
ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

PERFORMANCE EVALUATION OF MULTITHREADED ARCHITECTURES
FOR MEDIA PROCESSING APPLICATIONS

S. Balakrishnan and S. K. Nandy

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore 560 012, India.

{ sbalki, nandy} @serc.iisc.emet.in

ABSTRACT

In this paper, we present an architecture framework called SYM-
PHUNYconsisting of a linear array of processors that exploits par-
allelism in media applications at micro (ILP) and macro (threads)
levels. High speed communication and synchronization necessary
for efficient multithreading is achieved using novel hardware and
software mechanisms. We demonstrate the efficacy of the SYM-
PHONY framework by performance evaluation of an instance in
the framework. We show that multithreaded architectures coupled
with SIMD parallelism provides performance improvement in ex-
cess of 2X over conventional superscalar architectures.

1. INTRODUCTION

Advances in deep submicron technologies have made single chip
systems viable [I]. These system integrate programmable proces-
sor cores and dedicated hardware components onto a chip. A high-
end multimedia processing chip, for example, may integrate pro-
grammable RISCDSP processor cores along with special hard-
ware accelerators, functional units and memory to achieve high
performance. These systems-on-a-chip (SoC) often use multipro-
cessor architectures to meet the performance demands of applica-
tions that are multi-functional by nature [2].The design of SoC is
extremely complex because early design decisions tend to reflect
on the performance of the system and also because chip design
is driven by rapid time-to-market needs. With new standards be-
ing defined for various high performance applications [3, 4, 51, it
is advantageous to provide programmability, reconfigurability and
scalability in such SoCs, wherein dramatic improvements in speed
can be achieved by fine tuning a few parameters in the architec-
ture to suit specific applications. With these constraints in mind,
it becomes easier for system designers to base their chips on a
broad architecture framework that provides solutions for a domain
of applications and then tune the reconfigurable elements in the
architecture to suit the application in question. The SYMPHONY
architecture framework [6] seeks to achieve these goals for media
applications.

Media applications exhibit a lot of inherent parallelism both at
the micro level [7] (Instruction Level Parallelism) and at the macro
level [8] (threads). While ILP can be exploited using techniques
similar to that used in conventional superscalar processors [7] , the
extent to which thread level parallelism can be exploited is pred-
icated by the application of fast communication and synchroniza-
tion techniques. Dramatic performance benefits in media applica-
tions can be achieved by exploiting single instruction multiple data

(SIMD) parallelism. To speedup media applications, commercial
processors have implemented SIMD style arithmetic and instruc-
tions have been provided to exploit SIMD parallelism [9]. Here
instruction operate on sub-datatypes of a 64 bit register in parallel.
The SYMPHONY framework exploits all the kinds of parallelism
detailed above.

In this work we have architected a set of development tools for
a system in the SYMPHONY framework consisting of simultane-
ously multithreaded superscalar processors. We use an execution-
driven processor simulator to evaluate the architecture framework
for specific configurations of the SYMPHONY instance. Each
thread in a configuration under consideration consists of a small
issue width superscalar processing unit. Execution times of bench-
mark programs are compared against that of a wide issue unithreaded
superscalar architecture.

The rest of the paper is organized as follows. In Section 2 we
discuss the SYMPHONY framework for media processing. In sec-
tion 3 we describe the experimental setup and discuss results. We
conclude in section 4.

2. THE SYMPHONY ARCHITECTURE FRAMEWORK

Having motivated the need for a framework based design for me-
dia processors, in this section we present the SYMPHONY frame-
work. A system in the SYMPHONY framework consists of a lin-
ear array of SYMPHONY processors (SPs) as shown in Fig. 1.
We use bidirectional busses for interconnecting processors. Each
processor has to its own private memory connected via private in-
struction and data caches. Other system interfaces for streaming
data and display buffers that are part of a any multimedia system
have not been included in the figure.

A processor in the SYMPHONY framework (SP) has h-ardware
to support simultaneous multithreading [14, 15, 131. A broad or-
ganization of an SP is shown in Fig. 1. An SP has a few extra hard-
ware modules not seen in multithreaded architectures proposed
earlier. These are the communication registers, the single assign-
ment memory (SAM) module and the communication controller
(CC). In addition to these modules we also have integer functional
units and floating point units along with special media processing
functional units that can perform arbitrary width SIMD style arith-
metic [l 11. SIMD style processing is similar to that used in general
purpose processors with media extensions (eg. MMX [lo]).

