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Abstract—Mobile malware is growing and affecting more and more 

mobile users around the world. Malicious developers and 
organisations are disguising their malware payloads on apparently 
benign applications and pushing them to large app stores, such as 
Google Play Store, and from there to final users. App stores are 
currently losing the battle against malicious applications proliferation 
and existing malware. Detection methods based on signatures, such 
as those of an antivirus, are limited, new approaches based on 
machine learning start to be explored to surpass the limitations of 
traditional mobile malware detection methods, analysing not only 
static characteristics of the app but also its behaviour. This paper 
contains an overview of the existing machine learning mobile 
malware detection approaches based on static, dynamic and hybrid 
analysis, presenting the advantages and limitations of each, and a 
comparison between the reviewed methods. 

Index Terms—security, malware, mobile, android, machine 
learning 

I. INTRODUCTION 

Mobile computing has achieved a level that has never been 

seen before (estimates are that the number of smartphones 

will reach 6,1 billion by 2020) [1]. The two major mobile 

platforms (Android and iOS) completely dominate the market 

and users continue to adhere massively to these mobile 

platforms. Users are switching from more traditional data 

processing platforms (such as desktop computers) and 

increasingly using mobile platforms for tasks such as 

messaging, e-commerce, productivity tools, health and fitness, 

home banking or payments [2]– [4]. Some of these are 

applications that handle very sensitive user’s data. 

As the trust of end-users in these mobile platforms and 

applications increases, more and more use them on a daily 

basis. However, as the number of users increases, as well as 

the amount of critical information deployed on these mobile 

platforms they become more attractive to attackers that will 

try to obtain unauthorized access to mobile devices and users 

data. 

These mobile platforms are increasingly targeted by 

attackers, both on iOS and Android [5]. Android, due to its 

market penetration and openness is more attractive to 

attackers. Android is free and open, it is currently the 

operating system of nearly 80% of all mobile devices in the 

World and smart-device manufacturers use it as the basis for 

their systems [6]. Although the attacks’ nature is quite distinct, 

one of the most common ways of attacking Android users is 

through the distribution of malware that disguises as 

legitimate applications. Mobile malware is on the rise and 

researchers found that 87% of all Android smartphones are 

exposed to at least one critical vulnerability [7]. Multiple types 

of malware exist for Android and could affect the user in a 

multiplicity of ways: banking malware, mobile ransomware, 

mobile spyware, MMS malware, mobile adware, and SMS 

trojans. 

Users can be tricked into installing malware-infected 

applications and this is a real menace to mobile platforms. 

Malware applications, disguised as legitimate applications 

installed on the users’ mobile device can access different areas 

of the device, other applications, all sorts of stored data, and 

capture data in transit. Therefore, from a security perspective, 

it is of utmost importance to be able to detect, identify and 

prevent the proliferation of malware in the mobile distribution 

chain (this chain includes developers, applications distributors 

stores, and end users). 

Given that the majority of mobile users download their 

applications from application stores (such as the Google Play 

Store on the Android platform and the App Store on the iOS 

platform), this overview may prove useful for application store 

owners in order to improve their store’s security, thus 

decreasing the number existing malware, as well as decreasing 

the number of potential malicious applications that try to 

penetrate their application marketplaces in the future. 

This paper starts by providing a short introduction to the 

mobile malware problems and the existing limitations on its 

identification and eradication. Next, the different mobile 

malware detection and identification methods based on 

machine learning approaches are presented, covering both 

static, dynamic and hybrid detection methods. In this section, 

the major advantages and disadvantages of each are 

presented. Finally, in the last part of this paper, some 

conclusions drawn from the analysis conducted are exhibited 

 



and a comparison between the different mobile malware 

detection methods studied is presented. 

II. MOBILE MALWARE DETECTION AND IDENTIFICATION 

One of the most important actions for malware prevention 

is to be able to accurately detect and identify it. It is important 

to be able to automate the detection and identification 

processes, using intelligent methods, due to enormous 

amounts of applications being submitted to application stores 

and to mobile devices. This section presents an analysis of 

state of the art machine-learning based malware detection 

methods, based on static, dynamic and hybrid analysis of 

mobile applications. 

A. Malware Detection Methods Based on Static Analysis Data 

Static analysis consists on the analysis of a given application 

source code without executing it [8]. Particularly in Android, it 

implies the analysis of the contents of the Application Package 

(APK) file. 

This type of analysis has the advantage of being fast and low 

on resource consumption. However, it it vulnerable to both 

code obfuscation techniques and dynamically loaded code [9] 

[10]. 

