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Abstract— The availability of real-world datasets is the
prerequisite for developing object detection methods for au-
tonomous driving. While ambiguity exists in object labels due
to error-prone annotation process or sensor observation noises,
current object detection datasets only provide deterministic
annotations without considering their uncertainty. This pre-
cludes an in-depth evaluation among different object detection
methods, especially for those that explicitly model predictive
probability. In this work, we propose a generative model to
estimate bounding box label uncertainties from LiDAR point
clouds, and define a new representation of the probabilistic
bounding box through spatial distribution. Comprehensive
experiments show that the proposed model represents uncer-
tainties commonly seen in driving scenarios. Based on the
spatial distribution, we further propose an extension of IoU,
called the Jaccard IoU (JIoU), as a new evaluation metric that
incorporates label uncertainty. Experiments on the KITTI and
the Waymo Open Datasets show that JIoU is superior to IoU
when evaluating probabilistic object detectors.

I. INTRODUCTION

The availability of real-world driving datasets such as
KITTI [1] and Waymo [2] is one of the key reasons
behind the advancement of object detection algorithms in
autonomous driving. However, the data labelling process
can be error-prone due to human subjectivity and resource
constraints. Ambiguity or uncertainty may also inherently
exist in an object label. Think about the 3D object detection
task, where annotators need to estimate the object positions
only based on the surface information from cameras or
LIDARs. Fig 1 illustrates several bounding box labels of
“Car” objects and their associated LiDAR point clouds in
Bird’s Eye View (BEV). The areas with dense LiDAR points
(typically “L-shape” areas) are easier to be labeled (e.g.
object 2), whereas the back side of the object has higher
labeling uncertainty due to insufficient observations (e.g.
object 3). Ignoring such label uncertainty during training may
degrade the generalization capability of an object detector
since the model is forced to fit each training data sample
equally, even the ones with remarkable noises. Significantly
polluted data with noises can also deteriorate the detection
performance [3]. Therefore, modelling label uncertainty in a
dataset is indispensable for building robust, accurate object
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Fig. 1. A demonstration of our proposed spatial uncertainty for bounding
box labels in the KITTI dataset [1]. Objects are shown in the LiDAR Bird’s
Eye View (BEV). There exist errors (or uncertainty) inherent in labels. For
object 3, estimating its length is difficult because the surface information
is only available on the side facing towards the ego-vehicle. For object 5,
the bounding box label does not even fully cover the LiDAR reflections
near the bottom-left corer. Original data labels are deterministic, and they
do not provide information on label wellness. In this work, we infer label
uncertainty via a generative model of LiDAR points.

detectors for autonomous driving. Previous works have been
focused on modelling class label noises in image classi-
fication problem [4]–[7]. To the best of our knowledge,
modelling label uncertainties in object detection problem has
not been widely studied, especially for bounding box labels.

Uncertainties should be comprehensively considered, not
only for the labels, but also for the evaluation metrics. Inter-
section over Union (IoU), defined as the geometric overlap
ratio between two bounding boxes, is the most common
metric to measure localization accuracy in object detection.
Based on IoU, several metrics for detection accuracy are
proposed, such as Average Precision (AP) [8] and Localiza-
tion Recall Precision (LRP) [9]. However, those metrics are
designed only for deterministic object detection: they can not
be used to evaluate probabilistic object detectors [10] which
provide additional uncertainty estimation. The Probability-
based Detection Quality (PDQ) metric [11] is designed
specifically for probabilistic object detection. However, PDQ
and the other aforementioned metrics only compare pre-
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dictions with bounding box labels without considering the
uncertainty (or ambiguity) in the labeling process. As a
result, existing evaluation metrics may not fully reflect the
performance of an object detector.

In this work, we explicitly model the uncertainty of
bounding box parameters, which is inherent in labels (“la-
bel uncertainty”) for object detection datasets with LiDAR
point clouds. The label uncertainty is inferred through a
generative model of LiDAR points. In this way, we can
easily incorporate prior knowledge of sensor observation
noises and annotation ambiguity into our model. Then we
propose the “spatial distribution” to visualize and represent
the label uncertainty in 3D space or the LiDAR Bird’s Eye
View (BEV). We show that it reflects not only the typical
L-shape observations in LiDAR point clouds, but also the
quality of bounding box labels in a dataset. Based on the
spatial distributions of bounding boxes, we further propose
a probabilistic IoU, namely, Jaccard IoU (JIoU), as a new
evaluation metric for object detection. The metric treats each
bounding box label differently according to its uncertainty,
and provides richer localization information than IoU. Using
our proposed metric, we study the quality of uncertainty
estimation from a state-of-the-art probabilistic object detector
in KITTI [1] and Waymo [2] datasets.

