arXiv:2105.01892v1 [csAR] 5 May 2021

TENET: A Framework for Modeling Tensor
Dataflow Based on Relation-centric Notation

Ligiang Lu! Naiging Guan'*
Peking University Peking University
ligianglu@pku.edu.cn University of Toronto

naiqing.guan @mail.utoronto.ca

Zizhang Luo
Peking University
semiwaker @pku.edu.cn

Jieming Yin
Lehigh University
yin@lehigh.edu

Abstract—Accelerating tensor applications on spatial archi-
tectures provides high performance and energy-efficiency, but
requires accurate performance models for evaluating various
dataflow alternatives. Such modeling relies on the notation of ten-
sor dataflow and the formulation of performance metrics. Recent
proposed compute-centric and data-centric notations describe
the dataflow using imperative directives. However, these two
notations are less expressive and thus lead to limited optimization
opportunities and inaccurate performance models.

In this paper, we propose a framework TENET that models
hardware dataflow of tensor applications. We start by intro-
ducing a relation-centric notation, which formally describes the
hardware dataflow for tensor computation. The relation-centric
notation specifies the hardware dataflow, PE interconnection,
and data assignment in a uniform manner using relations. The
relation-centric notation is more expressive than the compute-
centric and data-centric notations by using more sophisticated
affine transformations. Another advantage of relation-centric
notation is that it inherently supports accurate metrics estimation,
including data reuse, bandwidth, latency, and energy. TENET
computes each performance metric by counting the relations
using integer set structures and operators. Overall, TENET
achieves 37.4% and 51.4% latency reduction for CONV and
GEMM kernels compared with the state-of-the-art data-centric
notation by identifying more sophisticated hardware dataflows.

I. INTRODUCTION

Tensor operations have been increasingly deployed in many
applications, such as data analysis, machine learning, and
hydrodynamics simulation [1, 2, 16, 23, 34, 46, 47, 53].
In recent years, spatial architectures have emerged as a
promising way to accelerate tensor operations due to their
high performance and energy-efficiency [8, 10-12, 15, 18,
19, 21, 22, 26, 30, 36, 40, 4244, 48, 57]. A typical spatial
architecture is composed of a processing element (PE) array
and a scratchpad memory. PEs are connected via an on-chip
interconnect that enables efficient data reuse.

The main characteristic of spatial architectures is the diverse
hardware dataflow alternatives. Tensor operations are usually

I These authors contributed equally.
*Work done while the author was a student at Peking University.
*Corresponding Author

University of California

Yuyue Wang Liancheng Jia
Peking University Peking University
wangyuyue @pku.edu.cn jlc@pku.edu.cn
Jason Cong Yun Liang*

Peking University
at Los Angeles ericlyun@pku.edu.cn

cong@cs.ucla.edu

described using a loop nest. Specific to tensor operation,
a hardware dataflow describes 1) the assignment of loop
instances to the PE array and 2) the execution sequence
of these loop instances in the PEs. Hardware dataflow is
critical for achieving high throughput and low latency, because
it determines PE utilization, data access patterns, and on-
chip bandwidth requirement. Different tensor computation
prefers different hardware dataflows. For example, Google’s
Tensor Processing Unit (TPU) [22] connects PEs using systolic
dataflow, where each PE is responsible for one multiply-and-
accumulate operation. While Cambircon [31] connects PEs via
a multicast communication network, in which each PE performs
a dot-product. Other spatial architectures, like DySER [19]
and Plasticine [42], integrate PEs and their interconnect in
a flexible manner, and hence can support a wider range of
applications.

Despite the fact that various dataflows have been practically
implemented in modern tensor accelerators, a formal notation
is still strongly desired to represent hardware dataflow. Ideally,
a notation should be able to cover the complete dataflow design
space systematically, as well as facilitate simple and accurate
performance modeling. State-of-the-art techniques represent
hardware dataflow using either compute-centric [39, 56] or
data-centric notations [24, 25]. However, both notations have
limitations. First, these notations are less expressive and they
can only represent a subset space of hardware dataflows. Using
these notations, architects are provided with an incomplete
space and limited optimization opportunities. For example,
both notations fail to describe hardware dataflows that require
skewing of loop iterations and tensors. Such dataflows needs
affine loop transformation [28, 29] to enable sophisticated
mapping of loop instances to spatial architectures. Second,
both notations fail to support accurate performance analysis.
The compute-centric notation does not directly model data
transfer and reuse, and thus lacks a detailed performance model.
The data-centric notation is integrated with the MAESTRO
model, which outputs the reuse, latency, and energy for a given
dataflow [25]. However, MAESTRO models these metrics by

TABLE I: Comparison between four notations

Features Computation-centric Data-centric STT Relation-Centric
Timeloop [39] | Interstellar [56] | MAESTRO [24, 25] | [4, 9, 28, 54] TENET
. temporal maps time-stamp multi-dim
Instance execution sequence loop order loop order . .
2= sequence of maps vector time-stamp
E% PE workload assignment parallel unroll spatial maps space-stamp multi-dim
Z=) directive primitives matrix space-stamp
= |“Affine loop transformation X X X v v
Spatial architectures v v v X V4
PE interconnection X X X X v
2 . | Precise reuse analysis X X X X v
g % Data assignment analysis X v v X v
&% Bandwidth analysis X v v X v
= £ | Latency / energy modeling v X v X Ve
~ General tensor apps X X X v v
calculating the polynomials of parameters, which might not provides more optimization opportunities.

be accurate for tensors whose dimensions cannot be explicitly
specified by the data-centric primitives.

In this paper, we propose TENET, a framework that models
the dataflow of tensor applications on spatial architectures.
The key component of TENET is the relation-centric notation,
which formally describes the hardware dataflow for tensor
computation. Specifically, we formally define the relations
between 1) the loop instances and the PEs that perform the
computation, 2) the loop instances and their execution sequence
in the PEs, 3) PEs and the corresponding assigned tensor
elements, and 4) PEs that are connected with interconnection
network. The first two relations determine where and when
the loop instances are executed. The third relation models
where and when a tensor element is accessed. The last relation
describes how the tensor elements traverse across PEs, e.g.,
systolic array, reduction tree. By putting these relations together
in a uniform manner, we can precisely model the tensor
computation on spatial architectures, data assignment to PEs,
and data movement between PEs.

The relation-centric notation allows the users to describe
the complex hardware dataflows using relations only. When
representing these relations, TENET supports all linear trans-
formations that map loop instances to spatial architecture
spatially and temporally. This leads to a complete design
space of hardware dataflows. The relation-centric notation also
inherently supports simple and accurate modeling of various
important performance metrics. These metrics are crucial for
evaluating different hardware dataflow design alternatives. All
four types of relations above can be mathematically represented
as a set of pairs. Based on such structural representation,
performance metrics can be easily computed using integer set
operators. Overall, TENET is able to estimate various hardware
metrics, including data reuse, latency, PE communication
bandwidth, and on-chip memory bandwidth.

The contributions of this work are as follows. First, we
propose relation-centric notation for modeling the hardware
dataflow of tensor computation. Relation-centric notation
is more expressive than compute-centric and data-centric
notations. By representing the dataflow, data assignment, and
interconnection as relations uniformly, relation-centric notation
forms the complete design space of hardware dataflows, which

Second, we introduce performance models that can accurately
calculate various hardware metrics. This is naturally supported
by the structural representation of relation-centric notation. We
first formulate three basic volumes that describe the overall
data size, the reused data size, and the minimum data size that
needs to be transferred between PEs and scratchpad. We then
use these volumes to derive various hardware metrics.

Third, we systematically analyze and compare different
notations in terms of expressiveness and performance modeling.
Results show that TENET achieves 37.4% and 51.4% latency
reduction for Conv and GEMM kernels by identifying more
sophisticated dataflows compared to the state-of-the-art data-
centric notation. The source code of TENET is publically
available in Github (https://github.com/pku-liang/TENET).

II. BACKGROUND
A. Spatial Architectures

Spatial architectures are a class of architectures that feature
a set of processing element (PE), interconnection between PEs
and memory hierarchy [7, 17, 19, 36, 40, 42, 48]. Each PE
contains arithmetic logic units (ALUs) that can be configured
by specific instructions. The PE also contains register files for
data storage. The interconnection between PEs can effectively
increase data reuse opportunities, which further reduces the
bandwidth requirement. Generally, spatial architectures have
three levels of memory hierarchy, i.e., PE register level, on-chip
scratchpad, and off-chip memory. For simplicity, we make the
following two assumptions when modeling hardware behaviors.
First, the ALU has the ability to perform one multiply-and-
accumulate (MAC) operation. Second, data transfer through
the interconnect between adjacent PEs takes one cycle.