Sanz et al. [11] developed a static malware detection 

method that leverages the contents of the 

AndroidManifest.xml file, which describes essential 

information about a given application to the Android build 

tools, Google Play, but most importantly, to the Android 

operating system [12]. In order to retrieve this file from the 

APK, it uses a tool named Android Asset Packaging Tool (AAPT) 

[13]. 

Two specific fields from this file were used as features: uses-

permission, which lists every permission that the application 

needs to operate correctly and uses-feature, which declares 

hardware and software features the application needs (for 

instance, the compass sensor) [12]. 

The features mentioned before were used to train the 

following algorithms: Logistic Regression (LR), Nave Bayes 

(NB), Bayesian Network (BN), Sequential Minimal Optimization 

(SMO), an implementation of K-Nearest Neighbours (K-NN) 

named IBk, Decision Tree (J48), Random Tree (RT) and Random 

Forest (RF). To train these algorithms, it was used a dataset 

comprised of 249 malware samples and 357 benign samples. 

Peiravian and Zhu [14] developed a malware detection 

framework that uses permissions and Application 

Programming Interface (API) calls as features. This information 

is obtained using the reverse engineering tool Apktool [15], 

which extracts the AndroidManifest.xml file as well as the class 

files from a given APK. For a given application, the permissions 

are extracted from the AndroidManifest.xml file and are 

embedded in a binary vector P, where Pi = 1 if the ith 

permission is requested in its AndroidManifest.xml file, 

otherwise Pi = 0. The API calls are extracted from the class files, 

following the procedure explained above. As a result, every 

application is represented by a single binary vector of 

permissions and API calls in addition to a benign or malicious 

class label. 

These features were used to train the following algorithms: 

Support Vector Machine (SVM), Decision Tree (DT) and 
TABLE I 

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON STATIC ANALYSIS DATA 
References Features AUC 

[11] Permissions + Used Features 

0.890 (LR) 
0.780 (NB) 
0.790 (BN) 

0.860 (SMO) 
0.900 (IBK) 
0.860 (J48) 
0.850 (RT) 
0.920 (RF) 

[14] 

Permissions 
0.917 (J48) 

0.920 (SVM) 
0.956 (Bagging) 

API Calls 
0.918 (J48) 

0.957 (SVM) 
0.956 (Bagging) 

Permissions + API Calls 
0.936 (J48) 

0.963 (SVM) 
0.991 (Bagging) 

Bagging [16]. To train these algorithms, it was used a dataset 

comprised of 610 malware samples and 1250 benign samples. 

Almin and Chatterjee [17] developed a permission-based 

malware detection method through an application that is 

composed of five major components. 

The first and second components consist on identifying a 

users installed applications and extracting the permissions, 

respectively. The former is done using the Android 

PackageManager class using the getPackageManager method 

and the latter using the PackageInfo class, which holds all the 

information that is present on an 

AndroidManifest.xml file, such as permissions. The third 

component trains a clustering algorithm, namely KNN, using a 

vector of the permissions of a given application as input. This 

process’s objective is twofold: creating clusters that represent 

different malware families as well as creating a benign 

applications cluster. The fourth component trains the NB 

algorithm in order to classify applications more accurately, 

since the previous step could have produced false positives. In 

order to train this algorithm, both the cluster number as well 

as the set of permission combinations that occur in a cluster 

are used as features. The last component presents a user with 

the list of malicious applications that were detected as well as 

the option to delete them. 

Table I displays the performance of the studied Android 

malware detection methods based on static analysis, using 

Area Under the Curve (AUC) as the performance metric. 

Observing table I, it can be concluded that the algorithm that 

achieves the best performance is Bagging. Furthermore, the 

combined use of permissions and API calls achieves better 

results than using them separately. 



B. Malware Detection Methods Based on Dynamic Analysis 

Data 

Contrary to static analysis, dynamic analysis consists of the 

execution of a given application in a sandboxed environment, 

in order to monitor its behaviour. This type of analysis has the 

advantage of being able to detect unknown malware although 

it demands more computational power and is more 

timeconsuming than static analysis [9]. 

Singh and Hofmann [18] developed a malware detection 

method that uses the frequency of system calls as features. 