In summary, our contributions are three-fold:
• We infer the inherent uncertainty using a generative

model in bounding box labels for object detection, and
systematically analyze its parameters.

• We propose a new evaluation metric called JIoU for the
object localization task, which considers label uncer-
tainty and provides richer information than IoU when
analyzing probabilistic object detectors.

• We conduct comprehensive experiments with real-world
datasets to justify the proposed method.

II. RELATED WORKS

A. Modelling Label Noises

Explicitly modelling label noises (or uncertainty) has been
an active research field [12]. Whereas it is common to assume
independent Gaussian noises for target regression, class label
noises are much more complex to model, and incorrect
assumptions may deteriorate the model performance (e.g.
flipping class labels reverses the prediction results). There-
fore, almost all proposed methods in the literature focus
on modelling class label noises, especially in the image
classification task [4]–[7]. Only [13] and [14] are closely
related to our work, which use simple heuristics to model
uncertainties in bounding box labels for object detection. [13]
approximates the uncertainty with the IoU value between
the label and the convex hull of aggregated LiDAR points.
[14] assumes Laplacian noises within bounding box labels.
They interpret the Huber loss as the KL divergence between
label uncertainty and predictive uncertainty and select hyper-
parameters based on intuitive understanding of label uncer-
tainties, in order to train object detection networks.

Our methodology can be linked to the measurement
models used in the LiDAR-based 3D single target object

tracking [15]–[17]. We assume a (generative) measurement
model which generates noisy LiDAR measurements given a
latent object state. However, instead of inferring a probability
distribution over the latent object state from measurements
over time and a prediction prior of a previous time-step, we
infer a distribution over the latent object label from human
annotators, given measurements of a single time-step and the
assumption of known mean.

B. Evaluation Metrics for Object Detection

Intersection over Union (IoU) has been de fecto the
standard metric to measure localization accuracy. It is often
used to determine true positives and false positives among
predictions, given a certain IoU threshold (e.g. in KITTI car
detection benchmark, IoU is set to be 0.7 [1]). Furthermore,
it has been extended as auxiliary losses during training to
improve the detection performance [18]–[21]. Based on the
fixed IoU threshold, Average Precision (AP) is derived as the
standard metric to measure detection accuracy [8]. However,
AP does not fully reflect the localization performance of
a detection algorithm, since all predictions higher than the
IoU threshold is treated equally. Observing this fact, the
MS COCO benchmark [22] calculates AP averaged over
several IoU thresholds to show the difference. Oksuz et
al. [9] propose a new evaluation metric called Localization
Recall Precision (LRP) to incorporate the IoU score for each
detection. The NuScenes object detection benchmark [23]
defines several new geometric metrics such as Average
Translation Error (ATE), Average Scale Error (ASE) and
Average Orientation Error (AOE) to specifically measure the
bounding box localization performance. While those metrics
only show the performance of deterministic object detec-
tion, Hall et al. [11] focus on probabilistic object detection
and propose the Probability-based Detection Quality (PDQ)
metric, which jointly evaluates semantic probability (by the
“Label Quality” term) and spatial probability (by the “Spatial
Quality” term). The optimal PDQ is obtained when the
predicted probability matches the absolute prediction error
(e.g. a smaller IoU between a predicted bounding box and
the ground truth indicates higher spatial uncertainty).

III. METHODOLOGY

A. Problem Formulation

Labels in standard object detection datasets for au-
tonomous driving (such as KITTI) usually include object
classes cls, and deterministic object 3D poses and sizes y
in the form of bounding boxes. Denote xall as the set of
all LiDAR points in a scan. Our target is to estimate the
posterior distribution of bounding box labels, and extend IoU
to a new metric called Jaccard IoU (JIoU) that incorporates
spatial uncertainty. In this work, We demonstrate our method
in vehicle objects.

We usually have the prior knowledge of object shape given
its class cls. Therefore, it is possible to infer the posterior
distribution of y using the prior knowledge and observation
xall , i.e. p(y|xall ,cls). For this purpose, we assume:
• Labeling of class cls is accurate.



• Segmentation is accurate. The set of points x belonging
to the object segmented out from xall by human anno-
tation has few outliers.

• Human-labeled bounding box parameters y is the accu-
rate mean of y. We only care about the spread of y.