We use the term hardware dataflow to refer to the im-
plementation of a specific tensor application on a spatial
architecture. Tensor applications are usually described using
loop nests. Specific to tensor applications, the dataflow is
represented from two aspects: 1) the PE where a loop instance
is executed, 2) the execution sequence of loop instances in
the PEs. When designing the dataflow, data reuse is a critical
factor in order to achieve high performance and low energy,
which can be further categorized into temporal reuse and spatial
reuse [10, 11, 24, 56]. Temporal reuse happens when the same

T[i] » A[i,]] Compute-centric notation:

for(j = @; j < 3; j++)
T3] [AB,0]|A311|A3,2] | Al33] parallel:for(i = @; i < 4; i++)
121 [azo[azn]az2[AR3) L S: Y[1] += A[i+5]"B[I];
T[1]— |A[L,0]|A[1,1]|A[1,2] [A[L3] compute directive to assign workload
T[0] — [A00]|A[01]] Al0,2] | A[0,3] Data-centric notation:

rectangle-like data access

T[i+j] » A[4,]]

spatial map (1,1) i
temporal map (1,1) j
distribute dim-1 across PEs

6] — Al3,3] distribute dim-j across time in a PE
T[5]1— A2,3][Al3,2] (b) Existing notations
T[4]— AlL3][AR,2][A3.1]

T[3]— [Al31[AlL21]AR1I[ABO] T[2]— | A2] | AB] | A4l | AlS]
T[2]—* [A02]]A[L1][A[2,0] T[1]— | ALl | Al2] | A3l | Al4]
T[1]— [Al0A[ARLO] T[] — | Al] | Al | AR2I | AB]
T[] — [Al0O] Actual reuse of A: 6

skewed data access
(a) Complex dataflow

Data-centric reuse: 8
(c) Inaccurate reuse analysis

Fig. 1: Limitation of compute-centric and data-centric notation.

data is reused at different cycles, while spatial reuse happens
when the same data is reused at different PEs.

B. Notation Basics

Here, we introduce some basic terms that are widely used in
various compiler frameworks [6, 29, 55] for loop analysis. In
this paper, TENET supports tensor applications with perfectly-
nest loops and single unconditional statement.

Iteration domain. Given a loop nest with one statement S,
its iteration domain Dy is the set that contains all the loop
instances. Each instance can be represented as S[#], which is
a point in Dg. For example, in 1D-CONV operator of Figure
1, the iteration domain is Dsg = {S[i,j] : 0 <i<4,0< j <3},
where S[i, j] is a loop instance and 0 <i< 4,0 < j <3 gives
the affine constraints.

Access function. Given a loop instance, the access function
returns the tensor elements accessed by the statement S. We
use a relation to represent the access function of tensor F.

As .y = {S[i] = F[f]} M

For example, in 1D-CONV operator of Figure 1, the access
function to tensor Y is {S[i,j] = Y[i]: 0<i<4,0<j<3},
which means that the loop instance S[i, j] accesses the tensor
element Y[i].

C. Limitations of Existing Dataflow Notations

Table I compares four notations with their features of
dataflow expression and performance modeling. For compute-
centric notation, the dataflow is specified using loop transforma-
tion directives including reorder, blocking, and parallel [39, 56].
The compute-centric notation provides great flexibility for
describing how the computation is performed in an imperative
programming style. Recently, data-centric notation is proposed,
which is specified using data mapping directives including
spatial and temporal map, data movement order [24, 25]. Such
structural representation enables easy data reuse computation.
To use this notation, the users must manually write the
directives, which is not straightforward for complex dataflows.
Space-time transformation (STT) has been used to map loop
instances onto systolic arrays [4, 9, 28]. However, they lack
accurate performance models to analyze various hardware
metrics, and support for non-systolic array spatial architecture.

hardware design space exploration
© = 1

R 2 S
C) — [</=
Ty | S
common spatial interconnection RELtlzaton
architecture repo relation bandwidth
requirement
GEMM energy
o —_— </>
® _ [— |
- Al [KI*BIKI] data |ty
tensor app assignment MACs per cycle
User i
. relation temporal-reuse
‘(r@ ., 5 spatial-reuse
2NN space & time
S, </>
%(sos%nu constraint
’70@ Sy dataflow ST-stamp map Performance
relation relation model

4 . . .
! relation-centric notation 1
H

dataflow design space exploration

Fig. 2: TENET automatic flow.

Both Timeloop [39] and Interstellar [56] use compute-centric
notation. The loop order determines the loop instance execution
sequence. However, the workload assignment requires extra
directives. For example, in Figure 1(b), the parallelism is
specified using parallel directive. Data-centric notation
explicitly allocates data to PEs with two key primitives, includ-
ing Spatial Map and Temporal Map. Spatial Map
assigns a certain dimension to the PE array, and Temporal
Map specifies the data movement in a certain dimension across
different time-stamps. In Figure 1(b), spatial map (1,1)
i means distributing the dimension of the output data across
different PEs. temporal map (1, 1) 7 distributes the data
involved in dimension j across different time-stamp within the
same PE.

Both compute- and data-centric notations are fundamentally
limited in their expressiveness and performance modeling
capability. First, both notations fail to cover a complete design
space of dataflow. For example, in Figure 1(a), we use T'[t]
to denote the tensor elements that are processed in cycle
t. These two notations can only describe dataflows using
rectangle-like data access, lacking the support for complex
dataflows with skewed data access. Such skewed data access
requires the introduction of a new dimension by combing
tensor dimensions i and j using affine transformations. More
importantly, the limitation in expressiveness cannot be easily
remedied by extending the data-centric notation, because it
requires great effort to manually transform the original tensor
application to explicitly specify the data distribution. Such
manual transformation makes it very difficult to estimate
the performance metrics, which contradicts with the original
intention of the data-centric notation.

Second, from performance modeling perspective, previous
compute-centric notation-based models only analyze data
reuse opportunities in a coarse-grained manner [39, 56]. For
example, Interstellar [56] calculates data reuse using the product
of unroll factors. The data-centric notation analyzes the
hardware performance using MAESTRO model [25]. However,
MAESTRO uses simple polynomials to estimate data reuse,
which is less precise as it calculates the data movements using
a simple polynomial. In Figure 1(c), the actual reuse of tensor
A is 6, while the result from MAESTRO is 8. The inaccuracy
comes from the fact that the two primitives in Figure 1(b)

GEMM operation: Dataflow

space-stamp

for (i =0; i< 2; i++)
for (3 =@; j < 25 J++) {sli,3,k] - PE[1,]]}
for (k = 0; k < 4; k++)

> time-stamp
s: Y[i,3] += {s[i,3,kl]

ALLK] * B[K,I1; v Ty

PE Domain
{PE[1,j]: 0 < i,j < 2}

Tensor Y assignment function
{sli,3,k] - Y[i,31}

space assignment of Y
{PE[4i,3] » Y[i,3]1}

Time assignment of Y
{T[i+j+k] ~» Y[i,3]1}

Interconnect
{PE[L,j] - PE[Lj + 1]}

{PE[i,j] = PE[i+ 1,j]}

T[i+j+k]=T[e] ; T[i+j+k]=T[1]

|J Domain : |} Domain
s[e,0,0]-PE[0,0] ; s[e,0,1]-PE[0,0]
i s[1,e,e]-PE[1,0]
: s[e,1,0]-PE[0,1]
[CPET0,0T] [PE[OAT] | [CPETOAT]
- i
Y[0][0] - ! Y[0][1
[CPETLOT] [CPE[TIT] ¢ [CPETLAT]

! PE[‘O‘,O] without
i interconnect

T[i+j+k]=T[2] : T[i+j+k]=T[3]

|} bomain : |} bomain
s[e,0,2]-PE[0,0] ; s[e,0,3]-PE[0,0]
s[1,0,1]-PE[1,0] ; s[1,0,2]-PE[1,0]
s[e,1,1]-PE[0,1] : s[e,1,2]+PE[@,1]
s[1,1,0]-PE[1,1] : s[1,1,1]-PE[1,1]
[CPET0,0T] [CPET0AT] : [CPET0,01] [CPET0AT]
:
Y[O][O Y[O][1 H Y[O][O Y[O][1
[CPETLOT] [CPETLAT] : [CPETL0]] [CPETLAT]
5
:

| [B[o][0] | -1} scratchpad

Fig. 3: Analyzing the dataflow of matrix multiplication on a 2 x 2 PE array using the relation-centric notation.

only describe the data movement of tensor B and Y, without
modeling the movement of tensor A.

III. TENET OVERVIEW

TENET is an automatic framework as shown in Figure 2,
which takes a tensor operation written in C and hardware
specification as inputs. Then, TENET automatically generates
the relation-centric notation including dataflow, data assignment,
interconnection, and spacetime-stamp map relations. After that,
TENET calculates several key performance metrics to guide
the dataflow and hardware optimization.

The dataflow relation relates each loop instance to a PE,
which can be either generated automatically using design space
exploration (DSE) or specified manually by the user. Data
assignment relation between tensors and PEs is obtained by
combining the access function of the tensor operation and
the dataflow relation. The interconnection relation describes
how the PEs are connected, which is derived based on
the architecture. For a specific dataflow, TENET calculates
multiple spacetime-stamp map relations, which will be used
for performance metrics estimation. TENET also provides a
repository that contains common spatial architectures such as
mesh structure, systolic array, reduction tree, which feature
with different PE functionalities and PE array topologies.

The expressivity of relation-centric notation can help the
accelerator designers to explore the complete design space of
the hardware dataflows and find the dataflows that meet their
design constraints. Moreover, accelerator designers can rely
on TENET to obtain critical performance metrics for a given
dataflow including data reuse, PE utilization, and latency.

IV. RELATION-CENTRIC NOTATION

TENET defines four relations, including the mapping of loop
instances onto the PE array (Section IV-A), data assignment
(Section IV-B), PE interconnection (Section IV-C), mapping

between different spacetime-stamps (Section IV-D). Using the
relation-centric notation, we can determine exactly where and
when each loop instance is executed in the spatial architecture,
where and when a tensor element is accessed, and how a tensor
element is moved across PEs.