Each SP, in addition to the general purpose registers, also has
registers called transfer registers that are used for communicating
fine grained data between processors. Register variables that a pro-
gram segment or task is guaranteed to produce and later consumed

0-7803-5482-6/99/$10.00 '2000 IEEE

1-53 1

Memory L
W

Memory

. . .

- LDB (Local data Bus)
* CAB(Cache Access Bus)

- MAB(Memory Access Bus)

(a)

To Caches

(b)

Figure 1: SYMPHONY (a) System Organization (b) Modules in an SP

by another task executing in a neighboring processor may be as-
signed a transfer registers. The use of the transfer registers must be
determined statically so that the consumer task can know a-priori,
the registers in which it can receive data. We advocate the use of
efficient compiler techniques to overlap communication with com-
putation to a large extent. The transfer register file hence, consists
of a transfer register set T and a shadow register set SH that is
not visible to the program. During program execution the current
set of visible registers T is used while the SH registers are written
into with values communicated from neighboring SPs. Multiple
writes to the same registers is buffered by the CC. The CC can be
programmed to partition the SH set of registers into subsets Zj,,
and Tright corresponding to values communicated from the left and
right neighboring SPs respectively. An explicit switch instruc-
tion has to be executed when the values that have been written
into the SH registers are to be used. On executing a switch in-
struction the T and SH registers are swapped malung the values
in the SH registers visible to the program. To guarantee that a
switch instruction does not lose data meant for a subsequent task,
the program sets a mask using a setmask instruction, indicat-
ing the registers in which it expects values for the next task to be
scheduled onto the SP. A write into one such register resets the
mask bit associated with it. A switch instruction executed subse-
quently will block until all the registers indicated by the mask have
been updated.

In general purpose processing the data cache buffers part of
the main shared address space. Data caches are very effective
in accessing data that have temporal locality and whose access
patterns are non-predictable. The access times for data is hence
non-predictable ‘and on a cache miss can be an order of magni-
tude longer than on a cache hit. This however, is undesirable for
media processing applications that have real-time constraints. We
therefore use a special memory module called the single assign-
ment memory (SAM) that has access times comparable to that of a
cache hit. Shared variables that have predictable access patterns or
whose lifetimes are predictable are targeted to SAM. It should be
noted that SAM is effective for data that are small to medium sized
since it is used for synchronization between threads and for data
with predictable locality. The use of SAM is similar in spirit and

concept to static single assignment - used extensively in com-
pilers for data flow analysis. A bit associated with every word
in SAM indicates the presence or absence of data. A hardware
scheme implemented in the CC can unblock threads waiting for
data whenever the requested data arrives.

The CC coordinates the use of the communication registers,
SAM and accesses to the cache. The SAM modules of all the SPs,
together give the appearance of a single shared memory module.
Each SP, on startup, is configured using special supervisory in-
structions to use disjoint segments of this shared data space. To
direct accesses to SAM that belongs to another processor, a CC
maintains the address mappings of the processors in the system.
Memory operations in a particular processor can thus be directed
to the SAM of the same processor, one of the neighboring proces-
sors or to a processor’s local memory. The CC distinguishes these
accesses and directs them either to the appropriate processor, local
SAM or the cache controller.

3. EXPERIMENTAL SETUP AND RESULTS

In this work we have built a set of development tools for a system
in the SYMPHONY framework consisting of simultaneously i u l -
tithreaded superscalar processors. Simulation tools to verify and
evaluate the architecture framework for specific configurations of
the SYMPHONY instance have also been built. Each thread in the
configuration under consideration consists of a small issue width
superscalar processing unit. We have defined a multithreaded ex-
tension to the instruction set architecture of the MIPS processor for
our simulation studies. The aim of our study was to explore the use
of superscalar processor cores like the RlOOOO to do simultaneous
multithreading. In this paper we report preliminary studies on the
use of a multithreaded uniprocessor instance of the SYMPHONY
framework for media applications.

A high performance simultaneously multithreaded media pro-
cessor would require fine-grained communication and synchro-
nization between threads. We use the single assignment memory
described earlier for this purpose. The SMT processor proposed by
Tullsen et a1 [14] shares the instruction scheduling unit among all
executing threads. The architecture would deadlock if a blocked

1-532

thread fills up the instruction queue preventing a release instruc-
tion from another thread from executing in the processor. A solu-
tion in which instructions from the blocked thread are flushed from
the instruction queue has been proposed in [16]. We however, use
separate instruction queue structures for each thread, thereby alle-
viating the problem.