Under these assumptions, the position, rotation and size of
an object y is only conditioned on the observation of points
belonging to this object, denoted as x = {x1, · · · ,xK}. The
posterior distribution p(y|xall ,cls) is denoted as p(y|x) for
notation simplicity. We are especially interested in p(y|x)
because the LiDAR observations provided to the human
annotators are usually not enough for determining the full
size and center of the object, due to occlusion and sensor
noises.

An object in detection task is parameterized by its center
location c1,c2,c3, 3D extents l,w,h and orientation ry, i.e.
y = [c1,c2,c3, l,w,h,ry]. This provides a universal affine
transformation from the point v0 ∈ [−0.5,0.5]3 of the unit
bounding box B(y∗) to the actual point v(y) on the object
surface in the 3D space:

v(y) = Ry

[
l 0 0
0 w 0
0 0 h

]
v0 +

[ c1
c2
c3

]
, (1)

with Ry being the rotation matrix from ry, and v0 depending
on the prior knowledge of the shape, e.g. from the CAD
model, bounding box or point cloud rendering method [24].
The graphical model is then illustrated in Fig. 2. In this paper,
we uniformly sample v0’s from the bounding box boundary
to generate the object surface for simplicity.

Fig. 2. Probabilistic graphical
model for the inference of y.
zk is the latent variable asso-
ciated with each observation,
which contains the semantic
meaning such as the part of
the object that the point xk
belongs to.

In the sequal, Section III-B introduces how we derive the
posterior distribution p(y|x) via a variational Bayes method.
The derived distribution p(y|x) is in the parameter space of
y∈R7, which is difficult to visualize and represent the uncer-
tainty of a bounding box. Therefore, Section III-C proposes
to transform the distribution p(y|x) into a distribution p(u) in
the 3D space u∈R3 or BEV space u∈R2. Such label spatial
distribution allows us to extend IoU to a metric (JIoU) that
measures the probabilistic object localization performance,
described in Section III-D.

B. Label Uncertainty from Generative Model of Point Cloud

We start to elaborate our method with a simple example
given in Fig. 3 in the bird’s eye view (BEV) with point clouds
as observation x = {x1,x2,x3}. Three points are segmented
out inside the bounding box as red cross markers. The
posterior is solved by Bayes rule:

p(y|x) = p(x|y)p(y)
p(x)

, (2)

assuming that p(x|y) = ∏
K
k=1 p(xk|y;vk), K=3, where each

point xk ∈R2 is independently generated by the nearest point

vk(y)∈R2 on the boundary of the ground truth bounding box
with Gaussian noise:

p(xk|y;vk)∼N
(
vk(y),σ2) , σ=0.2m

The label parameters are center and size y=[c1,c2, l,w].
The posterior p(y|x) is then Gaussian given Gaussian prior
p(y)∼N ([0,0,4,2],1002):

p(y|x) =
3

∏
k=1

p(xk|y;vk)p(y)∼N (·,0.01×

[
4 0 −4 0
0 4 0 −4
−4 0 6 0
0 −4 0 6

]
).

Different from others [13], [25] who calculate the uncer-
tainty of predictions and labels as independent variables,
the uncertainty derived here is a joint distribution with
correlation. A singular value decomposition (SVD) of the
covariance matrix shows that two edges of the bounding
box which have point cloud observations, namely X =
c1 + l/2 and Z = c2 + w/2, have the smallest standard
deviations 0.09m and 0.09m. The other two edges without
observation have the largest standard deviations 0.43m and
0.43m. Fig. 3 illustrates the confidence interval within one
standard deviation by green dashed bounding boxes. The
advantage of producing a joint distribution is significant. For
those who produce disjoint distributions on size and pose,
the confidence intervals or variances are the same between
face and back, and between left and right side of the car.
Meanwhile, it is the common sense that surfaces with more
observations should have less variance, as shown by Fig. 3.

Fig. 3. A simple demonstration of calculating the posterior with determin-
istic latent variable. x1=(1.8,0), x2=(1.8,0.9), x3=(0,0.9) and correspond-
ing v’s are v1=(c1+0.5l,0), v2=(c1+0.5l,c2+0.5w), v3=(0,c2+0.5w)

A more general model is by assuming that p(x|y) is
some mixture model with categorical latent variable z,
e.g. a Gaussian Mixture Model (GMM) of center points
v j(y), j=1,2, · · · ,M:

p(xk|y) =
M

∑
j=1

p(zk= j)N
(
v j(y),σ2

j I
)
, (3)

Each v j(y) is created from a unique point v j0 inside the
unit bounding box B(y∗) : =[−0.5,0.5]3, by Eq. 1. σ2

j is
an empirical covariance related to the sensor noise and the
confidence of the rendering method. We use the surface of
boundary of the box to create v0 and σ j=σ for all j, but
it does not exclude the potential of more complex rendering
methods.