A. Dataflow Relation

Our dataflow relation applies affine transformation to define
the space-stamp and time-stamp for the execution of tensor
applications on a spatial architecture. The space-stamp is a
relation that describes the PE coordinates where a loop instance
is executed; and the time-stamp is a relation that determines
the execution sequence when a loop instance is performed in
a PE. Our notation is represented as follows.

Definition 1: Dataflow. Given a statement S with iteration
domain Dy and iteration vector 7, the dataflow is defined as

Os.p = {S[ii] = (PE[p] | T[])}, Sii] € Ds (@)

Oy p assigns loop instance S[#] to a spacetime-stamp, which is
a pair of space-stamp (PE|[p]) and time-stamp (7 [f]). The space-
stamp gives the coordinates of PE where S[#i] will be executed,
and the time-stamp decides the execution sequence of S[i.
The sequence is determined by the lexicographical order of
two time-stamps. For simplicity, we use > and < to represent
the lexicographically larger and smaller, respectively. p can
be multi-dimensional depending on the PE array dimensions.
7 can also be multi-dimensional as the PE array size can be
smaller than the total iteration domain.

Relation-centric notation can express various dataflows by
employing affine transformation, as each dimension of the
spacetime-stamp can be a linear transformation of multiple
loop dimensions. An example of mapping GEMM on a systolic

array is demonstrated in Figure 3. We use the following relation-
centric notation to describe the dataflow.

Os,p = {S[i,j, k] = (PE[i, j] | T[i+j+k])}

In this example, loop instance S[i, j, k] is executed on PE]i, j],
and is assigned a one-dimensional time-stamp (i + j+ k). The
time-stamp is an affine transformation of loop iterators. Given
specific space and time constraints, we can find all the loop
instances by solving the constraints. For example, at time-stamp
T[1], the set of executed loop instances include

i+j+k=1
constraint 10 <i,j<2, 0<k<4

loop instances i, j, k| = [0,0,1],[1,0,0],[0,1,0]

Dataflow Design Space. Relation-centric notation is more
expressive than compute- and data-centric notations. To make
a fair comparison, we assume each PE only has one MAC unit,
and the PE array has 2 dimensions. Besides, we also assume that
the size, offset parameters in data-centric notation are set to 1,
and the coefficient of affine transformation in relation-centric
notation is set to 1. Under these assumptions, the relation-
centric notatlon enlarges the design space from O(n'()) [33]
to 0(2"), where n is the number of loops. The former is the
design space of MAESTRO [33], where n primitives can be
arranged freely. Each of the primitive can be either SpatialMap
or TemporalMap, and exactly two of them are SpatialMap. The
later is the number of possible dataflows in relation-centric
space. Each dataflow corresponds to an affine transformation,
which can be represented using an n X n transformation matrix
filled only with O or 1. For example, in GEMM, where n = 3,
the design space size of MAESTRO is 3! x 3 = 18. In contrast,
the design space of TENET is 2° = 512, which is 28x larger.

In practice, the loop bound can be much larger than the
PE array size. Therefore, we support to use modulus and
division operator in the affine transformation (quasi-affine
transformation). For example,

Ogs p ={S[i,j,k] = (PE[i mod 8, mod 8] |
T[i/8,j/8,(i mod 8+ j mod 8+k)|)}

In this example, the PE array size is 8 x 8. As there are 8
indices of dimension i and j being processed in parallel, the
time-stamp is 3-dimensional and we use modulus and division
operators to represent the execution sequence.

B. Data Assignment Relation

We use data assignment relations to specify the tensor
elements that are accessed by a specific PE at a specific time-
stamp in the dataflow. As mentioned in Section II-B, we can
use access function to relate the loop instances to its accessed
tensor elements. Therefore, the data assignment relation can
be formulated as a chain as follows.

Definition 2: Data assignment. Given a dataflow Qg p, the
data assignment is defined as

Apr = O Asr = {(PE[p] | T[T) = FIf]} ©)

H[>-I\[>-H

J 9
ok
[BE) {8} P8}

B

(a) 2D systolic

- -
oﬁoﬁ

N \
%% ! ‘ w e

(b) Mesh NoC (c) Multicast
Fig. 4: Different interconnect topologies.

In the example of Figure 3, the data assignment of tensor Y
can be represented as,

Apry = {(PE[i,j] | T[i+j+k) —Y[i, j]}

For this case, we observe that each PE always calculate the
same output tensor (Y) at different timestamp, which means
tensor Y[, j] is kept stationary, and iteratively reused at different
time-stamps until the computation is finished.

C. Interconnection Relation

We also specify the PE interconnection using relations,
which determines how the tensor elements are moved between
different PEs.

Definition 3: PE Interconnection. Given a PE array, the
interconnection is a set, where each element describes a
mapping from one PE to another PE.

IpE, pE, = {PE[p1] = PE[p2]} tc1, ek @

where p; and p, denote the coordinate of PEs that are
connected, and cy,-- -, ¢ are the conditions used to specify the
topology. The interconnection relation helps to describe the
possible data movement in the dataflow. Figure 3 depicts the
interconnection specification of a 2D systolic data transfer. The
PE is able to reuse the input tensor from adjacent PEs using
this interconnection, otherwise, the data must be accessed from
the scratchpad.

In this paper, we model three widely used interconnect
topologies in Figure 4 as follows.
{PE[i,j] — PE[i",j]}
('=ij=j+1)or (@ =i+1,j=))
abs(i' —i) <1 and abs(j’ — j) <1
abs(i' —i) <3 (4 PEs)

Interconnection :
2D-systolic :
Mesh :
1D-Multicast :

The systolic interconnect is widely used in recent GEMM
and CONV accelerators like TPU [22]. Mesh NoCs are applied
in DySER [19] and Plasticine [42]. In a multicast network, PEs
are connected through wires that share the same input entry.
Multicast networks are used in Eyeriss [10, 11] and vector
dot-product units like Diannao [8]. Different from the first two
interconnects, the data reuse of multicast occurs at the same
cycle. Details of how interconnection relation affects dataflow
modeling will be discussed in Section V-A.

D. Spacetime-stamp Map Relation

To compute various performance metrics, we need to build
relations between different spacetime-stamps. More clearly, by
using data assignment and interconnection relations, we can
correlate different spacetime-stamps based on the accessed data
elements and their movement.

reused in multiple
space-stamps

time time

(a) TotalVolume, ReuseVolume, UniqueVolume

(b) SpatialReuseVolume

E PE PE reused in multiple
t=0~] PE PE time-stamps in the same PE
PE

PE PE
t=1~ { PE PE

PE PE
t=2—

time

(c) TemporalReuse Volume

Fig. 5: Volume metrics.

Definition 4: Spacetime-map. Given a dataflow, the
spacetime-map is a relation set that maps a set of spacetime-
stamp D to another set of spacetime stamp D’. Both D and D’
are derived from the given dataflow.

Mpp ={([PE[p1] | T[1]]) = ([PE[p2] | T[2]])})

Given a dataflow, the spacetime-map helps to link different
time-stamps and space-stamps so that we can model the
hardware behavior in continuous space-stamps and time-stamps.
Furthermore, by identifying which data are used by these
spacetime-stamps using data assignment relation, we can detect
data reuse both spatially and temporally. Assuming the time
distance of D and D’ is within 1, and the PE specified by
D and D' are interconnected, we write three spacetime-stamp
maps in the example of Figure 3 as follows.

map 1. ([PE[0,0] | T[0]) — ([PE[0,0] | T[1])
map 2. ([PE[0,0] | T[0]) — ([PE[0,1] | T[1]) (©)
map 3. ([PE[0,0] | T[0]) — ([PE[1,0] | T[1])

For the map 1, by examining the behavior of tensor Y with
the assignment relation Ap ,, we can observe that

([PE[0,0] | T[0]) — ¥[0,0]

([PE[0,0] | T[1]) — ¥[0,0]

map 1.

which means, in this map, tensor element Y[0,0] is reused in
the same PE but at different time-stamps. Similarly, we can
check the reuse of tensor A and tensor B in the other two
maps using Ap r, and Ap g, respectively.

map 2. ([PE[0,0] | T[0]) — AJ0,0]
([PE[0,1] | T[1]) — A[0,0]
map 3. ([PE[0,0] | T[0]) — B[0,0]
([PE[1,0] | T[1]) — B[0,0]

map 2 and map 3 describe that tensor element A[0, 0] traverses
across the PE array horizontally and tensor element B[0,0]
traverses vertically, respectively.

In order to estimate various performance metrics such as data
reuse, we can apply further restrictions to spacetime-map. For
example, on the one hand, by restricting D and D’ containing
the same PE (e.g. map 1), we can capture the temporal data
reuse. On the other hand, by restricting D and D’ containing the
interconnected PEs (e.g. map 2 and map 3), we can compute
spatial data reuse.

TABLE II: Details of volume calculation.

Total Volume TotalVolume = sum(Ap r)

ReuseVolume ReuseVolume = sum(Ap r N M, ID, ApF)
UniqueVolume | UniqueVolume = TotalVolume — ReuseVolume
ReuseFactor ReuseFactor = TotalVolume /UniqueVolume

V. PERFORMANCE MODEL

Based on relation-centric notation, we can compute various
performance metrics precisely. The formulation of each metric
is naturally modeled as a set operation between relations. In this
section, we present how to compute the performance metrics,
including data transfer, data reuse, latency, and energy.

