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Abstract—In a battery powered system, a primary design consideration
is the battery lifetime. Profile of current drawn from a battery determines
its lifetime. Recently in [4] dynamic voltage scaling has been applied to
alter the battery load current profile in distributed systems to reduce
battery charge consumption. Load current profile is changed by utilizing
the slack in the execution of the scheduled tasks. In this paper we propose
a new dynamic voltage scaling procedure that alters load current profile
by considering the total battery current instead of the method of [4]
that considers the current dawn by individual task with the latest finish
times in the schedule. The task schedule is partitioned into steps defined
in this work and the load currents during selected steps are targeted
for reduction by scaling the supply voltage of the processing elements.
Experimental results on a large set of task graphs show that battery
charge consumption reductions of up to 89.80% are achieved by the new
algorithm.

I. INTRODUCTION

Battery-aware system design has become a new frontier in low
power design in recent years[1]. Due to the continuously increasing
functionality and performance, applications are consuming more and
more energy while the capacity of the batteries grows relatively
slowly. Since in battery-powered system, the battery lifetime impacts
the utility and duration of the system directly, extending the battery
lifetime should be a primary design metric.

In most cases, after task scheduling, there exists a slack between
the deadline and the real finish time of the execution of the tasks
in distributed embedded systems. Dynamic voltage scaling (DVS) is
used to exploit the slack to reduce the supply voltage of the processing
elements (PEs) so that their energy consumption can be reduced.
The side effect is that the task execution time will be increased. The
existing slack accommodates the extra execution time. This technique
is very powerful because the energy consumption is proportional to
the square of the supply voltage. As a result, many DVS algorithms
have been developed recently. [2] gives a good summary.

Since voltage scaling changes the current drawn by a PE as well,
DVS can also be used to extend the battery lifetime which heavily
depends on the load current profile (LCP). LCP is the instantaneous
battery current expressed as a function of time. In this work we
approximate LCP as a stepcase function of time. Only a few works
have investigated DVS for battery-aware system level synthesis. In [5]
[6], DVS is used in a single PE system to reduce the battery charge
consumption. In [7], task scheduling is battery-aware, but the DVS is
not. In [4], which is briefly discussed next, DVS for multi-processor
distributed systems is investigated. The algorithm in [4] considers
scheduled tasks one by one, starting from the last scheduled task. The
latest finished task is scaled to the lowest possible voltage subject to
the deadline constraint. Then the task that is finished the last among
the remaining tasks is scaled. This process is repeated until there is
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no slack left or every task uses the lowest allowed voltage level. In
distributed systems, tasks are executed concurrently on multiple PEs.
Therefore, the instantaneous load current of the battery is the sum
of the currents consumed by all the tasks executed concurrently on
the PEs in the system. Thus in distributed systems it is necessary
to consider the total load current of the battery instead of currents
drawn by individual tasks to derive a good DVS strategy. Based on
this observation, we propose a new DVS algorithm to modify the
total battery LCP to reduce the battery charge consumption.

The rest of the paper is organized as follows. Section II includes
preliminaries and introduces the battery model used in this work. The
proposed DVS algorithm is described in Section III. Experimental
results are given in Section IV and conclusions are in Section V.

II. PRELIMINARIES

In battery-aware system design, one of the most important items
is battery modelling. Due to the complex non-linear electrochemical
phenomena occurring inside the battery, it is difficult to model the
battery behavior. Around 10 battery models exist currently and a full
survey of battery modelling can be found in [8].

In this work we use an analytical high-level battery model proposed
in [6] [9]. Two important battery properties, rate-capacity effect and
recovery effect, are both well modelled. Work in [4] also used this
battery model. The input to the model is the battery load current
profile which is approximated by a stepcase function. The current
and duration of stepy is I and Ay respectively. The load current
profile of tasks can be obtained by method introduced in [10]. The
core part of the model is the following function

N-1
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where N is the number of the total load current profile steps and 3
is a constant related to the non-linear property of the battery. The
function F'(z,y, z,3) is defined as
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The battery lifetime is computed by solving the equation
N-1
o= Z I}cf?(L7 tre,ti + A}mﬁ)
k=0
where « is the battery capacity and L is the unknown. Details of the
computation of L are given in [9].
This model is not limited as a tool to measure battery lifetime, more
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Fig. 1. A scheduled task graph.

important usage of this model given above is that equation (1) can
be used as a cost function and an optimization objective in battery-
aware system design. It has been analyzed in [6] that design targeting
the energy minimization won’t result in the longest battery lifetime.
Only when this cost function is minimized, the battery lifetime will be
maximized[6]. Hence, the proposed algorithm will focus on reducing
this cost function. We do so by modifying the battery LCP through
scaling the voltage of the selected tasks. A motivational example
given in Section III illustrates how to utilize the voltage scaling to
modify LCP. Throughout the paper, we use the same assumption as
[4] that if the voltage of a task is scaled by s, then the worst case
execution time (wcet) of the task will become by wcet/s and the
current of the task will be decreased by s°. Note that 0 < s < 1
because we assume the voltage is down-scaled. In the remainder of
the paper, when we say the current of a task we mean the current
drawn from the battery due to the execution of the task.