An approach to solve the posterior of GMM is by vari-
ational Bayes (VB), assuming y,z are independent. A good
practice of VB is the point registration method. The problem
then becomes solving q(y), q(z) that minimize the KL-
divergence between the assumed class of distribution and



the actual posterior:

DKL (q||p) =
∫

z
q(y,z) log

q(y,z)
p(y,z|x)

, (4)

and the solution is given below by mean field method [26]:

q(y) ∝ exp
{

log p(y)+Ez [log p(x|z,y)]
}

∝ exp
{
−

M

∑
j=1

1
2σ2

j

K

∑
k=1

ϕ jk||xk− v j(y)||2
}
,

(5)

with ϕ jk := p(zk = j|xk) being the probability of registering
xk to v j and it can be calculated using the nominal value y
of the ground truth bounding box:

ϕ jk =

exp
(
− 1

2σ2
j
||xk− v j(y)||2

)
∑

M
j=1 exp

(
− 1

2σ2
j
||xk− v j(y)||2

) , (6)

where v j(y) is a linear function of y in our example used for
demonstration and the resulting posterior p(y|x) is Gaussian

The proposed variational Bayes method Eq. 5 is used
to calculate the label uncertainty of vehicles in terms of
detection based on point cloud. The generative model is
generated by the ground truth bounding box. For extensions
to pedestrians and other objects, a more dedicated rendering
model is desired and it is left for future development.

C. Spatial Distribution for Probabilistic Bounding Box

Regardless the uncertainty of labels, a proper representa-
tion of the probabilistic bounding box is desired for evaluat-
ing the probabilistic detection [11], [27], [28]. We propose
a generative model that generates a spatial distribution of the
bounding box in 3D or BEV. It provides a visualization of
uncertainty and is later shown that it supports the extension
of the commonly used IoU.

The idea of probabilistic box representation is proposed
in PDQ [11] for 2D axis-aligned bounding box of image.
The resulting spatial distribution P(u) ∈ [0,1] denotes the
probability of pixel u∈Z2 belonging to the object. A natural
generalization of P(u) to u ∈ R3 in 3D space or u ∈ R2 in
BEV for rotated bounding box B(y) is:

PPDQ(u) :=
∫
{y|u∈B(y)}

pŶ (y|x)dy, (7)

where P(u) is the probability that u is a point of the object.
The subscript Ŷ (or Y ) is the random variable of the detection
(label). Eq. 7 is easy to calculate for axis-aligned bounding
boxes but hard for rotated boxes because it has to integrate
over the space of y, which is 7 dimensional for 3D. A
transformation in the integral gives another expression as a
probabilistic density fumction (PDF):

pG(u) :=
∫

v0∈B(y∗)
pV(v0,Ŷ) (u)dv0

=
∫
{y|u∈B(y)}

1
A(y)

pŶ (y|x)dy,
(8)

where V (v0,Y ) is defined in Eq. 1, and V and Y are random
variables. v0 is added as an argument because we need to

integrate over v0. Given the probabilistic density of Y , e.g.
from Section III-B, it is not difficult to get the density of
V (v0,Y ) as Eq. 1 is quite simple.

The proposed definition of spatial distribution pG is
slightly different from PPDQ by scaling the density with the
size A(y) of the bounding box B(y). The scaling factor en-
ables the transformation to a integral over distributions gen-
erated by points v0 inside the unit box B(y∗), i.e. A(y∗)=1.
Therefore, it has a significant advantage of reducing the
dimension of the integral from 7 to 3 for 3D. Besides,∫

u pG(u)=1 if it is integrated on spatial points u, but PPDQ(u)
is not normalized. The shapes of their distribution differ only
when the object size is uncertain and the proposed pG(u)
tend to be more concentrated.

D. JIoU: A Generalization of IoU for Evaluation with Un-
certainty

IoU is one of the most commonly used metric for detec-
tion. It has an intuitive geometry definition measuring the
overlap between the predicted and ground truth bounding
boxes. Despite its popularity, IoU only applies to deter-
ministic predictions and labels. In this section, we define
a metric over p(u) of probabilistic bounding box following
the definition of the probabilistic Jaccard index [29]:

JIoU :=
∫

R1∩R2

du∫
R1∪R2

max
(

p1(v)
p1(u)

, p2(v)
p2(u)

)
dv

, (9)

p1, p2 are the spatial distributions of two boxes, as introduced
in Eq. 8. u,v are points in the 3D or BEV space. R1,R2 are the
supports of p1, p2, respectively. Note that JIoU degenerates to
IoU when two boxes are deterministic, i.e., p(y|x) is a delta
function, where R1,R2 become bounding boxes and p1, p2
become uniform inside their boxes. Some properties of JIoU
can be concluded as:
• JIoU = IoU if two boxes are both deterministic
• The computational complexity is O(NlogN) using Eq.