A. Data Reuse and Volume Model

The modeling for hardware metrics starts with defining
several data volumes. The value of a specific volume is
calculated using sum function (denoted as sum()), which counts
the cardinality of the set. Table II presents the formulas for
these metrics.

TotalVolume is the total number of the tensor data accesses

through the entire spacetime-stamp. As shown in Figure 5 (a),
TotalVolume sums up the volume of all the tensor data accesses
that are used across the entire iteration domain. This metric
gives the maximum data size that is required to transfer between
the PE and the scratchpad. For example, the TotalVolume of
tensor A in Figure 3 can be calculated as,
A[o][0]
A[o][1], A[o][o] A[1][0]
A[0][2], Afo][1], A[1][1], A[1][0]
time-stamp 3. used data A[0][3], A[0][2], A[1][2], A[1][1]
TotalVolume = 1 +3+4+4 =12

time-stamp 0. used data
time-stamp 1. used data
time-stamp 2. used data

ReuseVolume is the number of reused data across multiple
spacetime-stamps. For example, in Figure 5 (a), ReuseVolume
sums up the volume of data that are overlapped between
two adjacent spacetime-stamps. The spacetime-map Mp py
determines the adjacent spacetime-stamps, where the space-
stamp mayp is restricted by the interconnection relation. Only the
two stamps meet the constraints in Equation 4 will contribute
to data reuse. The time-stamp constraint is defined as a time
interval, within which the data reuse can occur. For example,
let us assume the interconnect is a systolic topology and the

time interval is 1. From time-stamp 1 to time-stamp 3, the
ReuseVolume of tensor A in Figure 3 can be calculated as

time-stamp 1. reused data from time-stamp 0 A[0][0]
time-stamp 2. reused data from time-stamp 1 A[0][1], A[1][0]
time-stamp 3. reused data from time-stamp 2 A[0][2], A[1][1]
ReuseVolume = 1 +2+2 =35

For multicast interconnection relation, the time interval con-
straint is set to O as data are reused via wires.

UniqueVolume is the number of unique tensor data that are
accessed. As shown in Figure 5(a), the required tensor data
expands as the time-stamp increases. UniqueVolume sums up
the volume of “new” data at different spacetime-stamps. A data
assigned to a certain spacetime-stamp is considered unique if
it cannot be fetched from adjacent spacetime-stamps, where
the adjacency is also determined by the spacetime-map (same
constraints in Mp py of ReuseVolume). This metric gives the
minimum data size that is required to transfer between the
PE and the scratchpad. For example, from time-stamp O to
time-stamp 3, the UniqueVolume of tensor A in Figure 3 can
be calculated as,

time-stamp 0. new data A[0][0]

A1), A1][0]
Al0][2), A[1)[1]
time-stamp 3. new data A[0][3], A[1][2]
UniqueVolume =1+2+2+42=7

time-stamp 1. new data
time-stamp 2. new data

ReuseFactor describes how many times on average a data
is reused once it is fetched from scratchpad memory.

SpatialReuseVolume is the amount of data reuse across
multiple space-stamps. As shown in Figure 5(b), the spatial
reuse originates from broadcasting the tensor data to multiple
PEs. The SpatialReuseVolume sums up the volume of data
with spatial reuse at different space-stamps, where D and D’
contain interconnected PEs only.

TemporalReuseVolume is the amount of data reuse across
multiple time-stamps within the same PE. As shown in
Figure 5(c), temporal reuse means that the data is reused across
time-stamps. To avoid overlap between SpatialReuseVolume
and TemporalReuseVolume, we restrict the TemporalReuseVol-
ume that it only refers to the temporal reuse at the same PE,
where D and D’ contain the same PE. Clearly, ReuseVolume
is the sum of SpatialReuseVolume and TemporalReuseVolume.

B. Latency and Bandwidth Model

The latency of dataflow consists of communication and
computation delay in each PE. We assume buffers, networks
and arithmetic units work in a pipelined fashion, and techniques
such as double buffering are used to hide latency. Then, the
overall latency is just the maximum of communication delay
and computation delay.

To model communication delay, we calculate the volume of
data that need to be transferred between the on-chip scratchpad
and local registers. If a PE can fetch data from itself or its
neighboring PEs, then fetching data from the scratchpad can
be avoided, which requires more energy and longer latency.

Therefore, the volume of data transferred from the scratchpad
to registers is estimated by the UniqueVolume of all input
tensors. The volume of data sent from output registers to the
scratchpad is estimated by the UniqueVolume metric of output
tensors. The communication delays are estimated by

UniqueVolume(Input)
Delayeqq = bandwidth
7
UniqueVolume(Out put) v
Delay,yrire = bandwidth

Note that the bandwidth here is the available scratchpad
bandwidth.

The compute delay is estimated by the total number of loop
instances and the average number of active PEs.

sum(Dy)
Utilpr X PE size

®

Delaycompute =

where Utilpg is the average PE utilization across all timestamps.

Using the computation delay, we can also calculate two types
of bandwidth requirement, namely, interconnection bandwidth
(IBW) and scratchpad bandwidth (SBW). IBW refers to the
data communication among PEs, and its is estimated as follows,

SpatialReuseVolume
Dezaymmpute
SBW refers to the data transfer between the PE array and the

scratchpad, and SBW requirement is estimated by normalizing
the UniqueVolume to the computation latency.

IBW =)

UniqueVolume

SBW =
Delaycompute

(10)

C. Model Implementation

The performance analysis is written in C++, which leverages
the ISL library and Barvinok Library to perform integer set op-
erations [51, 52]. More specifically, we use operators from ISL
and Barvinok library to calculate the metrics discussed above.
Each relation (e.g., dataflow, interconnection, and data assign-
ment) is implemented using isl_union_map structures in ISL.
isl_union_map_reverse calculates the reverse of an operation
(e.g., get @;}) from Og p), isl_union_map_apply_range com-
posites two relations (e.g., Equation 4). isl_union_map_card
and isl_union_pw_gpolynomial_sum are operators used to
summing over time-stamps to calculate metrics such as
TotalVolume and UniqueVolume (e.g., Equation 8).

VI. EVALUATION

A. Experiment Setup

Benchmarks. We first evaluate TENET with five important
tensor kernels, i.e., GEMM, 2D-CONYV, Matrix multiplication
chain (MMc), Matricized tensor times Khatri-Rao product
(MTTKRP), and Jacobi-2D. GEMM 2D-CONYV, and MMc
are widely used in deep learning, scientific and engineering
computations. MTTKRP tensor operation is the bottleneck
operation in tensor factorization (e.g., recommender system).

TABLE III: Dataflow notations for various tenso applications.