Tools in this environment consist of a compiler and a simulator.
The compiler for the specific instance of SYMPHONY mentioned
above takes annotations specifying threads and shared synchro-
nization variables and assigns them to registers or single assign-
ment memory. The compiler produces object code for a multi-
threaded extension of the MIPS architecture. Extensions to the
MIPS architecture are in the form of instructions to setup new
thread contexts, spawn new threads and media instructions to han-
dle arbitrary precision arithmetic. The execution-driven processor
simulator mimics the processor pipeline of a MIPS RIOOOO out-of-
order superscalar processor [I21 for each thread. A branch predic-
tion buffer shared among all threads is also used €or branch predic-
tion. Considering the streaming nature of media applications we
include only a single level of cache. We use the ICOUNT.2.8 fetch
policy described in [14] to use the fetch bandwidth effectively.

3.1. Workloads and results

Media processing applications are characterized by tight “inner-
loops” that execute repeated computations on different set of data.
These loops are amenable to parallelization. Parallelism in these
loops can be exploited through ILP, SIMD processing and multi-
threading. Further, these loops can be classified into: those that
have data dependent flow of control and those with static flow
of control. MPEG-2 encoding involves motion estimation and
falls into the first class wherein more amount of processing has
to done on scenes involving higher activity (motion). Adaptive
filtering [17] on the other hand involves loops that have,a highly
deterministic flow of control’. In this work we study two such
benchmarks for various configurations of the SYMPHONY in-
stance. We compare the performance of various multithreaded
architecture configurations against configurations of conventional
superscalar processors. The base processor and memory configu-
rations are tabulated in tables 1 and 2 respectively.

One of the benchmarks that has been chosen is the MPEG-2
encoder of the MPEG Software Simulation Group (MSSG). The
encoder was run with 160 x 120 pixel 3-band images with high ac-
tivity (rocket.mpg -A rocket launching scene). The rocket scene
consists of 50 frames. The scenes were encoded at a frame rate of
2Sfps, bit rate of SMbps at Main Profile @ Main Level (MP@ML).
The images were in 4:2:0 YUV chroma format. Default quantiza-
tion tables of the MSSG are adopted. Another benchmark that was
chosen is the digital adaptive equalizer for broadband modems.
The adaptive equalizer consists of a 120-tap delayed least mean
square (DLMS) adaptive filter [17]. The tight loops of the DLMS
filter exercise the SAM and the performance figures indicate the
efficacy of SAM as a mechanism that supports low overhead fine-
grained synchronization.

Figures 2 - 3 compare the performance of various architectures
relative to a baseline architecture indicated in each figure. We rep-
resent the configuration of an architecture with a tuple as described
below:

(sc, iw, nc, in, im, sa, ss)

‘Adaptive filtering constitutes the heart of the computations in adaptive
equalizers for broadband modems

Branch Prediction
Bimodal predictor size
Taken Branches per cycle
Simultaneous speculated branches

Maximum No. of thread contexts
Functional unit latencies

Default Integer
Integer multiply
Integer divide
Default floating point
floating moves/converts
floating point divides
Default SIMD
Default SIMD multiply
Integer loads
floaung point/SIMD loads

1K
1 I
latencylrepetition rates

11/10

2/2
14/14

3/1
21 1
3/ 1

Table I : Default processor parameters

Data Cache size
Data cache request ports
Cache hit time 2 CPU cycles

Table 2: Default memory system parameters.

Fig 2. Relative performance of various configurations for
the DLMS kernel

Architecture Configuration

where sc, iw, nc, in, im, sa, ss indicate the scalarity, instruction
window size, associativity of the data cache, number of integer
ALUs, number of integer multipliers, number of SIMD ALUs and
the number of SIMD shift units respectively. Prefixes to the tuple
could be a combination of simd with st or mt, where, simd indicates
that SIMD parallelism is exploited by the architecture instance. st
or mt indicate that the instance is unithreaded or multithreaded.
The following inferences can be drawn from the figures:

In the MPEG-2 encoder, performance of superscalar pro-
cessors improve marginally with increase in the number of
functional units for window sizes less than 16. Doubling the