III. PROPOSED BATTERY-AWARE DVS ALGORITHM

We use an example to motivate the main ideas of the proposed
algorithm.
Example 1: A task graph with 4 nodes is given in Figure 1(a). The
number next to each node is the current of the task. The four tasks
are executed on two PEs, as shown in Figure 1(b). The length of a
rectangle in Figure 1(b) is the execution time of the task and its height
is the current. In the given schedule, there is a slack of 5 time units.
The supply voltage of both PEs are scalable with the highest supply
voltage set at 3.3V, and 3 of the battery model is 0.273 [9]. We
assume that the communication times are all zero for convenience.
We compare three DVS methods.
Method 1 This method is the one used in [4]. Scale the voltage
of the last task, 7°_3, until 7°_3 finishes just at the deadline, that is,
utilize all the slack to scale the task with the latest finish time. The
scaled result is given in Figure 1(c).

We notice that 7'_1 and 72 are executed concurrently, and as
a result, the load current of the battery is very large during their
executions. There are two possibilities for distributing the slack.

step1 stepa steps steps | cost
function
No scale | 100/5 200/5 50/5 0/5 3226.1
Methodl | 100/5 200/5 6.25/10 — 2865.4
Method2 | 100/5 25/10 50/5 — 2634.4
Method3 | 100/5 | 34.30/9 | 28.94/6 — 2259.3
TABLE I

DIFFERENT VOLTAGE SCALINGS FOR THE TASK SCHEDULE IN EXAMPLE 1

These are illustrated by the two methods given next.
Method 2 We use all the slack to scale the two tasks 7°_1 and 72
simultaneously until the finish time of 7'_3 reaches the deadline. The
scaled schedule is given in Figure 1(d).
Method 3 Scale the voltages of 7'_1 and 7"_2 simultaneously until
their wcet is prolonged from 5 to 9. Scale the voltage of 7'_3 until its
wecet is prolonged from 5 to 6. Figure 1(e) shows the scaled result.
The load current profile without voltage scaling and the load
current profiles of the three methods are shown in Table 1. The
No scale profile is made up of four steps, the last of which has
zero current. The profiles of Method 1 through Method 3 each has
three steps. Step; and Steps contain 70 and 7'_3 respectively, so
the current and length of these two steps are just the current and
length of 70 and T'_3. Step> is made up of 7'_1 and 7T°_2, and the
current in this step is the sum of the currents of these two tasks.
In Table I, the first number of a step is its current and the second
number is its length. The last column of the table gives the value of
the cost function based on the current profiles of the three methods.

From Table I we notice that the DVS procedure of [4] given as
Method 1 above applies all the slack to the last step and reduces
the battery cost function by about 11% relative to the case of not
using DVS. The DVS of Method 2 reduces the battery cost function
by over 18% by assigning all the slack to Steps where two tasks
are executed in parallel. Method 3 on the other hand distributes the
slack to two steps, Steps and Steps, and reduces the battery cost
function by about 30%. This motivates the DVS algorithm proposed
in this work in which the slack is distributed over several steps of
the schedule.

The reason for the higher effectiveness of Method 3 in reducing
the battery cost function is that when Steps is scaled, its current
decreases and consequently its potential for reducing the cost function
decreases as explained later in the proposed algorithm. Thus, after
we scale Steps to some level, if we then consider the total current
profile again, it can be found that at this time it is better to scale
T_3 (Steps) than continuing to scale Steps. Though the result of
Method 3 is not necessarily optimum it gives us a heuristic to use.
That is, we should not scale any step maximally, but scale the voltage
of one step for a small value each time and determine which other
steps should be scaled based on their contribution to the total load
current. The details of the procedure based on this heuristic are given
in Section IIL.B.

