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Abstract—Automatic segmentation of CT images has recently
been applied in several clinical liver applications. Convolutional
Neural Networks (CNNs) have shown their effectiveness in medi-
cal image segmentation in general and also in liver segmentation.
However, liver image quality may vary between medical centers
due to differences in the use of CT scanners, protocols, radiation
dose, and contrast enhancement. In this paper, we investigate
three wells known CNNs for liver segmentation using data from
several medical centers: FCN-CRF, DRIU, and V-net. We perform
qualitative evaluation of the CNNs based on Dice score, Hausdorff
distance, mean surface distance and false positive rate. The
results show that all three CNNs achieved a mean Dice score of
over 90% in liver segmentation with typical contrast enhanced
CT images of the liver. The results also demonstrate that those
CNNs have reduced performance in liver segmentation in the case
of low-dose and non-contrast enhanced CT images. In conclusion,
these promising results enable further investigation of alternative
deep learning based approaches to liver segmentation using CT
images.

Index Terms—liver segmentation, CT images, U-net, V-net,
low-dose

I. INTRODUCTION

Liver cancer is the sixth most common cancer worldwide
[1], with a high incidence in developing countries in East-
ern Asia, South-Eastern Asia, Northern Africa and Southern
Africa [2]. Liver cancer is one of the most common causes of
death from cancer in Vietnam [3]. Less than 15% of patients
with liver cancer can survive without treatment for more than 5
years [4]. The size and shape of the liver varies considerably
from patient to patient. Clinical assessment of liver cancer
and treatment planning therefore requires accurate knowledge
of the liver of each individual patient. For instance, in liver
surgery, surgeons require precise liver segmentations before
making the decision to excise the liver segment(s) containing
the tumors [5]. Liver segmentation is also used in image
registration techniques in RFA liver intervention [6], [7], and
for delineating regions of interest for liver tumor segmentation
[8]. Conventionally, a liver segmentation can be created by
annotating the liver and liver lesion by on a slice-by-slice,

which is time-consuming and complicated [5]. Therefore, there
is a need for the use of computer-based liver segmentation
methods in clinical practice [9]. However, liver segmentation
from CT volumes is a challenging task due to the low intensity
contrast between the liver and other neighboring organs [5].
Also, the quality of CT images may differ between medical
centers because of variations in the use of CT scanners, as well
as the amount of injected contrast agent and radiation dose in
each particular application (see Figure 1). Therefore, a robust
automatic liver segmentation method, although greatly needed,
also is challenging to implement in practice, and this problem
has recently become an active area of research.

Several liver segmentation methods have been proposed in
the literature, including region growing, intensity thresholding,
graph cut, and deformable models [9], [10]. Nevertheless,
these methods are based on hand-crafted features, and thus
have limited feature representation capability. Recently, Con-
volution Neural Networks (CNNs), a typical type of deep
learning neural network, have achieved great success in a
wide range of medical imaging problems such as classification,
segmentation and object detection, achieving state-of-the-art
performance comparable to human oncologists/radiologists
[11], [12]. One of the reasons for this success is that CNNs
have the ability to learn a hierarchical representation of
images, without the need for handcrafted features [13]. In
the liver segmentation task, CNN-based segmentation methods
have been shown to outperform classical statistical and image-
processing approaches [8], [11], [14]. Ronneberger et al.
(2015) introduced the well-known U-net architecture [11], and
Christ et al. (2016) applied this CNN to segment the liver
[8] (see Figure 2). Christ et al. (2017) proposed a fully con-
volutional neural network (FCN) combined with conditional
random field (CRF) to segment the liver in both CT and MRI
images, and a mean Dice score of 94% was reported [14]. Li
et al. (2018) created the H-dense U-net by combining a 2D
dense U-net and a 3D counterpart and reported a Dice score
of 96.5% for liver segmentation [15]. Bellver et al. (2017)



Fig. 1. Examples of CT image of livers: a low-dose contrast enhanced CT (A), a low-dose non-contrast enhanced CT (B) and a contrast enhanced CT (C).
Those images were acquired from two medical centers, yielding the large differences in the quality of the liver CT image.