The first stage of this process consists of executing each 

application of the sample set, which is comprised of 216 

malicious samples and 278 benign samples, in an emulator 

using a tool named Monkey [19]. This tool generates 

pseudorandom user actions (clicks, touches, gestures and 

system-level events) [20]. Afterwards, a total of 337 Linux 

system calls of each application are monitored, resulting in a 

feature vector of 337 elements, where each element 

represents how many times that specific system call was 

invoked during runtime. In the next stage, every system call 

that has zero variance is removed from the feature vector, 

resulting in a final feature vector of 43 attributes, excluding the 

class label. This feature vector is used to train the following 

algorithms: DT, RF, Gradient Boosted Trees (GBT), KNN, SVM, 

Artificial Neural Networks (ANN) and Deep Learning (DL). In 

order to improve the performance of the chosen classifiers, 

three feature weighing techniques were also applied before 

training and testing the algorithms once more, namely, 

Information Gain (IG), Chi-square statistic and correlation. 

Bhatia and Kaushal [21] developed an Android malware 

detection solution that also uses the frequency of invoked 

system calls at runtime as features. Using a dataset comprised 

of 50 malicious samples and 50 benign samples, every 

application is executed in an Android Virtual Machine (VM) 

using the Monkey tool for one minute, generating 500 

gestures with a 500 millisecond delay between each event, 

while the Linux command strace is executed in parallel to 

extract the frequencies of every invoked system call during 

that period. This information is aggregated in a single matrix 

where each row represents the frequency of the system calls 

of a given application and each column represents the 

frequency of a given system call for every application. 

Afterwards, this matrix is converted to a .csv file that is used to 

train two algorithms: J48 and RF. 

Afonso, de Amorim, Grgio, Junquera, and de Geus [22] 

developed a malware detection system leveraging the 

frequency of both API and system calls that are invoked at 

runtime. 

In order to extract the API calls, the tool APIMonitor [23] is 

executed for five minutes while it is being executed on an 

emulator using the tool MonkeyRunner [24], which generates 

random events automatically (such as sending keystrokes). 

Furthermore, the file that handles the collection of API calls 

contained in this tool was modified in order to monitor 

additional API calls related to network access, process 

execution, string and file manipulation and information 

reading. The Linux command strace is also used during this 

period in order to extract the system calls. This information is 

aggregated into a vector of 74 API calls and 90 system calls, 

amounting to a total of 164 dimensions, each one representing 

how many times that particular API or system call was invoked. 

Using a dataset of 2295 malicious samples and 1485 benign 

samples, 
TABLE II 

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON DYNAMIC ANALYSIS DATA 
Reference Features F-score 

[18] 

System Calls, no feature weighing 

0.946 (RF) 
0.943 (SVM) 

0.973 (DT) 
0.976 (GBT) 
0.901 (KNN) 
0.912 (ANN) 

0.937 (DL) 

System Calls, using IG 

0.939 (RF) 
0.966 (SVM) 

0.972 (DT) 
0.981 (GBT) 
0.961 (KNN) 
0.952 (ANN) 

0.977 (DL) 

System Calls, using Chi-square statistic 

0.946 (RF) 
0.966 (SVM) 

0.967 (DT) 
0.981 (GBT) 
0.960 (KNN) 
0.946 (ANN) 

0.965 (DL) 

System Calls, using correlation 

0.961 (RF) 
0.969 (SVM) 

0.972 (DT) 
0.991 (GBT) 
0.986 (KNN) 
0.920 (ANN) 

0.968 (DL) 

[21] System Calls 
0.850 (J48) 
0.885 (RF) 

[22] System Calls and API Calls 0.968 (RF) 

the following algorithms were trained in order to determine 

which one will be used by the proposed method: RF, J48, LR, 

NB, BN, SMO, and IBk. RF achieved the best performance using 

the dataset mentioned above, so it was tested afterwards 

using a dataset comprised of 2257 malware samples and 1483 

benign samples. 

In order to evaluate the comparative performance of the 

analysed papers, we can use the Precision and Recall values to 

compute their respective F-scores, since not every dataset is 

balanced regarding their benign sample to malicious sample 

ratio. The F-score of an algorithm is given by the following 

equation (Equation 1): 

  (1) 



Table II displays the performance of the studied Android 

malware detection methods based on dynamic analysis, using 

F-score as performance metric. 

Observing table II, the best performing algorithm is GBT 

using correlation as the feature weighing algorithm. 

C. Malware Detection Methods Based On Hybrid Analysis 

Hybrid analysis consists on combining both static and 

dynamic analysis in order to overcome their respective 

limitations with the main purpose of achieving better 

detection results [10]. 

Zhao, Xu and Zhang [25] developed a system that extracts 

permissions and API calls as static features and runtime 

behaviour as dynamic features in order to classify applications. 