3 of [29] if N points are sampled from R1∪R2.
The proposed pG(u) is more reasonable than PPDQ(u)

when JIoU is used as a metric. Consider when label Y
is a discrete random variable with two values of equal
probability, i.e. two possible bounding boxes, and when the
prediction Ŷ only fits one of the box as shown in Fig. 4.
Then PPDQ(u) = 0.5 for the label and JIoU(Y,Ŷ )≈0 because
one box is much smaller. On the contrary, JIoU(Y,Ŷ )=0.5
under pG, no matter what the size difference is. Here it is
desired that JIoU = 0.5 because the prediction has matched
one of the two possible ground truths.

(a) JIoU=0.1 using PPDQ (b) JIoU=0.5 using pG

Fig. 4. Spatial distributions of discrete Y with two possible values in blue
and predicted box Ŷ = ŷ in dashed red line.



IV. EXPERIMENTAL RESULTS

In this work, we propose (1). a generative model to
infer the uncertainty of bounding box labels for LiDAR
point clouds, (2). a new spatial distribution to visualize the
uncertainty, and (3). JIoU as an extension of IoU to evaluate
probabilistic object detectors. In the following, we design
three experiments to verify our proposed methods. First, we
study how the model parameters affect the label uncertainty,
including the LiDAR observation noises and the prior knowl-
edge of human annotators (Sec. IV-A). Second, we justify
our methods and show that the spatial uncertainty reflects the
typical “L”-shape behaviours in LiDAR point clouds, which
are also observed in state-of-the-art object detection networks
(Sec. IV-B). In addition, we show our methods reflect the
quality of bounding box labels (Sec. IV-C). Third, we use
JIoU as a new evaluation metric to explore predictions from
probabilistic object detection networks (Sec. IV-D).

We evaluate the proposed method on the KITTI dataset [1]
and the recently released Waymo open dataset [2]. Both
provide LiDAR observations and 3D object labels from
human annotators. We use the “Car” category on the KITTI
training dataset, with 7481 data frames and nearly 30K
objects. As for the Waymo dataset, we select the training
data drives recorded in San Francisco, and down-sample the
frames by a factor of 10. The original “Vehicle” class in
the Waymo dataset does not distinguish among objects such
as motorcycles, cars or trucks, making it difficult to directly
compare with the KITTI dataset. Therefore, we extract the
“Car” objects from the “Vehicle” class by thresholding the
vehicle length within 3m−6.5m. We use such modified
Waymo database with 7545 frames and over 150K objects.
When evaluating our proposed label uncertainty with the help
of object detection networks, We report the standard Aver-
age Precision (AP) from the BEV (APBEV ), with IoU=0.7
threshold. Objects in the KITTI dataset are categorized into
“Easy”, “Moderate” and “Hard” settings [1], while objects
in the Waymo dataset are categorized by thresholding the
LiDAR range up to 30m, 50m and 70m.

A. Choice of Parameters for Label Uncertainty

The inference of label uncertainty p(y|x) introduced in
section III-B allows us to incorporate prior knowledge of
LiDAR observation noises p(x|y,z). Furthermore, it can
incorporate models for human annotation uncertainty in the
priors p(y). This section explores the impact of parameters
on the label uncertainty. More specifically, we examine
the standard deviation of LiDAR observation noise σ , and
the covariance of p(y). We empirically define the covari-
ance matrix in BEV of y = [c1,c2, l,w,ry]

T , referring to
the variance of vehicle size for all objects in the KITTI
dataset: 1/w×diag([0.442,0.112,0.252,0.252,0.172]), where
w is the weight of the prior knowledge. Larger w means
smaller variance of prior distribution and more confidence
in human annotators. Fig. 5 shows the evolution of spatial
distribution p(u) and JIoU score for a bounding box label
with increasing σ and w. There are only a few LiDAR
observations on the front surface of the vehicle. This results

in high uncertainty, or low density, at the opposite side of
the bounding box label, if no prior distribution is added.
As more prior knowledge is incorporated (e.g.. increasing
weights w for human annotations, or decreasing observation
noise σ ), the posterior uncertainty decreases, resulting in
higher JIoU score. Furthermore, we observe that labels with
lots of observed LiDAR points are almost never affected by
the choice of parameters. They have an uniform spatial distri-
bution inside bounding boxes, even without prior distribution.