modified the original OSVOS neural network to segment the
liver [16] and achieved a Dice score of 94%. In general, those
CNN based liver segmentation methods can be classified into
two categories: 2D fully convolutional neural networks (2D
FCNs) and 3D fully convolutional neural networks (3D FCNs)
[15]. 2D FCN methods [8], [14], [16] perform on a single slice
or three continuous slices extracted from a 3D volume as the
input images. The final 3D segmentation volume is created
by stacking the 2D segmentation outputs in the corresponding
order. 3D FCNs [13], [15], [17] utilize 3D convolutional filter
kernels instead of 2D convolutional filter kernels, and the input
is a complete3D volume. In contrast to 2D FCNs, 3D FCNs
can use 3D spatial information for segmentation; however, this
comes at the cost of higher computational complexity and
GPU memory. Theoretically, the high memory consumption
enables a reduction in the depth of the network and the filter’s
field-of-view, which are supposed to be the main factors for
performance improvements [18]. However, the performance of
3D FCN versus 2D FCN in the task of liver segmentation is
still under debate [19].

One of the well-known characteristics of CNNs is that a
huge amount of data is required in the training stage to achieve
high segmentation performance [20]. However, large datasets
of suitable medical images are generally not readily available
(due to privacy concerns) and CT images of the liver are often
large - potentially in excess of one gigabyte - leading to limited
availability of training data, often only originating from one
or a few medical centers and thus potentially limiting the
performance and generality of the developed methods. Based
on our study of the literature, most related works train their
model and evaluate their methods on just one or two datasets;
most of them are from the MICCAI grand challenges [21]. In
practice, besides the contrast enhanced CT images typically
used, the dose and contrast agent awareness in use produces
multiple types of CT image of the liver [7]. Therefore, we
intend to investigate how well those methods perform on a
larger variety of liver CT datasets. In this paper, our main
contributions are:

- Firstly, we implement three well-known state-of-the-art

CNN architectures, Cascaded-FCN [8], [11], [14], V-net [13]
and DRIU [16], and train DRIU network for the task of liver
segmentation using a multi-cites dataset of CT images of the
liver.

- Secondly, we evaluate those methods on four CT datasets
from four medical centers/sources including contrast enhanced
CT, non-contrast enhanced CT and low-dose contrast enhanced
CT images which are used in several clinical applications [7].
The details of each method, datasets, and evaluation metrics
are described in detail in the next section.

II. METHODS

A. Neural network architectures:

1) Cascaded Fully CNNs (CFCN) with conditional random
fields (CRF): The CFCN introduced by Christ et al. (2017)
contains two U-net networks to segment the liver and liver
tumors [8]. In this study, we only implement the first U-net
for liver segmentation. The key idea of the U-net architecture
is that it has the ability to learn a hierarchical representation
of the training image in 2D [14]. It contains 19 layers divided
into two sections: the encoder and the decoder. The encoder
acts a classifier for the contextual information of the pixels in
the image, while the decoder, comprising connections from the
layers in the encoder, provides spatial information regarding
the pixels. Given a 2D input slice, the output of the U-net is a
2D probability map as a soft prediction for each corresponding
pixel in the original slice. For the optimization process, cross
entropy CE is used as the objective loss function:

CE = −
C∑
i

ti log(si) (1)

where C are the two classes of liver and non-liver regions,
is ground truth and is soft prediction score at the location i.
Next, a 3D-dense conditional random field (CRF) is applied
to combine the 2D probability maps, enabling consideration
of both spatial coherence and appearance information [8].
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Fig. 2. A well-known CNNs architecture, U-net, is designed to automaticaly segmentat the liver from CT images. The 3-level neural network architecture
contains two parts: the encoder and the decorder. The contracting path acts to classify pixels of the 2D image while the expanding path is performs matching
between max pooling layers (MP) and upsampling layers (US) to provide locations of the classified pixels in the original image. The figure is adapted from
[12].