Benchmark | Dataflow Relation-centric Data-centric (Tp:Temporal, Sp:Spatial)
(-P 1J,0K-T) (S[ijkI — PE[i%8,%8]} <
applied in TPU [22] {Slij.k] — TIA/8).A(j/8),i%8+%8+k]}
(KJ-P | K,JJK-T) {S[i,jk] — PE[k%8,j%8]} <
{Slij.k] — TIAG/8),AK/S),i+j%8+k%8]}
B K {(S[ijk] — PE[1%8k%3]}
GEMM (KP1KIKD) (Slijk] — TIAGS)AKS).j+i%8+k%8]} x
3] {Sli,jk] — PE[k%64]} 1. SpMap(1,1) K 3. TpMap(1,1) J
KPILD {Slijk] — TIAK64).1j]} 2. TpMap(1,1) T
. g {S[i,j,k] — PE[j%64]} 1. SpMap(1,1) J 3. TpMap(1,1) K
(P ILED {S[ij.kl — TIAG/64).ik]} 2. TpMap(1,1) T
(KC-P | Oy,KCOx-T) {S[k,c,ox,0y,rx,ry] — PE[k%8,c%8]} x
{S[k.c,ox,0y,rx,ry] — T[fl(k/8),fl(c/8),0y, k%8+c%8+0x]}
(KOx-P | Oy,KOxC-T) {S[k,c,ox,0y,rx,ry] — PE[k%8,0x%8]} %
{S[k,c,ox,0y,rx,ry] — T[fl(k/8),fl(0x/8),0y,k%8+0x%8+c]}
(KC-P | C,KOX—T) {S[k,c,ox,oy,rx,ry] — PE[k%S,C%S]} X
{S[k,c,ox,0y,rx,ry] — T[oy, fl(c/8),k%8+0x]}
T. SpMap(1,) K; 4. TpMap(Sz(Ry),1) Y,
(K-P | Ox,0y-T) {Slk.c.ox.0y.rx.,ry] — PE[k%64]} 2. TpMap(1,1) C; 5. TpMap(Sz(Ry),Sz(Ry)) Ry;
{Slk.c.ox.oy.rx.ry] — TIf(k/64).c.0x,0y]} 3. TpMap(Sz(Rx),1) X; 6. TpMap(Sz(Rx),Sz(Rx)) Rx;
1. SpMap(1,1) C; 4. TpMap(Sz(Rx),1) X;
(C-P 1 Oy,0x-T) {S[k.c.ox,0y,rx,ry] — PE[c%64]} 2. TpMap(1,1) K; 5. TpMap(Sz(Ry),Sz(Ry)) Ry;
{S[k.c,ox,0y,rx,ry] — TIfl(c/64) k.0y,0x]} 3. TpMap(Sz(Ry),D) Y; 6. TpMap(Sz(Rx),Sz(Rx)) Rx;
2D-CONV T. TpMap(4,4) C;
. TpMap(4.4) C; .
2. TpMap(16,16) K: 6. TpMap(L1) C;
(RyOy-P | Oy,0x-T) {SIk,c,ox,0y,rx,ry] — PE[ry+3%(c%4),0y]} 3. SpMap(Sz(Ry), 1) Y: 7. TpMap(1,1) K;
Motivated by {SIk,c,ox,05rx,ry] — T[A/16),f(c/16),0x]} 4. TpMap(Sz(Rx).1) X: 8. SpMap(1,1) Y;
Eyeriss[10] 5. Cluster(Sz(Ry).P); 9. SpMap(1,1) Ry;
1. TpMap(1,1) K; 5. TpMap(Sz(Ry), Sz(Ry)) Ry;
(OyQX—P | Oy,0x-T) {S[k,c,0x,0y,rx,ry] — PE[0y%8,0x%8]} 2. TpMap(1,1) C; 6. TpMap(Sz(Rx), Sz(Rx)) Rx;
Motivated by {S[k,c,ox,0y,rx,ry] — T[k.c,f(0y/8),A(0x/8)]} 3. SpMap(Sz(Ry), 1) Y; 7. Cluster(8, P);
Shi-diannao[15] 4. TpMap(10,8) X; 8. SpMap(Sz(Rx), 1) X;
1. SpMap(1,1) K; 5. TpMap(Sz(Ry),1) Y;
(KC_—P | Oy,0Ox-T) {S[k.c.0x,0y,rx,ry] — PE[k%8,c%8]} 2. TpMap(8,8) C; 6. TpMap(Sz(Rx),1) X;
Motivated by {S[k.c.ox,0y,rx,ry] — TI[f(k/8).f1(c/8),0y,0x]} 3. TpMap(Sz(Ry),Sz(Ry)) Ry; 7. Cluster(8, P);
NVIDIA[38] 4. TpMap(Sz(Rx).Sz(Rx)) Rx: 8. SpMap(1,1) C;
(U-P | J,UL-T) {S[i,j.kIl — PE[1%8.,j%8]} x
(S[ijkIl — TLk.f(i/8).0(j/8),i%8+j%8+1]}
MTTKRP | (KJy-P | JKIL-T) {ShjkII — PEk%8.j%81} x
{SLijkl] — TLi,A(k/8).1(j/8),k%8+j%8+1]}
(KL-P | LKLIJ-T) (SILjKI] — PE[K%S8,1%8]} X
{Slijkl] — T[i,A(k/8).0(1/8),k%8+1%8+] }
(P | LJ-T) {(S[ijl — PE[i%64]} %
Jacobi-2D {S[ij.kIl — TIAG/64),1}
(I-P 1 LJ-T) {S[i,j] — PE[i%8,j%8]} x
{Slij] — TIAG8),AG/8)]1}
(U-P | J,UL-T) {Slijk 1] — PE[%8,)%8]} x
MMe {Slijkl] — TIkAG/8),0(j/8),i%8+%8+1]}
(KJ-P | JKIL-T) {S[ijkIl — PE[k%S8,j%8]} x
{Slijkl] — T[i,AKk/8).1(/8),k%8+j%8+1]}
Jacobi-2D is a two-dimensional stencil operation that is often TABLE IV: Real-world large-scale tensor applications.
used in image processing_ Application Domain Tensor operation Data size
. 6.7M params
2D-CONV Y (k,0x,0y) = A(c,0x+ rx,0y+ry)B(k,c,rx,ry) GoogLeNet[49] Deep learning 2D-CONV 3 layer types
GEMM Y (i, j) = A(i,k)B(k, j) MobileNet[20] Deep learning 2D-CONV jfxefj;;f:
MTTKRP Y(l,]) =A(l k]) ()C(LJ‘) ALSI5] Matrix fabrication MTTKRP 480K x 18Kx 2K
B Transformer[50] NLP MMc 512,768,1024
MMc Y(i,j) = A(i,k)B(k,1)C(l, j)
Jacobi-2D Y(i,j) = ((AG,J) +AG— 1, j) +A(i,j— 1) 56] has the same level of expressiveness as data-centric

+A(G+1,j)+A®G,j+1)) /5

We also evaluate four real-world large-scale tensor applica-
tions as shown in Table IV. GoogLeNet and MobileNet are
the state-of-the-art neural networks in deep learning domain,
which require GEMM and 2D-CONV. In Alternating least
squares (ALS), MTTKRP is a core operation. Transformer is
a well-known network architecture for translation tasks, which
features a MMc operation.

Comparison. We compare TENET with MAESTRO, which
is the state-of-the-art data-centric notation with a comprehensive
performance analysis. The compute-centric notation [14, 39,

notation but lacks of performance models. More clearly, we
compare TENET with MAESTRO using GEMM and 2D-
CONV benchmarks, as shown in Table III. We run the open
source code of MAESTRO. We configure the two frameworks
to use the same parameters (PE Number, Bandwidth, Buffer
Size). For the interconnection network, we use a mesh network,
since MAESTRO models a hierarchical PE array with the
assumption that each PE can communicate with adjacent PEs.

B. Dataflow Comparison

Table III lists 20 popular dataflows that we use to evaluate
our framework. The dataflows are named according to the

s (a) 2D-CONV dataflows
—-i - MAESTRO: (OyOx-P|Oy,0x-T)

4 (b) GEMM dataflows
-8~ MAESTRO: (I)-P|K-T)

L} —_— - (K- &
—@— TENET: (KC-P|Oy,KCOX-T) J TENET: (K-PIUKT)

w

—@— TENET: (IJ-P[J,UK-T)

/
—a— TENET: (KOx-P| Oy,KCOx-T) jof
L,

Latency (107)
w
Latency (10°)
~

160 144 128 112 96 80 64
Bandwidth (bit/cycle)

Fig. 6: Dataflow comparision for data-centric and relation-centric
notations under different bandwidth requirement.

160 144 128 112 96 80 64
Bandwidth (bit/cycle)

I Latency V772 Bandwidth

2 - 20, 2 30, 2 20, 2 10
/| ; 7 | 7 | /) @
1.5 7 15 15 7| 15 Ul 15 | 15 7 o
2l M ITEE I 1.z
$ 1 /! 0f 1 /! 1 gl o i 1 Ul s =
5 0.5 g 5 1 os ’ 0405 ’ 5 | 05 ? 3
4 V1 VRl V N 1 s

0 g o' o 4 0 0 B4l 0 u 0

I
0d1sIviN

[
13IN3L

|
1SIVIN
13IN3L
|LSIVIN
13IN3L
ALSIVIN
13N3L

2
o o o
(a) GoogleNet (b) MobileNet (c) ALS (d) Transformer

Fig. 7: Evaluation on large-scale applications.

space-stamp and time-stamp in the relation-centric notation, in
which fl() means floor function and % means modulus. For
multi-dimensional time-stamp, we only write the innermost two
dimensions for simplicity. For example, the (K—P | Ox,Oy —
T) dataflow of 2D-CONV assigns dimension K to the PE array,
and the last two dimensions of time-stamp involves Ox and Oy,
respectively. For the dataflow with affine transformation, we
put the transformed dimensions together. For example, in the
(I—P | J,UK—T) dataflow of GEMM, the last dimension of
time-stamp is given by (i+ j+k). We also write the dataflows
using data-centric notation if supported.

Figure 6 presents two use cases of TENET. Figure 6(a)
presents the results of 2D-CONV. Two dataflows (KC —
P | Oy,KCOx —T) (KOx —P | Oy,KOxC —T) cannot be
represented in data-centric notation as they require affine
transformation, which means relation-centric notation is more
expressive than data-centric notation. As a result, relation-
centric notation opens up more opportunities for a larger
exploration of dataflows, which is essential for designing
efficient spatial architectures. In Figure 6, the dataflow depicted
in blue lines are the optimal dataflows in data-centric notation.
When the bandwidth is 160 bit/cycle, the latency of our
dataflow is 17.5% lower than data-centric dataflow. When the
bandwidth decreases, the dataflow (KC—P | Oy,KCOx —T)
achieves up to 47.4% latency reduction compared with the
optimal dataflow in data-centric design space. Figure 6
(b) presents the results of GEMM, where two dataflows
(KI-P | K,UK-T) (W—P | J,ITK—T) cannot be represented
using data-centric notation. When the bandwidth is 64 bit/cycle,
the dataflow (IJ —P | J,IJK —T) achieves up to 77% latency
reduction compared with the dataflow in data-centric design
space. Overall, TENET achieves 37.4% and 51.4% latency
improvement on average compared with the data-centric
notation by identifying more sophisticated dataflows for 2D-
CONV and GEMM, respectively.