Low

High

PD
F

Fig. 5. Influence of LiDAR measurement noise and prior distribution on
spatial distribution. The sample is drawn from frame 1287, object 11 in
KITTI.

Instead of empirically choosing the value of σ , it can be
estimated by the EM algorithm in [5] using

σ
2 =

1
Md

M

∑
j=1

K

∑
k=1

ϕ jk||xk− z j(y)||2, (10)

with iterative updates. The resulting σ is 0.2m for KITTI and
0.3m for Waymo. Eq. 10 implies that these results are very
close to the root mean square of distances between LiDAR
points and bounding box labels. The chosen value of σ2

includes both the measurement noise of the LiDAR sensor
and the approximation error of a bounding box to the actual
surface of a car.

B. Justification of uncertainty model

The uncertainty model proposed in this paper suggests
that different points of the bounding box have different
variances: points close to the LIDAR are likely to have
smaller variances. The importance of modeling the variance
of different points is also revealed in a probabilistic detection
paper [28]. Fig. 6 measures the average total variances (TV)
of each of the four corners in the BEV bounding boxes
in the KITTI and Waymo datasets (C1-C4, sorted by their
distance to the ego-vehicle in the ascending order). The TV
scores are calculated by our proposed spatial distribution.
We observe that the nearest corner C1, which usually has
dense laser points are more reliable than the center of the
box and the distant, occluded corders, by showing smaller
TV scores. This observation corresponds to the intuition
of L-shapes [30] widely used for vehicle detection and
tracking. The nearest corner of the L-shape is determined



Fig. 6. The average total vari-
ances [25] of centers and cor-
ners of all “Car” objects in the
KITTI dataset. Variances are
calculated by the proposed un-
certainty model. Corners (C1-
C4) are sorted by their dis-
tances to the ego-vehilce.

original center aligned corner aligned

ground truth

prediction

Fig. 7. Column “origin” in
Table I does no modification
to the predicted bounding box.
“center aligned” assembles the
bounding boxes using center
predictions and ground truth
sizes. “corner aligned” using
nearest corner predictions and
ground truth sizes.

more confidently by our method while the size of the vehicle
is more uncertain. Considering the mechanism of LiDAR
perception, we expect that using object detectors to predict
the nearest corner for location and orientation should be less
prone to label noise than predicting the center. Table I verifies
this result and shows how a small modification of “corner”
and “center” directly benefits the AP of multiple networks.

In the table, We modify the outputs from several state-
of-the-art LiDAR-based object detectors, and show how the
location and orientation accuracy is governed by L-shape.
We use STD [31], SECOND [32], AVOD [33], VoxelNet [34]
and PointRCNN [35] in the KITTI dataset, and PIXOR [36]
in the Waymo dataset. Following the nuScenes [23] evalu-
ation criterion which uses partial ground truth information
to adjust predictions in order to separate location and size
accuracy, we evaluate networks by replacing size predictions
with ground truth labels, while keeping the center predictions
or the nearest corner predictions unchanged.

The predicted bounding boxes are reassembled as shown
in Fig 7. “corner aligned” consistently demonstrates much
better APBEV improvement than “center aligned” among all
networks and datasets. The result justifies that the networks
have better predictions on corners than centers. Our proposed
label uncertainty naturally captures this behaviour, and has
the potential to provide rich information when evaluating
object detection performance.

To conclude, our proposed methods reflect the typical “L”-
shape in LiDAR observations, which is also observed in
LiDAR-based object detection networks.

TABLE I
CHANGE OF APBEV (%) OF TWO TYPES OF PREDICTED BOUNDING BOXES

COMPARED TO THEIR ORIGINAL VALUES ON THE KITTI val SET.

KITTI Origin (Easy, Moderate, Hard) Center aligned Corner aligned

STD [31] 90.0, 88.1, 87.7 +0.0,+0.1,+0.2 +0.1,+0.4,+0.4
SECOND [32] 89.9, 87.9, 86.8 +0.0,+0.2,+0.1 +0.1,+0.5,+0.5

AVOD [33] 88.9, 79.6, 78.9 −0.2,+0.0,+0.1 +0.0,+6.3,+0.4
Voxel [34] 81.6, 70.7, 65.8 +1.2,+1.1,+1.0 +3.0,+4.4,+8.0

PointRCNN [35] 88.8, 86.3, 86.0 +0.0,+0.4,+0.7 +0.2,+0.7,+1.2

Waymo Origin (< 30m, < 50m, < 70m) Center aligned Corner aligned

PIXOR [36] 62.2,54.3,48.5 +3.8,+5.5,+4.0 +4.3,+6.7,+6.9

Fig. 8. Distributions of different label uncertainty measures for all objects
in the KITTI val set. Our method (“jiou-gt”) is compared with convex
hull method (“cvx-hull-iou”) proposed by [13], as well as the simple
heuristic that calculates the number of LiDAR observations within an
object (“num-points”). All three uncertainties range among [0,1].

