close to the ideal one. However,

the velocity produced with the wave variable method is

affected by overshoot, as can be seen in the enlarged part

of Fig. 8. Furthermore, the velocity produced with the wave

variable method is affected also by the presence of noise (see

between 0 s and 0.1 s).

In order to evaluate the performance between the methods,

the mean value for the velocity ˙̄x and the energy Ē is

calculated for each method and compared with the ideal

velocity and energy. Also the Mean Square Error (MSQE) is

calculated to see how large is the difference with respect to

the ideal dynamics of the satellite. The data are reported in
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Performance

Mean Value MSQE
˙̄x [m/s] Ē [J ] ˙̄x2 [m2/s2] Ē2 [J2]

Ideal -0.0071 0.4345 - -

TDPA -0.0071 0.4345 0.00003 0.0001

Energy Tank -0.0071 0.4345 0.0001 0.0002

Wave Variable -0.0077 0.4365 0.0180 0.2323

TABLE I: Performance results: mean value and MSQE of the
velocity and energy calculated for each energy-based method.

Table I and it can be seen that the velocity of each methods

(as well the energy) is closed to the ideal case. In particular,

the TDPA and the proposed energy tank method provides

the same performance when compared to the ideal case. The

slight difference with the wave variable method is due to the

overshooting of the velocity after each impact.

B. Experiment Results

The methods are also experimentally validated on a one-

degree of freedom robot, composed of a motor and a torque

sensor as shown in Fig. 9.

The facility has a time delay of 20 ms and the model

runs on a QNX real-time operating system, with 1 ms of

sampling time. The robot is controlled in admittance mode

where the set points are provided by the simulated dynamics,

thus, it follows the architecture shown in Fig. 2. The rigid bar

is attached to the sensor and the range of the free-floating

motion is limited by the two physical wall (see Fig. 9) in

order to validate the method for rigid impacts. The initial

velocity of the simulated mass is 0.17 [rad/s].

sensor

Walls

Walls

Fig. 9: Experiment set-up: 1 dof robot equipped with a torque
sensor. The bar is a mechanical interface which interacts with the
walls.
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(a) Measured torque (top) and measured velocity (bottom) without energy-
based control. Unstable system.
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Fig. 10: Experiments results: measured torque and increase in
velocity due to time delay (Fig. 10a) and velocity comparison with
the energy-based approach in Fig. 10b.

Fig. 10a shows the measured torque during the impact and

the relative increase in velocity caused by the time delay

when none of the energy-based method is active. As it can

be seen the system becomes unstable. When the methods

are activated, the passivity of the system is restored and the

angular velocity is kept constant after the rigid impact. This

is shown in Fig. 10b, which compares the angular velocity for

each method. The velocity corrected with the wave variable

method, ẋWV , is more affected by the noise, which is due to

trade off of the characteristic impedance, b, and the cut-off

frequency of the filter.

The control action, which resolves the unstable behaviour

of the system is shown in Fig. 11a for each method. At the

top the velocity corrected by the PC is shown, the action of

the control input of the energy tank is shown in the middle

and the bottom plot shows the control input transformed by

the wave variable. Fig. 11b shows the energy behaviour with

the TDPA method (top) and energy tank (bottom) where

the positive trend indicates passivity of the system as per

equation (2).
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(a) Control input of the TDPA (top), control input of the energy tank
(middle) and control input of the wave variable method (bottom).
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(b) Energy comparison with TDPA (top) and energy of the tank (bottom).

Fig. 11: Experiments results: control input for each method and
energy comparison (TDPA and WV).

The experiments with the proposed control can be seen in

the video accompanying this paper.

VI. ROBUSTNESS ANALYSIS

In this section, an analysis of robustness is performed con-

sidering the variation of the time delay in the control loop.

The analysis exploits the Montecarlo method. A number of

50 simulations are considered and the time delay changes

randomly between 1 ms and 50 ms. The variation of time

delay causes an increase of energy, whose error with respect

to the ideal case has mean value Ētd = 0.5325 and standard

deviation σĒ = 0.0559 J . This is compared in Fig. 12

with the ideal case (no delay) and the energies with the

respective energy-based methods, which compensate the time

delay effect. In particular, the resulting mean values with the

standard deviations σ can be found in Table II for the energy

and the velocity.

It is worth to notice that the proposed method using energy

tank shows the same robustness as the TDPA considering

the variation of time delay, as can be seen by the resulting

mean value of energy and velocity in Table II. For the
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Fig. 12: Robustness analysis. Eideal is the ideal energy, Ētd is the
energy with time delay in the loop. ĒTDPA, Ēetank, ĒWV are the
respective energy mean value for each method.

Robustness

Mean Value Standard deviation
¯̄̇x [m/s] Ē [J ] σ ˙̄x σ

Ē

Ideal -0.0071 0.4345 0 0

TDPA -0.0071 0.4345 0.00002 0.0001

Energy Tank -0.0071 0.4345 0.00005 0.0002

Wave Variable -0.0079 0.4384 0.0031 0.0078

TABLE II: Robustness analysis for the considered energy-based
methods.

wave variable method, the same problems described in the

previous section are found, in particular the overshooting of

the velocity affects the behaviour of the system and therefore

the mean values in velocity and energy is higher than the

ideal case.

A. Discussion

The limitations and the benefits of each method are

summarised in this subsection. The limitation of the wave

variable approach is given by the lack of flexibility in

parameters setting. In particular, the response of the system

depends on the setting of the impedance characteristic b. This

justifies also the small increase in energy with respect to the

ideal case (see Fig. 12) due to the fixed value b.

Better performance can be achieved by using the TDPA

or the energy tank method. The TDPA method has the ad-

vantage that no tuning of parameters is required because the

passivity controller dissipates, through a variable damping,

the exact amount of active energy monitored by the passivity

observer. However, high frequency jitter in velocity might

occur, which are generally reported as a limitation of the

TDPA damping injection [31].

The proposed method based on energy tank has the

flexibility that a generic control action can be chosen. The

minimum amount of energy stored in the tank, ǫ and the

control gains need to be set. Then the method relies on

some parameters, however, it results to be robust when

variable time-delay is considered and it does not generate

high frequency jitter in force.



VII. CONCLUSIONS AND FUTURE WORKS

In this paper an energy-based control, which compensates

the time delay inherit in the control loop of a robot has

been presented. The method allows to simulate free- floating

dynamics on an admittance-controlled robot. The approach is

based on an energy tank which is exploited by the controller

to dissipate the extra energy induced by the time-delay. A

robustness analysis and a comparison with different existing

methods (TDPA and wave variable) has been performed

considering the variation of time delay in the control loop.

The results, both in simulations and experiments, show good

performance of the proposed method which results robust

also to noise intrinsic in the hardware.

Future works aim at extending the method to the multi-

dof case while combining the TDPA control with the energy

tank method.
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