Figure 7 shows the latency and bandwidth requirement of

04
o 0.3

£ 0.2 I I I
0.1 I

0--.---.--- —=0N_ _HN__NN_

5825 ER 5525582558255 %8¢2

coEhooEhdoEhooEeEhaoeEhaoeh

— N w — N w o~ N w o~ N w o~ N w o~ N w

< < < < < <

> = = = = >

4x4 PE 8x8 PE 16x16 PE 4x4 PE 8x8 PE 16x16 PE

2D-CONV GEMM

Fig. 8: Runtime comparison of TENET and MAESTRO.

the optimal MAESTRO dataflow and TENET dataflow using
the benchmarks in Table IV. The latency is normalized to
the ideal latency with theoretical performance (calculated as:
of multipliers x frequency). The bandwidth is estimated
by normalizing the UniqueVolume to the computation latency.
MAESTRO model cannot provide the results for the complete
ALS and Transform application due to some unsupported
operators. We only present TENET results for these two cases.
Overall, TENET shows 74% and 22% latency reduction, and
reduces the bandwidth requirement by 63% and 54% for
GoogleNet and MobileNet, respectively.

Figure 8 compares the execution time of TENET and MAS-
TERO for modeling a single dataflow. The test is conducted
on a PC with a 2-core 2.50GHz Intel® Core™ i5-7200U CPU
and 8GB memory. On average, the modeling time of a single
dataflow is 102 second for MAESTRO, and 10~! second for
TENET. The difference mainly comes from the fact that TENET
models the dataflow as an integer linear programming problem,
and considers more architectural details in the evaluation
(e.g., interconnection, data assignment). However, MAESTRO
calculates metrics using simple polynomials, which is faster
but might lead to inaccurate estimation (Section VI-E). We also
observe that the modeling time increases for a more complex
interconnect, while it is less sensitive to PE array sizes.

Design space exploration. The dataflow design space of
TENET is huge. We propose to prune the space by restricting
the data movement and assignment relations. We first enumerate
the possible data movement supported by the PE interconnec-
tions, e.g., systolic, multicast for each tensor. Since the data
movement is always rectilinear using affine transformation,
we then enumerate possible data assignment for the boundary
PEs. This together will determine a complete dataflow. Taking
2D-CONV (6 loops) as an example, we only enumerate 12
legal data movements for tensor A and B, respectively. Then,
we limit the possible data assignment for the boundary PEs to
180. This results in 12 x 12 x 180 = 25920 different dataflows
in total. To explore this design space, TENET takes less than
one hour. We leave a more efficient design space exploration
as future work.

C. Performance Metrics Evaluation

Figure 9 shows the evaluation results of five critical metrics:
temporal and spatial data reuse of input and output tensors,
maximum PE utilization, average PE utilization, and latency.
Temporal and spatial data reuse are calculated by normalizing
SpatialReuseVolume and TemporalReuseVolume to the number

24 I temporal reuse data ZZZ7Z spatial reuse data [IMmax PE utilization avg PE utilization =] latency 10 6 6
) - Jacobi-2D
95 2 ., ’ 2D-CONV | 5 5
380 |p v 2 7 7 65 4 ‘g
=2, 17 7 7 /! /! 3 3 38
ES 17 g . 7 ﬁ 43 3
S w08 | 7 G v 9 2 2 28
4 % = =
< 0.4 ? 2 : 2 s i3
0 PP aTe o] el sTo e o< e s oo 0T 0 e
: £%% NEEHEBERERREE EtLi355%
s S EE ggdcssggssasE 528335 w
> < > < > < >
< S < S < > <
(K-P|OxOy-T) (C-P| Oy,0x-T) (RyOy-P | Oy,Ox-T) (OyOx-P | Oy,0x-T) (KC-P|Oy,0x-T) (KC-P|KCOx-T) (KOx-P|KOxC-T) (KC-P|CKOx-T)
12 5 2 2.56
c i GEMM 4 MTTKRP
8S g 16
2% 0 35 12 254 5
£E : 23 7 2w Y 7 3
% j 04 H 2 0.8 z ’ ’ ’ 250 @
ze H 12 o4 % ? ? ? B
B A < 7 7 B 7 2
0 z oy < < z 0~ 0 < oo g > < o = > < ® 0 8 3 5 20
£ E 5 H 5 ST T A EEEE R R R
i 8 c c 5 2 22 3aag2d2agaacimg adaza ®
c £ = o 3 € & £ x o 3 £ £ £ 5
é > < > é
S < S < >

(IK-P | KJK-T)

~ AVG PE uti

(3-P|J,0L-T) (KI-P | J,KOL-T) (KL-P | LKU-T)

Fig. 9: Critical metrics analysis for different tensor applications.

of instances, respectively. In this evaluation, the systolic
interconnection topology is applied to all the dataflows.

As listed in Table III, we evaluate eight dataflows for 2D-
CONV. Different dataflows have high variation in reuse, PE
utilization and latency. All these dataflows exhibit temporal
and spatial data reuse. However, high data reuse does not
necessarily lead to low latency. We observe long latency from
the (RyOy —P | Oy,Ox —T) dataflow. This is because the
dimension size of Ry cannot match the PE array size, and
therefore leads to low PE utilization. We also observe that
(C—P | Oy,Ox —T) has high PE utilization but long latency.
This is because input-A has low reuse, and therefore loading
the input tensor increases the overall latency. Among all 2D-
CONYV dataflows, the last three have the lowest latency as they
utilize all the PEs and have high data reuse for all tensors. For
GEMM benchmark, we compare five dataflows. The dataflows
that contain two-dimensional space-stamp (i.e., (IJ—P | J,[JK—
T), (KI-P | K,JK—T), and (IK—P | K,lJK—T)) always
outperform the ones with one-dimensional space-stamp (i.e.,
(K=P|L,LJ—T) and J—P | [K—T)) since two-dimensional
space-stamp exposes more data reuse opportunities. All these
dataflows show high PE utilization while (IK—P | K,IJK—T)
and (KJ—P | K,JK—T) have the lowest latency, as they
have high input reuse on both input tensors. For MTTKRP
benchmark, the three dataflows have similar performance, since
they all have high PE utilization and large reuse factor on all
tensors. Nevertheless, the (I —P | J,IJL — T) dataflow has
higher reuse on input tensors hence outperforms the others.

Noting that a good dataflow needs to provide both high
PE utilization and data reuse. Dataflows that have poor
performance usually fail in one of these two aspects. The
results also demonstrate that our framework is capable of
capturing spatial and temporal reuse separately. For example,
in the (I1—P | J,UK—T) dataflow of GEMM, we observe
high spatial reuse but little temporal reuse for tensor A and
B, since they flow through the PE array. On the other hand,
there is high temporal reuse but little spatial reuse for tensor

10

Y, since it is kept stationary in the PE array.

D. Bandwidth Analysis

We also evaluate the bandwidth requirement of three
interconnect topologies: 1D-systolic, 2D-systolic, and mesh.
When modeling these interconnects, we always assume there
exist multicast wires to broadcast the same data to different
PEs in the same cycle. In Figure 10, we select five 2D-
CONYV dataflows that exhibit different types of data reuse.
Overall, the three evaluated topologies show similar bandwidth
requirement for the same dataflow. This is because tensor
applications typically have regular computation and data access
patterns, where long-distance communication across PEs is
rarely required. Among the four benchmarks, Jacobi-2D is less
computation-intensive and requires more scratchpad bandwidth
than the others. We also find that the bandwidth requirement
comes from different tensors as the dataflow changes. GEMM
dataflows illustrate this phenomenon in particular. The dataflow
(I—P | J,UK —T) maximizes the output reuse by keeping
the output stationary in the PE. Therefore, the bandwidth
requirement mainly results from the input tensor.

Comparing the three topologies, we also observe some
variations. For (RyOy —P|Oy,Ox —T) 2D-CONV dataflow
and Jacobi-2D dataflow, the mesh topology provides higher
interconnection bandwidth and lower scratchpad bandwidth
for the input tensor. These two dataflows exhibit diagonal
input data reuse, which cannot be supported by both systolic
topologies. Since both dataflows can leverage the mesh NoC to
increase data reuse, the scratchpad bandwidth requirement is
hence reduced. For (RyOy —P|OyOx — T) 2D-CONV dataflow,
we observe that 1D systolic interconnect shows much lower
IBW than 2D systolic interconnect, but similar SBW. The
saving of IBW comes from the fact that the tensor B is
stationary in the PE across different time-stamps. In summary,
an interconnection network that connects more PEs does not
necessarily reduce scratchpad bandwidth requirement. The
design of the interconnection network needs to take the data
movement patterns into account.