2) V-Net: Fully CNNs for Volumetric Medical Image Seg-
mentation: The key idea of the V-net is that while most
CNNs are only able to process 2D images, the V-net is able
to segment 3D volumes using volumetric convolutions and
fully convolutional neural networks [13], [15], [17]. Similar
to the U-net architecture, V-net also contains two paths: the
down sampling (encoding) path of the network consists of
a compression path, which is followed by the up sampling
(decoding) path that decompresses the feature map until it
reaches the original size of the input volume. The direct
connections from the encoding to the decoding path provide
location information and hence improve the accuracy of the
final segmentation prediction. In this study, Dice loss is used
as the objective function for the optimizer [13]:

D =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(2)

where and are voxel values of the predicted segmentation and
the ground truth, respectively, and N is the number of voxels
in the volumes. Note that the segmentation and the ground
truth have the same size.

3) DRIU: Deep retinal image understanding: DRIU was
first used by Bellver et al. (2017) for liver segmentation
using CT images [16]. The network architecture is based
on VGG-16 [16] without the fully-connected layers, but still
containing fully convolutional layers, ReLU, and max-pooling
layers. Similar to U-net, the DRIU network consists of a
set of paired convolutional layers, each having the same size
of feature map, followed by max-pooling layers. The deeper
layers of the network may capture more abstract information
at a coarser scale. In contrast, in the more shallow layers,
the network is able to capture feature maps that work at a

higher resolution which contain local spatial information of
the object. In the end, DRIU combines the all feature maps by
resizing and linearly adding them into a single output image.
In this way, the final output segmentation contains information
of the object at multiscale resolution. In this work, weighted
Binary Cross Entropy CEw is used as objective loss function
as in [16]:

CEw = −
C∑
i

witi log(si) (3)

Where wi, with
∑C

i wi = 1, are the weights which balance
the relative importance of the pixel classes.

B. Data

In this study, we collected four datasets of CT images
from multiple sources/medical centers, containing contrast
enhanced, non-contrast enhanced, and low-dose CT images
of the liver. All of the datasets were anonymized by their
own cite before involving in this study. The first dataset is
from the Liver Tumour Segmentation (LiTS) challenge in the
MICCAI grand challenge in NIFTI format [21]. The images
were acquired on a variety of CT scanners and protocols
from several medical centers, with in-plane spatial resolution
varying from 0.55 mm to 1.0 mm, slice spacing varying from
0.45 mm to 6.0 mm, and the number of slices between 74 and
986. We use 115 labelled images, divided into two subsets:
105 for training as similar in [16] and 15 for testing. The
second dataset is randomly selected from the Mayo Clinic
(Mayo) with 10 images acquired on a Siemens CT scanner
under full radiation dose protocol. The images have in-plane
resolutions between 0.64 mm and 0.84 mm and slice spacing
of 3 mm. The original images were cropped in the z dimension
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in order to reduce the number of slices such that the liver is
preserved, resulting in the number of slices being between
46 and 112. The images were acquired at 100 kVP, with
CTDIvol of 18-21 mGy. The third and the fourth dataset are
randomly selected from Erasmus MC with 15 patients scanned
by Siemens scanners with low-dose protocol [22]. 15 data of
these are contrast enhanced (EMC_LD) and 15 data are non-
contrast enhanced CT images (EMC_NC_LD). The in-plane
resolution of those is images is between 0.56 and 0.89 mm, and
slice thickness is between 2 mm and 5 mm, with the number of
slices between 27 and 68 for the contrast dataset and from 21
to 89 for the non-contrast dataset. The images were acquired
during radio frequency ablation intervention at 80-120 kVP,
with CTDIvol of 4-9 mGy, resulting in noisy images due to the
low radiation dose (see Figure 1). The dataset from Erasmus
MC and Mayo were annotated by two experts for the ground
truth, which is used in the evaluation sections (Section 3).

C. Implementation

We have implemented DRIU and V-net using Python 3
and the FCN-CRF network using Python 2. We used the
Tensorflow 1.18 platform, and CUDA version 9.1.

The DRIU network was trained on a Linux PC with Intel
Core i9 9900K CPU, 8 cores, clock of 3.6-5 GHz; 16 MB
catch memory, NVIDIA Titan V GPU (11 GB RAM version),
64 GB RAM, and PSU Seasonic 1000W. The parameter setup
is inhered from the original work of Bellver et al [16] with the
batch size of 1; 15000 to 50000 iterations for each channel; the
initial learning rate of 10-8 and Momentum optimizer. Training
time on the 105 training dataset was approximately 2 days.