In the static analysis process, a tool named Androguard [26] is 

used to extract the permissions from the 

AndroidManifest.xml file, resulting in a permission feature set 

that is further optimized in order to remove features that 

rarely appear. This results in a binary permission feature vector 

of 45 dimensions, representing the presence of each 

permission in a given application. Additionally, the API calls of 

applications from various sample sets are extracted through 

the analysis of their respective classes.dex files, using both 

Androguard and a reverse-engineering tool named baksmali 

[27]. In order to optimize the obtained API feature vector, the 

filter feature selection algorithm named Relief [28] is used, 

resulting in a final API call feature set of 22 dimensions where 

each dimension represents an API call. In the dynamic analysis 

process, every application is installed and executed on an 

emulator. In order to extract runtime behaviours as features, 

the tool Monkey [19] is executed while another called 

DroidBox [29] monitors the runtime behaviour to determine 

whether a given application exhibits malicious behaviour such 

as automatic network connection, malicious SMS sending, 

private information logging, among others. Additionally, the 

number of occurrences of each behaviour is registered and the 

Relief algorithm is used to remove irrelevant features, 

resulting in a final feature vector of 20 dimensions such as 

battery usage, user activity, network features, among others. 

Afterwards, this information is aggregated into a single feature 

vector with 87 dimensions. Using a dataset comprised of 359 

malware samples and 500 benign samples, 150 malicious 

samples and 150 benign samples were chosen randomly to 

form both training and testing datasets, which were used by 

the following algorithms: SVM, KNN, NB, DT and RF. 

Liu, Zhang, Li and Chen [30] developed a method that 

employs static analysis or dynamic analysis depending on the 

result of the APK extraction process. Using the tool Apktool 

[15], if it can successfully decompile a given application, it 

proceeds to the static analysis stage. However, if it does not 

produce useful information (for instance, if code obfuscation 

techniques were used) it employs dynamic analysis. 

In the static analysis stage, the AndroidManifest.xml file is 

extracted from each application and every permission is 

mapped to a feature vector of 151 dimensions, each 

dimension representing a single permission. Additionally, 

every API call is extracted using the tool baksmali and is 

mapped to a feature vector of 3262 dimensions, each 

dimension representing an API call. Both feature vectors are 

joined afterwards, resulting in a final feature vector of 3413 

dimensions. In the dynamic analysis phase, a system call 

feature vector of 345 dimensions is created where each 

dimension represents the frequency of the invoked system 

calls. To extract these features, the ADB (Android Debug 

Bridge) tool [20] is used. Afterwards, the application is 

executed and the invoked system calls are monitored using the 

Linux command strace while the Monkey operates it. Using a 

dataset comprised of 500 malicious samples and 500 benign 

samples, the following algorithms were trained: KNN, SVM and 

NB. 

Arshad et al. [31] developed a hybrid malware detection 

model where the static analysis phase is carried out on a 

remote server and the dynamic analysis phase is employed on 

the device. This model is composed of two major components: 

a client application in which the dynamic analysis process 

occurs, and a remote server that handles the static analysis 

process as well as the training and testing of the machine 

learning algorithms.The client application is developed in 

order to let the user dynamically analyse an application of 

his/her choice. Once it does, the client application hooks the 

strace command with that application which monitors its 

invoked system calls. The client application was programmed 

to monitor the frequency of 10 specific system calls related to 

file operations and network access were called. Afterwards, a 

system call log file is generated and sent to the remote server. 

In the static analysis phase, the remote server receives the 

application identifier through the client application, and the 

server queries its database in order to check if it was not 

previously classified. If so, a report is sent back to the user, 

otherwise the server downloads the application and employs 

static analysis. This process consists of the extraction of several 

features such as requested hardware components, requested 

permissions, application components (services, broadcast 

receivers and content providers), Intent filters, suspicious API 

calls and restricted API calls. The first four are extracted from 

the application’s 

AndroidManifest.xml file using the AAPT (Google, 2019a) tool. 

The last two are extracted from disassembling the application 

code from the classes.dex file using the baksmali tool. 

Afterwards, the remote server generates both static and 

dynamic binary feature vectors in order to train the following 

algorithms: SVM, RF, DT and NB. The mentioned algorithms 

were evaluated using the Drebin dataset [32], which is 

comprised of 5560 malware samples and 123453 benign 

samples. 

Table III displays the performance of the studied Android 

malware detection methods based on hybrid analysis, using 

Accuracy as performance metric. 