A. Fartitioning the task schedule

Before scaling the voltages of the different steps, we first need to
partition the task schedule to obtain the steps during which scaling
is used. In Example 1, the task graph and the task schedule are very
simple, and it is easy to partition the schedule into four steps. The
first and the third steps each contain a single task. The second step
contains two parallel tasks and the fourth step contains no task. In
reality, the task schedule is more complex. The wcets of tasks may
be different for different tasks and the parallel tasks on different PEs
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Fig. 2. Partition of task schedule.
do not necessarily have the same start time or the same finish time.
As a result, the tasks may be only partially executed in parallel.

The procedure used to partition a schedule into steps is as follows.

Start from the start time of the first task in the task schedule. When
the start time of any task or the finish time of any task is met, mark
this time point as the end of the current step and the beginning of
the next step. The duration of a step is also its length. The current of
a step is the sum of the currents of the tasks contained in this step.
The length and current of all the steps form the load current profile
for the battery model. Example 2 given next uses an eight node task
graph to show the process of partitioning a schedule.
Example 2: The task graph for this example is shown in Figure 2(a).
The number next to a node is the wcet of the corresponding task,
and the number on an edge is the communication time of the edge.
Tasks are executed on three allocated PEs. All PEs are connected by a
bus. The schedule is shown in Figure 2(b). The schedule includes the
communication times on the “link” time line. We use the procedure
given above to partition the schedule. As a result, the schedule is
partitioned into 12 steps. Step 1 contains 7°_0, step 2 contains part
of T'_2, and the communication time between 7'_0 and T'_1. Step 3
contains the whole of 7'_1 and part of 72, and so on as shown in
Figure 2(b).

It is important to make the following point with respect to the
proposed DVS algorithm. It scales the voltages of the steps of the
schedule obtained by the partitioning procedure given above. Since a
task may be contained in several steps of the partitioned schedule, its
assigned PE may have to execute it under different supply voltages
in these steps. For example, in Figure 2(b), task 7"_2 is contained in
three steps, so after voltage scaling, the three portions of 7°_2 may
have different voltages. Thus the physical realization of the system
will need to support executing a task at different supply voltages.

B. The DVS algorithm

Here we use the general DVS assumption that the initial task
schedule is known and task execution order is fixed [2] [3]. Also,
as[4], [5] and [6], we assume that the current of each task is

constant.

Now the problem becomes the following. Given a partitioned task
schedule, scale the voltage of certain steps such that the battery
model cost function is minimum.

We use a constructive heuristic to solve this DVS optimization
problem. Each time one step is chosen and the voltage of the tasks
inside the step are reduced by a small value. The chosen step should
cause the largest cost function reduction among all steps if they are
scaled by the same amount of voltage. This procedure is repeated
until the available slack is zero or the supply voltage of the tasks
in all the steps reaches the lowest level which is usually set to
the threshold voltage of the PE. Below is the pseudocode of the
algorithm.
while(true)

Ao'max = O;

k= 0;

store the length and current of all the steps;

store the voltage of all the tasks inside each step;

for each step;

for each PE;
reduce V; by dV; such that s; = Yi
end for
length; = length;/s;;
compute current;;
compute cost function reduction Ac;
1f (Aomaz < Ac)
Ao mazr = Ao
k=1
end if

set the length and current of step; to its old value;

set the voltage of all the tasks
inside step; to their old values;

end for

scale stepy, with scaling factor sg;

if(slack is used up ||

the supply voltage of all the tasks inside
each step reaches the lowest level)
break;

end if
end while

The input to the procedure given above is the partitioned task
schedule and the output is the supply voltages of all the tasks during
each step. In each iteration we consider every step and select the
one that will affect the current most. For each step;, we reduce the
supply voltage of the tasks included in step; by a small value, which
equals giving a small part of the slack to that step, and increase the
length of the step accordingly. Then we compute the current of the
step and compute the reduction in the cost function. After we try a
step;, we need to set the length, current and PE supply voltages of
this step to the old values. Next we find the step which can reduce
the cost function most. We use k to indicate the index of this step
and Aopmaq to store the maximum reduction in the cost function.
We scale the supply voltages of all the PEs in step,. When the
slack is used up or the supply voltages of all the PEs in every step
reach the lowest level, the while loop is broken. In each step, we
choose a different dV' for different PEs such that the time extension
for all the tasks inside the step would be the same.