300

0 -
Oinput-A ®input-B @ output 2D-CONV 250 | Einput Jacobi-
120 200 ouut
80 150 7 7
20 100 z I
50

2 o0 0

g 2 2 2 2 2 2 2 2B 2B 2 2 2 222 B BB 2B EE2BEZ2 BB B2 B B2 2 2 2 2 2 2

o M A MM QoM@ @M@ @@MMM@M@@MA AMMM@M@M@MM@M MM MA@ QA QQQ Q@M 3 M M M M MMM

= = 2] = w - wn = 2] = 2] - v - 172 = 2] = 2] —- wn = 2] = 2] = w v = 2] - unn - v = 2]

% 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys

g (RYOY-P|OYOX-T) (OXOY-P|OX,C-T) (OYOX-P|OY,0X-T) (OXOY-P|C,RX-T) (KC-P | OY,0X-T) (II-P | LJ-T)

kel

% 160 250

= Oinput-A Binput-B @ output GEMM 200 Oinput-A Binput-B Einput-C &Zoutput MTTKRP

o 120 7

o 2 150 7

g s0 % 9 7

£ 100 z ?

g 40 I H I_l <0 H / H 7 i

5 0 = = = = 0] = = = - -

z 22 2 2 2 2 22 2222222232223 2 2 2 2 2 B 2 2 2B B2 B2 2 2 2 B 2B B2
E2EhEEE2REEE2EEEE R mBEephzhpabapbakhihip
2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys 2D-sys mesh 1D-sys

(U-P | J,UK-T) (KJ-P | K,UK-T) (JK-P | K,IK-T) (U-P| L,UL-T) (KJ-P | LKIL-T) (KL-P | LKLI-T)

Fig. 10: Bandwidth analysis for different interconnection topologies.

latency / utilization: BEEReal PZAMAESTRO SSYMAESTRO* E=3ITENET
error rate: —8— MAESTRO ---@8- MAESTRO* —A— TENET
10 50% 100% 80%
8 40% |
= D mi o 80% | 60%
S 6 0% 3| S £ 3
~ © =
= 21 Se0% |IN 40% 3
2 4 20% 21 E £ g
3 [} =1 E o
8 2 10% & 40% | 20%
0 0% 20 N 0%
1 @3 ¢ L2 3 cacs
(a) Latency estimation (b) PE utilization estimation
Eyeriss dataflow
5 12% 100% 2%
_ _ 10%
< g o T 6
=3 g 8% 3% sy
= £ 6% =i N99% 1% 3
e 2 = L 3B S
g i % w3 2
51 g 2% e ©
0 3 0% 98% A MRH T oo
Cl C2 €3 ¢4 G5 C 2 C3 ¢4 C5
(d) PE utilization estimation

(c) Latency estimation
MAERI dataflow

Fig. 11: Latency and PE utilization comparison with MAESTRO. (a)
and (b) are the results of Eyeriss [10] on AlexNet. (c) and (d) are
the results of MAERI [26] on VGG. For VGGNet, C1-C5 means
CONV1-1, CONV2-1,...,CONVS5-1. According to MAERI [26], the
PE utilization is always 100% for dense CNNs.

E. Metrics Estimation Comparison

In this section, we compare TENET with MAESTRO on the
accuracy of latency, PE utilization, and reuse estimation. We
show that our proposed model improves the metric estimation
accuracy. Following previous deep learning accelerators, in 2D-
CONYV, we term tensor A as input, tensor B as filter, dimension
K as output channel, dimension C as input channel.

Latency Comparison. We compare the latency calculated
by our work and MAESTRO using the row-stationary dataflow
proposed by Eyeriss [10] for AlexNet, and using the dataflow
proposed by MAERI [26] for VGG. We use the reported latency
and PE utilization in Eyeriss and MAERI as the golden result.

11

For MAESTRO implementation, we use the same input files as
in [24]. Figure 11 shows the comparison results. Overall, our
work improves the latency estimation accuracy from 71.9% to
89.6% for Eyeriss, and from 92.3% to 96.3% for MAERI.

The improvement is partially due to TENET’s capabil-
ity of modeling complex dataflow using affine transforma-
tion. In Alexnet, the size of filter B(k,c,rx,ry) varies from
(96,3,11,11) to (384,256,3,3). To increase the PE utilization,
Eyeriss distributes the dimension ry and ¢ to 12 PEs in
one column. Relation-centric notation supports this feature
by assigning a space-stamp with the affine transformation
(ry + 3% (c%4)) to the column of the PE array. However,
MAESTRO only models the case when ¢ = 0 due to the
limitation of data-centric notation. Such limitation explains
the large error in the last three layers where ry = 3. We
also compare with another Eyeriss dataflow using data-centric
notation (denoted as MAESTRO#*), which is different from the
notation in [24]. In MAESTRO*, the cluster primitives are
used to merge the multiple channel dimensions so that PEs
can be better utilized. The accuracy of MAESTRO* is 89.0%.

MAERI features a reconfigurable reduction tree design,
which can be configured to enable multiple vector dot-products
with different sizes. For the reduction tree dataflow, only
multipliers are considered as PEs and PEs are connected via
multicast interconnection. TENET applies affine transformation
to denote MAERI dataflow as it assigns multiple dimensions
to the 1D PE array. In the implementation of MAESTRO, we
also manually transform two dimensions of the filter and the
input to fit the 1D PE array of MAERI. TENET improves the
accuracy thanks to more accurate reuse analysis.

PE Utilization Comparison. TENET estimates the PE
utilization accurately, which is another key factor that affects the
latency, as shown in Equation 8. We also compare the average
PE utilization rate with MAESTRO. Since Eyeriss did not report
this metric directly, we approximate the ground-truth value

MACNum__ \hich is obtained from Eyeriss. As shown

PSin_g PENum x Latency .
in Figure 11 (b), both frameworks predict the same at the first

EZ=R(input, MAESTRO) EEEEH(input, TENET)
zZZA(filter, MAESTRO) [IIIM(filter, TENET) [(output, TENET)
(RYOY -P | Oy, OX - T)-AleXNet

103
104
103
102
10
1

Reuse factor

B p—

8 =

2 =

3 5

5 =

¢ =

. BAE
CONVI-1 CONV21 CONV3-1 CONVA-l CONVS-1

5

g 184 7= (KC-P| Oy, 0x-T)-GoogLeNet

s /% e

) 7 JE Ve 7E

= = e E =

-3 4

Incpt-4c

a Incpt-4b

(OyOx-P| K, C-T)-MobileNet

Reuse factor

dw-CONV2 pw-CONV3 dw-CONV4 pw-CONVS
Fig. 12: Data reuse comparison with MAESTRO.

two layers, but our work makes much more accurate predictions
in the following three layers. Unlike previous approaches that
estimate PE utilization via a polynomial composed of PE
array size and total computation size, TENET models the PE
utilization by going through all time-stamps to check whether
a PE is assigned.

Reuse Comparison. TENET can precisely calculate the
ReuseFactor that affects the latency for data transfer. We
evaluate the reuse analysis of MAESTRO and our work on four
state-of-the-art DNN models: AlexNet, VGG16, GoogleNET,
and MobilleNet. We select different dataflows for each model.
For AlexNet, we use the row-stationary dataflow on a 12 x 14
PE array, motivated by Eyeriss [10]. For VGG16, we use
the output stationary dataflow on a 8 x 8 PE array, motivated
by Shidiannao [15]. We do not normalize the dataflows to
be executed on a 8 x 8 PE array here because our goal is
to accurately capture the characteristics of original dataflows
instead of comparing between them.

The first case is the CONV3 layer of AlexNet. In this layer,
Eyeriss maps Ry and C dimensions into dimension 1 of the PE
array to make full use of PEs, and Oy into dimension 2 of the
PE array. The filter array has a spatial reuse factor of 13 (size of
Oy) since it is reused across PEs horizontally. Besides, the filter
array stays stationary in the innermost dimension of time-stamp
(Ox), which contributes a temporal reuse factor of 13 (size
of Ox). Therefore the reuse factor should be 13 x 13 =169,
which is accurately calculated by our work (169) compared to
MAESTRO (676). For output array, since all PEs in a vertical
line shares the same output data, it has a spatial reuse factor
of 12 (size of dimension 1 of PE array). Moreover, there is a

12

temporal reuse factor of 12 since each PE processes 3 filter
width (Rx) and 4 input channels (C) continuously, leading to
a total reuse factor of 12 x 12 = 144, which is also accurately
calculated by our work. On the other hand, MAESTRO reports
no reuse for the output array in all circumstances, which is
likely because the dimensions of output array (Ox,Oy) are not
explicitly specified by the primitives.

Similar inaccuracy is observed on VGG16, GoogleNet,
and MobileNet as shown in Figure 12. For example, the
filter reuse in inception-4a calculated by TENET is 3136
while it is 2916 from MAESTRO. The actual filter reuse
depends on the input image size, which is 56 x 56 = 3136.
In MobileNet, there are two special convolutional layers,
namely depthwise convolution (dw-CONYV) and pointwise
convolution (pw-CONV). In the depthwise convolution, results
from different input channels are directly stored as the outputs
without accumulation. Therefore, this layer shows lower input
data reuse. The pointwise convolution uses 1 x 1 filter size,
which leads to no reuse for input data. MAESTRO is less
accurate in data reuse estimation for three reasons. First,
the simple formulas used by MAESTRO require all data
dimensions being explicitly specified by the primitives, and
hence no reuse is reported for output array in all cases. Second,
MAESTRO only analyzes data reuse for the innermost temporal
and spatial dimensions, while our work can analyze data reuse
for multiple time dimensions. Third, MAESTRO does not
support mapping multiple data dimensions on a single PE
dimension, which is a technique applied by Eyeriss to fill the
PE array.

VII. RELATED WORKS

Notations for expressing the dataflow. Compute-centric
notation is widely adopted as it can directly represents dataflow
in high-level languages using directives [39, 56]. In [14],
dataflow is notated using two hyperplanes with polyhedral
dependency graph. Timeloop [39] describes the design space
using a concise and unified loop representation with mapping di-
rectives. The mapping directives consist of memory constraints
and PE workload assignment. Interstellar [56] represents the
hardware dataflow using Halide’s scheduling language [45] for
design exploration. Interstellar extends Halide with additional
control directives, e.g., loop blocking and resource
allocation, for specifying the hardware features. Recently,
Kwon et al. [24] propose a data-centric notation that used
spatial map and temporal map to specify the dataflow.
Space-time transformation theory is widely used for systolic
architectures [4, 9, 13, 27, 28, 35]. There are also studies mainly
focusing on the arithmetic properties, such as array shape
transformation, partitioning of the space coordinate for systolic
arrays [4, 9, 28, 35]. Recent efforts attempt to apply this theory
for automatic FPGA code generation [13, 27]. PolySA [13] and
AutoSA [54] compile applications into polyhedral IR and map
them on systolic arrays. SuSy [27] combines polyhedral with
hardware optimization primitives to generate high-performance
systolic array on FPGAs.