1-533

Fig 3. Relative performance of various configurations for the MPEG2 encoder
benchmark (rocket.mpg)

Architecture Configuration

size of the instruction windows gives a performance boost
of as much as 50%. This indicates that JLP is far flung in
such applications.
Multithreading provides comparable performance to a wide
issue superscalar processor without the attendant penalty of
a slower clock (not accounted for in performance figures).
Since there is only one level of cache, an efficient cache
organization is necessary. It is seen that the increase in as-
sociativity prevents cache thrashing due to accesses from
multiple threads.
SIMD parallelism gives significant performance gains in
both the benchmarks. This is because of exploitation of
data parallelism and also the reduction of control flow over-
heads.
Performance can be enhanced by a further 50% if an ar-
chitecture is able to exploit both SIMD and multithreading.
This however, comes at the cost of more SIMD ALUs.
The DLMS kernel benefits from the use of more functional
units. This is due to higher levels of data parallelism.

4. CONCLUSIONS

In this paper, we have presented an architecture framework called
SYMPHONY that exploits parallelism in media applications at mi-
cro (ILP) and macro (threads) levels. We have demonstrated the
efficacy of the SYMPHONY framework by performance evalua-
tion of an instance in the framework. We have shown that mul-
tithreaded architectures coupled with SIMD parallelism provides
performance improvement in excess of 2X over conventional su-
perscalar architectures.

5. REFERENCES

[I] John Hennessy. The Future of System Research. In IEEE Cornputer
Magazine, pp 27-33, Vol 32, No. 8, August 1999.

S. Santhanam et al.. A Low-cost, 300MHz, RISC CPU with At-
tached Media Processor. In IEEE Jl. of Solid-State Circuits, pp
1829-1839, Vol33, No. 11, November 1998.
MPEG-4 Standard from ISO, http:llwww.mpeg.org/MPEG
Very high-rate Digital Subscriber Line, http://www.vdsl.org
UMTS, http:l/www.umts-forum.org
S. K. Nandy, S. Balakrishnan, Ed. Deprettere. SYMPHONY: A
Scalable High Performance Architecture Framework for Media Ap-
plications. In Proc. of the Fijh Intl. Conf on Advanced Computing,
Chennai, India, Dec. 1997.
James E. Smith and Gurinder S. Sohi. The Microarchitecture of Su-
perscalar Processors. In Proc. of rhe ZEEE, pp 1609-1624, Vol 83,
No. 12, December 1995.
Jack L. Lo et al., Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multithreading. In
The ACM Transactions on Computer Systems, 1997.
P. Ranganathan et al. Performance of Image and Video Process-
ing with General-Purpose Processors and Media ISA Extensions. In
Proc. 26th Intl. Syrnp. Computer Arch., 1999.
Alex Peleg et al., Intel MMX for Multimedia PCs. In Cornnumica-
tions ofthe ACM, pp 25-38 Vol. 40, No. 1, January 1997,
S. Balakrishnan and S. K. Nandy. Arbitrary Precision Arithmetic-
SIMD Style. In Proc. of the 11th Intl. Con8 on V U 1 Design, Chen-
nai, India, January 1998.
Kenneth C. Yeager. The MIPS RIO000 Superscalar Microprocessor.
In IEEE Micro, April 1996.
G. S. Sohi et al., Multiscalar Processors. In Proc. 22nd Znrl. Sytnp.
on ComputerArch., pp 414425, June 1995.
Dean M. Tullsen et al., Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Processor,
In Proc. 23rd International Symposiurn on Computer Architecture,
1996.
J-Y. Tsai and P-C. Yew. The Superthreaded Architecture: Thread
Pipelining with Run Time data Dependence Checking and Control
Speculation. In Intl. ConJ on Parallel Arch. and Cotnpilation tech-
niques, pp 3546, Oct. 1996.
Dean M Tullsen et al. Supporting Fine-Grained Synchronization
on a Simultaneous Multithreading Processor. Proc. of the 5th Intl.
Syrnp. on High Perf C o n p Arch., Jan. 1999.
Chris J. Nicol er al. A Low Power 128-Tap Digital Adaptive Equal-
izer for Broadband Modems. In IEEE Journal of Solid-State Cir-
cuits, pp 1777-1789, Vol. 32, No. 11, November 1997.

1-534

http:llwww.mpeg.org/MPEG
http://www.vdsl.org
http:l/www.umts-forum.org