Observing table III, and given that [25] and [30] use balanced 

datasets, their results are comparable. Therefore, it can be 



concluded that the algorithm that achieved the best 

performance is SVM using both permissions and API calls as 

features. 

III. CONCLUSIONS 

As the number of users using smartphones and mobile 

applications continues to grow also the security risks to which 

users’ data is exposed are also increasing. These mobile 

platforms are already a target of choice for attackers/criminals 

that are exploring several attacks to compromise the users. 

One of the biggest risk mobile application users are exposed to 

is the impersonation of mobile applications applications that 

advertise a given set of functionalities but underneath operate 

in an obscure manner as a way to compromise users data, and 

eventually launch additional attacks against the users 
TABLE III 

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON HYBRID ANALYSIS DATA 
References Features Accuracy (%) 

[25] 

Static 

85.74 (NB) 
88.19 (J48) 
92.07 (RF) 

91.27 (SVM) 
84.56 (KNN) 

Hybrid 

84.52 (NB) 
89.34 (J48) 
94.89 (RF) 

93.66 (SVM) 
86.71 (KNN) 

[30] 

Permissions 
93.33 (NB) 

96.52 (SVM) 
95.58 (KNN) 

API Calls 
94.23 (NB) 

99.07 (SVM) 
98.42 (KNN) 

Permissions + API Calls 
94.41 (NB) 

99.28 (SVM) 
98.66 (KNN) 

System Calls 
90.00 (NB) 

85.75 (SVM) 
87.92 (KNN) 

[31] 

Static 

91.60 (NB) 
99.07 (RF) 

98.97 (SVM) 
98.56 (DT) 

Dynamic 

62.07 (NB) 
82.76 (RF) 

82.76 (SVM) 
72.41 (DT) 

(sniffing data, extracting private information, redirecting users 

to malicious sites, steal payment information, downloading 

extra functionalities or other malicious applications, or simply 

displaying obnoxious and intrusive advertising). This type of 

applications is commonly designated as malware. Malware is 

a serious problem in mobile platforms, in particular, if they 

manage to be present on the official application stores to be 

download by the smartphone users - every other month, 

Google Play Store removes hundreds of malicious applications 

from the store. 

Due to the enormous amount of mobile applications that 

are submitted to stores (tens of thousands per day), it is 

important to automate the detection of malicious applications 

[33]. Traditional anti-virus tools based on signatures have 

limited effectiveness on malware detection because of 

malware authors are constantly innovating the way to develop 

their applications. Therefore, more intelligent and adaptive 

ways are required to effectively detect evolutionary mobile 

malware. There are different strategies for malware detection 

based on machine learning: static, dynamic and hybrid 

analysis. The state-of-the-art analysis conducted on the 

existing machine learning techniques to help detect mobile 

malware, revealed that the use of machine learning 

techniques, in general, achieve high performance when 

applied to Android malware detection. This means that the 

usage of machine learning techniques will play a major role in 

the development of future Android malware detection 

solutions, in order to control the rampant proliferation of 

malware in the Android platform. 

Static analysis-based malware detection methods proved to 

be a simple and fast way to detect malware. However, they are 

highly vulnerable to code obfuscation techniques, meaning 

that they might only be effective as a preliminary line of 

defence against known malware. The main types of features 

used in these methods are permissions and API calls, and their 

combined use always achieves better performance than the 

use of each of them separately. Dynamic analysis-based 

malware detection methods achieved high performance as 

well but are more time and resource consuming than their 

static counterparts. However, dynamic analysis methods are 

more effective on the detection of new malware as well as 

variations of existing malware. This type of method could be 

used in order to detect the appearance of new malware in a 

deliberate manner. Hybrid analysis-based malware detection 

methods use both static and dynamic analysis in tandem in 

order to cover their individual weaknesses, therefore being 

more versatile. However, only one of the analysed solutions 

combined both static and dynamic features in order to train 

machine learning algorithms and while achieving good 

accuracy, it also showed very high false positive rates which is 

not ideal. This type of method seems to be the one that has 

most potential, given that it is the most exhaustive one. 

Another important aspect to consider in the development of 

future machine learning-based malware detection solutions 

are the used datasets. Every existing approach considers only 

small datasets, which can lead to poor generalisation on the 

trained models, since they rely heavily on the data that they 

observe during the training phase. Moreover, the datasets 

need to be varied, meaning that they need to represent a large 

amount of the malware landscape. Finally, the datasets need 

to be balanced regarding the number of malware and benign 

samples, especially when the metric used to measure an 

algorithm’s performance is its accuracy. 
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