C. Label Quality Analysis

In this section, we study how the proposed spatial un-
certainty captures the quality of bounding box labels in the
KITTI dataset. We evaluate the spatial uncertainty by the
JIoU score between the (deterministic) object label and its
spatial distribution from the our proposed generative model
(“jiou-gt”). It is compared with “cvx-hull-iou” proposed by
Meyer et al. [13], which approximates the spatial distribution
by measuring the IoU value between the bounding box label
of an object and its convex hull of aggregated LiDAR points.
We also calculate the number of points within an object as
a simple heuristic (“num-points”). All three methods range
between 0 and 1, with larger scores indicating better label
quality.

First, we study the relationships among three meth-
ods. Fig. 8 illustrates their distributions for all objects in
the KITTI val set. We observe that the relationship be-
tween “cvx-hull-iou” and “num-points” is relatively small
(Fig. 8(a)). This is because they capture different aspects
of spatial uncertainty. “cvx-hull-iou” assumes that if larger
parts of an object are observed, the uncertainty is smaller.
In contrast “num-points” focuses on the observation den-
sity. “jiou-gt” is highly related both with “cvx-hull-iou”
and “num-points” (Fig. 8(b) and Fig. 8(c)), indicating that
our proposed method naturally considers both the size and
density of observed region when inferring spatial uncertainty.

Then, we study how three spatial uncertainty methods
behave on objects which tend to have large label noises.
Ideally, the modelled spatial uncertainty should depict higher
values in bad labels than the labels with high quality.
However, it is difficult to directly study the label noises
within object detection datasets, as they do not provide
“ground truths” of label uncertainty. Instead, we leverage
the common false negatives from several state-of-the-art
detectors, with the assumption that objects with bad labels
are also difficult to be detected. In this regard, we collect
the common false negatives from detectors listed in Tab. I
as bad examples, and the rest of the objects as good labels.
We threshold spatial uncertainty scores to discriminate good
labels from the bad ones. From the ROC curves in Fig. 9, we
observe that “jiou-gt” performs better than “covx-hull-iou”,
showing that it captures more reliable spatial uncertainty.
“num-points” outperforms the other two methods, because
we select bad labels based on predictions from LiDAR-



Fig. 9. ROC curves for de-
tecting bad labels in the KITTI
val set, by thresholding spatial
uncertainty scores. We com-
pare among three spatial un-
certainty methods, including
“jiou-gt”, “cvx-hull-iou”, and
“num-points”.

based object detectors, whose classification performances
highly depend on the number of LiDAR observations. We
leave it as an interesting future work to do evaluation with
“ground truths” of label uncertainty, which can be generated
by querying human annotators or by simulation.

To conclude, our proposed spatial uncertainty captures the
quality of bounding box labels.

D. JIoU on Different Networks

The proposed JIoU, as an extension of IoU, allows
us to evaluate the prediction or label uncertainties under
the same evaluation framework of deterministic object de-
tection. In this section, we demonstrate how to get in-
sights of probabilistic detections with the help of JIoU.
We employ a state-of-the-art probabilistic object detec-
tor called “ProbPIXOR” from [27], which models data-
dependent (aleatoric) uncertainty on PIXOR [36] - a deter-
ministic LiDAR-based object detection network. ProbPIXOR
assumes the regression variables are Gaussian-distributed
with diagonal covariance matrix. Since ProbPIXOR is shown
to predict over-confident or under-confident uncertainties
in [27], we further calibrate its uncertainty estimation based
on temperature scaling proposed in [27] and call the new
network “CalibProbPIXOR”. The only difference between
CalibProbPIXOR and ProbPIXOR is the scale of variances in
the Gaussian distribution. We calculate the JIoU between the
predicted and the label bounding boxes for all three networks
(PIXOR, ProbPIXOR and CalibProPIXOR), as well as the
ground truth JIoU following the method in Section III-C. The
aleatoric uncertainties of ProbPIXOR and CalibProbPIXOR
are used to construct the distribution of predicted boxes,
which include the box center position, length, width and
heading. As for PIXOR, JIoU is directly applied to the
deterministic box predictions. Note that all three network
are not optimized for JIoU metric, and ProbPIXOR and
CalibProbPIXOR only produce symmetric probability dis-
tributions due to the bounding box encoding.