For the FCN-CRF network, we modified the source code
from [8] to obtain a complete pipeline for 3D liver seg-
mentation and reutilized its trained model. Meanwhile, we
implemented V-net and reused the trained model on the same
LiTS dataset, based on the source code and introduction from
Chen’s website https://github.com/junqiangchen/LiTS—Liver-
Tumor-Segmentation-Challenge

D. Evaluation Criteria

1) Dice score: We use Dice score (DSC) to evaluate the
liver segmentation performance. Given a segmentation X and
ground truth Y, DSC is defined as:

DSC =
2|X ∩ Y |
|X ∪ Y |

(4)

where |.| is an operator to count number of segmenta-
tion/ground truth voxels in the interaction domain or the
union domain. DSC reaches a maximum value of 1 when the
predicted segmentation X perfectly matches the ground truth
Y. In contrast, the DSC is minimized when X and Y do not
overlap at all.

2) Hausdorff distance and mean surface distance: Let
U and V be two boundaries of liver segmentation and

ground truth, respectively. We define their Hausdorff distance
dH(U, V ) by:

dH(U, V ) = max

{
sup
u∈U

inf
v∈V

d(u, v), sup
v∈V

inf
u∈U

d(u, v)

}
(5)

where sup represents the supremum and inf denotes the
infimum. Mean surface distance dM(U, V ) is defended as
following:

dM (U, V ) =
1

|V |
∑
v∈V

inf
u∈U

d(u, v) (6)

3) False positive rate: The False positive rate (FPR) can be
used to evaluate false positive segmentation outside the ground
truth. It can be formulated as following:

FPR(X,Y ) = 100× |X\Y |
|Y |

(7)

where X\Y denotes the part of X does not overlap with Y.
Results of evaluation using these criteria are reported in the
next section.

E. Results and Discussion

The evaluation scores of the three CNN architectures are
summarized in Table I .FCN-CRF and DRIU perform very
well on the LiTS dataset, with both achieving a mean Dice
score of over 90% (see the first row cluster of Table I), the
threshold for success used in other applications [7]. Those
results are similar to the result reported in the original works
[8], [16]. In contrast, V-net shows poor performance on this
dataset, achieving a mean Dice score of 73.65%. By visually
checking the data, we see that the predicted segmentations by
V-net contain a large number of non-connected components in
the area outside the liver, include the the areas of the spleen,
the stomach, etc. These false positive segmentations result in
the high FPR score of 19.2%. We hypothesize that a post-
processing step may help to eliminate these false positive
segmentations and thus further improve the segmentation
result. Due to the large volume size, the three networks require
a period of 30 seconds to almost 3 minutes for segmentation.
FCN-CRF consists of the conditional random field step which
significantly increases processing time, while the 3D CNN
approach, i.e. V-net, consumes more time than the other
methods.

In the second row cluster of the Table I, the evaluation with
the Mayo dataset shows that the three network architectures
perform well with similar scores. Note that in this dataset, the
3D images were manually cropped to fit the liver volumes,
thus part of the false positive segmentation in the V-net
does not appear in the segmentation evaluation setup. FCN-
CRF achieves the best score of 52.47 mm for the Hausdorff
distance metric, while the mean surface distance of DRIU is
the smallest at 2.84 mm. Since the volume size of the dataset
is much smaller than for the LiTS dataset, the processing time
of the three networks is just a few seconds per image. This
means the actual time to generate a liver segmentation is very
small. A pre-processing step to crop the region of interest will
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Fig. 3. Examples of liver segmentation by FCN-CRF (in red), DRIU (in green) and V-net (in blue). Each row shows a CT scan acquired from an individual
patient. The first row is liver segmentation on the EMC low-dose contrast dataset (EMC_LD), the second row is an image from Mayo dataset with the
segmentation overlaid on top. The last row illustrates the liver segmentation of a low-dose, non-contrast enhanced CT image from the EMC_NC_LD dataset.