Modeling and optimization. Performance modeling can
provide general guidelines and insights for optimizing the
dataflow. Prior performance models mainly focus on the
DNN applications on spatial architectures [11, 25, 32, 56].
Eyeriss-v2 [11] analyzes data reuse with different tensor
shapes and sizes. However, it lacks a performance model to
evaluate the energy and performance. MAESTRO [25] applies
data-centric notation and analyzes data reuse, energy, and
latency. Interstellar [56] explores the design space using loop
operators like loop split and loop reorder. There are also prior
works aiming at modeling the spatial architecture for general
applications [29, 37, 41]. Nowatzki et al. [37] proposed a
constraint-centric scheduling algorithm that determines the
placement and routing of reconfigurable architectures. [41]
represents the dataflow on the computation graph with edge-
centric approach for application mapping. Recently, Jia et al.
proposed TensorLib that built parameterized hardware module
templates based on relation-centric notation [21]. By feeding
the dataflow found by Tenet to TensorLib, we can automatically
generate the dataflow hardware written in Chisel [3].

VIII. CONCLUSION

In this work, we propose a relation-centric notation that repre-
sents dataflow, data assignment and interconnection uniformly
as relations. The relation-centric notation supports a larger
dataflow design space and more tensor benchmarks compared
to prior notations. We also present an analytical framework
to accurately estimate data reuse, bandwidth requirement,
latency and energy. We evaluate our framework on four tensor
benchmarks and results show that the relation-centric notation
can find more sophisticated dataflows with lower latency
compared to the state-of-the-art data-centric notation. TENET
achieves 37% to 51% latency reduction compared to the state-
of-the-art techniques.

ACKNOWLEDGEMENTS

This work was supported in part by the Beijing Natural
Science Foundation (No. JQ19014) and in part by the Beijing
Academy of Artificial Intelligence (BAAI). We would like
to thank Tushar Krishna for sharing the source code of
MASTERO.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine
learning,” in Symposium on Operating Systems Design and
Implementation, 2016.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” The
Journal of Machine Learning Research, 2014.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZie-
nis, J. Wawrzynek, and K. Asanovié, “Chisel: constructing
hardware in a scala embedded language,” in Proceedings of
the Design Automation Conference, 2012.

[4] D. G. Baltus and J. Allen, “Efficient exploration of nonuniform
space-time transformations for optimal systolic array synthesis,”

13

in Proceedings of International Conference on Application
Specific Array Processors. 1EEE, 1993.

[5] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of KDD cup and workshop, 2007.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality opti-
mizer,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2008.

[7]1 D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, and
W. Yoder, “Scaling to the end of silicon with edge architectures,”
Computer, 2004.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” ACM Sigplan Notices, 2014.

[9] Y.-K. Chen and S.-Y. Kung, “A systolic design methodology with

application to full-search block-matching architectures,” Journal

of VLSI signal processing systems for signal, image and video

technology, 1998.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture

for energy-efficient dataflow for convolutional neural networks,”

in ACM SIGARCH Computer Architecture News, 2016.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A

flexible accelerator for emerging deep neural networks on mobile

devices,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, 2019.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,

T. Chen, Z. Xu, N. Sun et al., “Dadiannao: A machine-learning

supercomputer,” in Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, 2014.

J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic

Array Auto-Compilation,” in Proceedings of the International

Conference on Computer-Aided Design, 2018.

S. Dave, A. Shrivastava, Y. Kim, S. Avancha, and K. Lee,

“dMazeRunner: Optimizing Convolutions on Dataflow Accel-

erators,” in IEEE International Conference on Acoustics, Speech

and Signal Processing, 2020.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,

Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing

closer to the sensor,” in ACM SIGARCH Computer Architecture

News, 2015.

D. M. Dunlavy, T. G. Kolda, and W. P. Kegelmeyer, “Multilinear

algebra for analyzing data with multiple linkages,” in Graph

algorithms in the language of linear algebra, 2011.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural

acceleration for general-purpose approximate programs,” in 45th

Annual IEEE/ACM International Symposium on Microarchitec-

ture, 2012.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,

D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A

configurable cloud-scale dnn processor for real-time ai,” in 2018

ACM/IEEE 45th Annual International Symposium on Computer

Architecture. 1EEE, 2018.

V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,

K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality

and parallelism specialization for energy-efficient computing,”

IEEE Micro, 2012.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient

convolutional neural networks for mobile vision applications,” in

IEEE Conference on Computer Vision and Pattern Recognition,

2017.

L. Jia, Z. Luo, L. Lu, and Y. Liang, “TensorLib: A Spatial

Accelerator Generation Framework for Tensor Algebra,” arXiv

preprint arXiv:2104.12339, 2021.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(23]

[24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

“In-datacenter performance analysis of a tensor processing unit,”
in Proceedings of the 44th Annual International Symposium on
Computer Architecture, 2017.

T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, 2009.

H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware
cost of dnn dataflow: A data-centric approach,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand
reuse, performance, and hardware cost of dnn mappings,” IEEE
Micro, 2020.

H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable
interconnects,” in ACM SIGPLAN Notices, 2018.

Y.-H. Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang,
B. Sullivan, Z. Zhang, Y. Liang et al., “Susy: A programming
model for productive construction of high-performance systolic
arrays on fpgas,” in International Conference on Computer Aided
Design, 2020.

M. S. Lam, A systolic array optimizing compiler.
Science & Business Media, 2012, vol. 64.

D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based
mapping optimization of loop nests for CGRAs,” in Proceedings
of the 50th Annual Design Automation Conference, 2013.

D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine
learning accelerator,” in ACM SIGARCH Computer Architecture
News, 2015.

S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen,
and T. Chen, “Cambricon: An instruction set architecture for
neural networks,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture. 1EEE, 2016.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow:
A flexible dataflow accelerator architecture for convolutional
neural networks,” in 2017 IEEE International Symposium on
High Performance Computer Architecture, 2017.

MAESTRO, https://github.com/maestro-project/maestro, 2020.

J. McAuley and J. Leskovec, “Hidden factors and hidden
topics: understanding rating dimensions with review text,” in
the conference on Recommender systems, 2013.

L. Milovanovié, E. Milovanovié, and M. Bekakos, “Synthesis of
a unidirectional systolic array for matrix—vector multiplication,”
Mathematical and computer modelling, 2006.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in ACM/IEEE 44th Annual
International Symposium on Computer Architecture, 2017.

T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam,
C. Estan, and B. Robatmili, “A general constraint-centric
scheduling framework for spatial architectures,” ACM SIGPLAN
Notices, 2013.

NVIDIA, http://nvdla.org/, 2020.

A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying,
A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler, and
J. Emer, “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, 2019.

A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Trig-
gered instructions: a control paradigm for spatially-programmed
architectures,” ACM SIGARCH Computer Architecture News,
2013.

H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim,
“Edge-centric modulo scheduling for coarse-grained reconfig-
urable architectures,” in Proceedings of the 17th international

Springer

14

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

conference on Parallel architectures and compilation techniques,
2008.

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao,
S. Hadjis, A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine:
A reconfigurable architecture for parallel patterns,” in ACM/IEEE
44th Annual International Symposium on Computer Architecture,
2017.

W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution engine:
balancing efficiency & flexibility in specialized computing,” in
Proceedings of the 40th Annual International Symposium on
Computer Architecture, 2013.

X. Qingcheng, Z. Size, W. Bingzhe, X. Pengcheng, Q. Xuehai,
and L. Yun, “HASCO: Towards Agile HArdware and Software
CO-design for Tensor Computation,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture,
2021.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” Acm Sigplan Notices, 2013.

F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and
F. Franchetti, “Efficient spmv operation for large and highly
sparse matrices using scalable multi-way merge parallelization,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

S. Smith and G. Karypis, “Tensor-matrix products with a
compressed sparse tensor,” in Proceedings of the Workshop
on Irregular Applications: Architectures and Algorithms, 2015.
S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“Wavescalar,” in Proceedings. 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2003.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,”
NeurIPS, 2017.

S. Verdoolaege, “isl: An integer set library for the polyhedral
model,” in International Congress on Mathematical Software,
2010.

S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe, “Counting integer points in parametric polytopes
using barvinok’s rational functions,” Algorithmica, 2007.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On
the evolution of user interaction in facebook,” in Proceedings
of the 2nd ACM workshop on Online social networks, 2009.

J. Wang, L. Guo, and J. Cong, “AutoSA: A Polyhedral Compiler
for High-Performance Systolic Arrays on FPGA,” in Proceedings
of the 2021 ACM/SIGDA international symposium on Field-
programmable gate arrays, 2021.

M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algo-
rithm,” in Proceedings of the ACM SIGPLAN 1991 Conference
on Programming Language Design and Implementation, 1991.
X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell,
K. Cao, H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz,
“Interstellar: Using halide’s scheduling language to analyze dnn
accelerators,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2020.

S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework
for tensor computation on heterogeneous system,” in Proceedings
of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems,
2020.