We first explore how JIoU behaves for predictions from
ProbPIXOR and CalibProbPIXOR in the KITTI dataset. We
observe that JIoU scores are in general consistent with IoU
scores, with higher IoU corresponding to larger JIoU, as
illustrated in Fig. 10. However, JIoU provides us additional
uncertainty information to evaluate detections. For example,
Fig. 10(a-2) shows a bad detection with only IoU=0.03.
However, the ground truth JIoU is already small with
JIoU=0.39 (Fig. 10(a-1)) due to sparse LiDAR observations,
indicating that over-emphasizing the detection performance
for this object is unnecessary. Another example are detections
in Fig. 10(b-2) and Fig. 10(c-2). Both are measured with

JIoU: 0.39

JIoU: 0.28
IoU:   0.03

JIoU: 0.50
IoU:   0.03

JIoU: 0.44

JIoU: 0.57
IoU:   0.43

JIoU: 0.63
IoU:   0.43

JIoU: 0.49

JIoU: 0.49
IoU:   0.43

JIoU: 0.62
IoU:   0.43

JIoU: 0.80

JIoU: 0.71
IoU:   0.74

JIoU: 0.81
IoU:   0.74

JIoU: 1.00

JIoU: 0.83
IoU:   0.81

JIoU: 0.76
IoU:   0.81

JIoU: 1.00
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Ground truth

Ground truth

Prediction

Fig. 10. Some detection examples and their JIoU scores in the KITTI
dataset. We visualize the spatial distribution for the bounding box labels in
the first row, predictions from ProbPIXOR in the second row, and predictions
from CalibProbPIXOR in the thrid row.

(a) On the KITTI val set. (b) On Waymo dataset.

Fig. 11. Increase of recall from ProbPIXOR and CalibProbPIXOR
compared with PIXOR, by thresholding detections based on IoU or JIoU.

the same IoU but different JIoU scores, because of different
label and predictive probability distributions. Furthermore,
we observe in the third row of Fig. 10 that the predictive
probability distributions become wider after calibration, be-
cause most predictions are over-confident (similar to [27]).
This results in improved JIoU scores in most cases compared
to ProbPIXOR. However, temperature scaling only improves
the uncertainty on the whole dataset, and does not guarantee
that each detection is better-calibrated [27]. Therefore, we
observe a worse JIoU after calibration in Fig. 10(e-3).

Next, we use JIoU to quantitatively analyze how modelling
uncertainties affects detections. Fig. 11 shows the relative
recall gain of probabilistic object detectors (ProbPIXOR
and CalibProbPIXOR) compared with the original PIXOR
network, by thresholding detections based on IoU or JIoU
metrics. In both KITTI and Waymo datasets, we observe con-
sistent recall improvement by modelling uncertainty based
on the IoU metric (see “ProbPIXOR IoU” in Fig. 11),
indicating higher Average Precision performance (as shown
in [25]). When using JIoU, however, both ProbPIXOR and
ProbCalibPIXOR do not perform well at high threshold
(e.g. JIoU> 0.8), because they only produce symmetric
probability distribution (as discussed above), and cannot well
calibrate our proposed spatial distribution. The result shows
that JIoU effectively penalize the distribution mismatch
between two probabilistic boxes especially at high values,
and indicates the potential improvements for probabilistic
modelling in object detection networks (e.g. better bounding



box encodings or assuming correlation between regression
variables [37]).

To conclude, JIoU provides us richer information than IoU
to evaluate probabilistic object detection networks.

V. DISCUSSION AND CONCLUSION

In this work, we propose a generative model to infer the
uncertainty inherent in bounding box labels of object detec-
tion datasets with LiDAR point clouds. The label uncertainty
includes object shape and measurement information, and
can represent non-diagonal correlation of label parameters.
We further propose a new spatial distribution to visualize
and represent the uncertainty of 2D or 3D bounding boxes.
Finally, we propose JIoU, as an extension of IoU, to evaluate
probabilistic object detection. Comprehensive experiments
on KITTI and Waymo datasets verify our proposed method.

Our work can be extended in several ways. For example,
it is possible to incorporate the proposed label uncertainties
to train an object detector, in order to improve its robust-
ness against noisy data. Using JIoU to evaluate uncertainty
estimation performance among different probabilistic object
detectors (e.g. [25], [37]) is another interesting future work.
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