Dataset CNNs Dice (%) Hausdorff
(mm)

Mean surface
distance (mm) FPR (%) Processing time

(s)

LiTS
FCN-CRF 92.4 ± 6.1 207.7 ± 69.5 6.3 ± 23.6 8 ± 10.2 50-77
DRIU 93.8 ± 1.2 428 ± 1.2 9.6 ± 41.9 4.6 ± 1.5 33-39
V-net 73.7 ± 15.9 381.7 ± 15.9 59.7 ± 100.6 19.2 ± 12.4 56-83

Mayo
FCN-CRF 91.8 ± 3.4 52.5 ± 62.1 6.9 ± 19.8 5 ± 3 7-7.3
DRIU 90 ± 2.4 193.8 ± 39.1 2.8 ± 19.8 8.3 ± 2 5.6-5.9
V-net 91.6 ± 4.0 126.6 ± 71.2 5.5 ± 19.8 9 ± 2.4 6.1-9.2

EMC_LD
FCN-CRF 80.4 ± 14.1 141.8 ± 18.5 11.7 ± 27.7 21.9 ± 16.7 2.8-5.7
DRIU 83.8 ± 6.2 147.1 ± 26.7 10.4 ± 122.3 14.7 ± 6.7 2-4.5
V-net 85.2 ± 9.9 118 ± 44 7.4 ± 23 15.9 ± 7.3 3.4

EMC_NC_LD
FCN-CRF 67.4 ± 28.3 97 ± 37.5 11.8 ± 20.8 32.2 ± 29.6 2.6-7
DRIU 74.4 ± 25.2 131.7 ± 44.3 13.1 ± 19.5 26.1 ± 27.0 1.5 -6
V-net 81 ± 14.7 105.8 ± 37.0 8.2 ± 17.9 15.1 ± 15.6 2.2-7.7

TABLE I
PERFORMANCE PARAMETERS OF THE THREE CNNS ACROSS ALL OF THE DATASETS

have a large impact on liver segmentation work in clinical
applications such as liver interventions which require limited
time.

The third and the last row cluster of Table I present
the scores of the three networks on the EMC_LD and
EMC_NC_LD datasets, respectively. From the results we can
conclude that the performance of the three CNNs reduces
dramatically due to the impact of low dose noise. That can
be explained by the fact that apparently the low-dose images
is not in the training set, hence the networks did not work

well for the image type that are not represented in the training
set. Furthermore, in general, the mean Dice scores evaluated
using the EMC_NC_LD dataset are lower than those in the one
using the contrast enhanced dataset. This can be explained by
the fact that contrast agent not only enhances the liver vessels
but also enhances the liver parenchyma, resulting in a clearer
boundary between the liver and other organs (see Figure 3).
These results suggest that liver segmentation in low-dose CT
image and non-contrast enhanced CT image of the liver is still
a challenging task and need further improvements before it can
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be applied in clinical use. The first attempt to investigate may
be to add these types of data in the training set and retrain the
CNN models.

Although this study was carried out on multiple-site datasets
and using state of the art methods, there are some limitations
in this study. First, the dataset for evaluation only contains 10-
15 cases. However, since the datasets were randomly selected,
we suppose these are representative. In addition, because the
images are three-dimensional and contain several dozen to
hundreds of slices per image, we assume this is sufficient for
liver segmentation evaluation. Second, there have been some
variants of the three CNNs for liver segmentation published
recently which have demonstrated even higher Dice scores
[15]. Nevertheless, our study aims to investigate how flexible
CNNs are with respect to multiple CT image types of the liver,
and we suppose that other CNN-based approaches will show
similar performance to the three well-known CNNs evaluated
in this study. Third, the three CNNs model were either reused
from public sources or trained with a setup inhered from the
related works [16], leading to limited in the ability in handling
the image segmentation. Still, that could be addressed in a
larger study with more data and fine tuning hyper parameters,
data argumentation involved in the training process [20].

III. CONCLUSIONS

We have successfully implemented and evaluated three
CNN architectures for liver segmentation on CT images. The
datasets are from several hospitals/medical centers and include
contrast enhanced, non-contrast enhanced, and low-dose CT
images. The qualitative evaluation result showed that the CNN
based segmentation approach for the liver using typical con-
trast enhanced CT images all achieve good performance while
liver segmentation for low-dose and non-contrast enhanced
CT images is still a challenging problem. However, with the
current development of CNN based methods, we believe that
better results for these problems may be realized in the near
future, making liver segmentation available for use in clinical
practice.
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