The complexity of the algorithm is O(K N?) where N is the total
number of steps, and the factor K depends on dV' and the amount
of slack. Smaller dV' and larger slack values will cause K to be
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Task No. of No. Reduction Reduction
graph tasks/ of by method by proposed
edges PEs in [7] (%)/ method (%)/

cpu time(s) cpu time(s)

T1 8/9 3 75.3/ 0.05 89.8/0.17
T2 26/43 2 18.66/ 0.23 35.74/ 0.76
T3 40/77 5 76.15/ 26.76 86.18/ 69.69
T4 20/33 3 24.86/ 0.46 38.60/ 0.83
T5 40/77 4 19.04/ 5.51 30.05/ 7.22
T6 20/33 3 5.10/ 0.15 19.58/ 0.26
7 20/27 2 22.24/ 0.54 42.20/ 1.12
T8 18/26 3 13.51/ 0.10 40.27/ 0.58
T9 16/15 2 14.01/ 0.14 18.76/ 0.17
T10 16/21 2 29.82/ 0.13 32.82/ 0.23
T11 30/29 3 10.53/ 0.90 47.46/ 3.91
T12 36/50 4 19.66/ 2.92 39.56/ 3.13
T13 37/36 4 27.26/ 4.46 57.22/ 5.50
T14 24/33 3 49.84/ 1.76 70.94/ 4.23
T15 40/63 4 33.95/ 14.26 77.45/ 48.33
T16 31/56 2 29.19/ 3.93 54.02/ 5.42
T17 29/56 3 47.18/ 8.24 86.64/ 20.28
T18 12/15 2 22.31/ 0.07 52.12/ 0.34
T19 14/19 2 74.55/ 0.52 85.98/ 0.91
720 19/25 2 46.30/ 0.51 55.65/ 0.76
T21 70/99 4 13.75/ 17.97 24.59/ 18.05
T22 100/135 4 26.47/ 166.85 | 46.59/ 399.78
723 84/151 2 11.93/ 53.88 30.01/ 86.12
T24 80/112 3 6.58/ 7.64 13.03/ 14.2
T25 | 46/92 2 19.01/ 14.54 | 35.73/ 25.67
RAC 9/8 2 53.50/ 0.02 67.897 0.06

TABLE 11
THE VOLTAGE SCALING RESULTS
larger.

We ignore the battery charge consumption during the voltage
transition. However it is possible to include this by appropriate
adjustment to the scaled current when a voltage transition occurs.

Finally, the proposed algorithm may be integrated with allocation
and assignment reported by any system level synthesis tool.

IV. EXPERIMENTAL RESULTS

The main aim of the presented experimental results is to show
that considering the LCP as a whole instead of the currents drawn
by individual tasks can reduce the cost function by greater amounts
and we illustrated this benefit by using numerous task graphs of
varying complexity.

To demonstrate the benefit of using the proposed DVS algorithm
in extending the battery life, we have applied it to 25 random task
graphs (Tgffl - Tgftf25) used by [3], and one real task graph from
[6] which describes the behavior of a robot arm controller. The real
task graph is executed on a single PE in [6] and here we suppose
it is executed on two identical PEs. The tasks of the robot arm
controller include Ohold law, Jhold law, matrix vector multiplication
and several others. The detail description of the example is in [11].
We assume that all the PEs are DVS-enabled and linked by a bus.
The proposed method and that of [4] were implemented using C++
on a Pentium-4/2.0GHz/512MB computer. We compute the cost
function reduction after voltage scaling and compare the results of
our algorithm with that of [4]. We implemented the procedure of [4]
in order to compare the proposed method with it.

The results are given in Table II. The first column gives the
names of the task graphs. We use 7' to represent Tgff, for instance,
T1 means Tgffl, and we use RAC to represent the robot arm

controller. The second column is the number of nodes and edges
of each task graph. The number of allocated PEs is shown in the
third column. The fourth and fifth columns show the cost function
reduction and the corresponding cpu time by the algorithm of
[4] and the proposed algorithm, respectively. The cost function
reductions are given as a percent of the cost function value for the
case where DVS is not used. It can be seen that both algorithms
can reduce the cost function for every task graph. The proposed
algorithm achieves greater battery cost function reduction for all task
graphs. With regard to the computation time, the proposed algorithm
consumes more time than the procedure of [4]. It is important
to note that the percent reduction of the cost function value is
determined by the slack and the amount of concurrent processing
in the original schedule. In other words the percent reduction in
cost function value is not directly related to the size of the task graph.

V. CONCLUSION

This paper addressed the problem of battery-aware dynamic volt-
age scaling in distributed embedded systems. Minimizing the battery
cost function of a battery model was targeted. By considering task ex-
ecution parallelism and the battery load current profile, the proposed
DVS procedure distributes the slack in the schedule of execution of
the system tasks in order to reduce the battery charge consumption.
Experimental results show the better effectiveness of the proposed
procedure compared with a DVS procedure for distributed embedded
systems [4] that assigned slack iteratively to the latest executed tasks.
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