

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2021-11-03

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Lopes, J. P., Serrão, C., Nunes, L., De Almeida, A. & Oliveira, J. (2019). Overview of machine
learning methods for Android malware identification. In Varol, A., Karabatak, M., Varol, C. and Teke,
S. (Ed.), 2019 7th International Symposium on Digital Forensics and Security (ISDFS). Barcelos:
IEEE.

Further information on publisher's website:
10.1109/ISDFS.2019.8757523

Publisher's copyright statement:
This is the peer reviewed version of the following article: Lopes, J. P., Serrão, C., Nunes, L., De
Almeida, A. & Oliveira, J. (2019). Overview of machine learning methods for Android malware
identification. In Varol, A., Karabatak, M., Varol, C. and Teke, S. (Ed.), 2019 7th International
Symposium on Digital Forensics and Security (ISDFS). Barcelos: IEEE., which has been published in
final form at https://dx.doi.org/10.1109/ISDFS.2019.8757523. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ISDFS.2019.8757523

Overview of machine learning methods for Android

malware identification

 1Joao Lopes,˜ 1Carlos Serrao,˜ 1,2Lu´ıs Nunes, 1,3Ana Almeida, 1,2Joao Oliveira˜
1ISTAR - Information Sciences and Technologies and Architecture Research Center

2IT - Instituto de Telecomunicac¸oes˜
3CISUC - Centre for Informatics and Systems

ISCTE - Instituto Universitario de Lisboa´

Lisboa, Portugal

Email: Joao Pedro Lapa, carlos.serrao, luis.nunes, ana.almeida, joao.p.oliveira{@iscte-iul.pt}
Abstract—Mobile malware is growing and affecting more and more

mobile users around the world. Malicious developers and
organisations are disguising their malware payloads on apparently
benign applications and pushing them to large app stores, such as
Google Play Store, and from there to final users. App stores are
currently losing the battle against malicious applications proliferation
and existing malware. Detection methods based on signatures, such
as those of an antivirus, are limited, new approaches based on
machine learning start to be explored to surpass the limitations of
traditional mobile malware detection methods, analysing not only
static characteristics of the app but also its behaviour. This paper
contains an overview of the existing machine learning mobile
malware detection approaches based on static, dynamic and hybrid
analysis, presenting the advantages and limitations of each, and a
comparison between the reviewed methods.

Index Terms—security, malware, mobile, android, machine
learning

I. INTRODUCTION

Mobile computing has achieved a level that has never been

seen before (estimates are that the number of smartphones

will reach 6,1 billion by 2020) [1]. The two major mobile

platforms (Android and iOS) completely dominate the market

and users continue to adhere massively to these mobile

platforms. Users are switching from more traditional data

processing platforms (such as desktop computers) and

increasingly using mobile platforms for tasks such as

messaging, e-commerce, productivity tools, health and fitness,

home banking or payments [2]– [4]. Some of these are

applications that handle very sensitive user’s data.

As the trust of end-users in these mobile platforms and

applications increases, more and more use them on a daily

basis. However, as the number of users increases, as well as

the amount of critical information deployed on these mobile

platforms they become more attractive to attackers that will

try to obtain unauthorized access to mobile devices and users

data.

These mobile platforms are increasingly targeted by

attackers, both on iOS and Android [5]. Android, due to its

market penetration and openness is more attractive to

attackers. Android is free and open, it is currently the

operating system of nearly 80% of all mobile devices in the

World and smart-device manufacturers use it as the basis for

their systems [6]. Although the attacks’ nature is quite distinct,

one of the most common ways of attacking Android users is

through the distribution of malware that disguises as

legitimate applications. Mobile malware is on the rise and

researchers found that 87% of all Android smartphones are

exposed to at least one critical vulnerability [7]. Multiple types

of malware exist for Android and could affect the user in a

multiplicity of ways: banking malware, mobile ransomware,

mobile spyware, MMS malware, mobile adware, and SMS

trojans.

Users can be tricked into installing malware-infected

applications and this is a real menace to mobile platforms.

Malware applications, disguised as legitimate applications

installed on the users’ mobile device can access different areas

of the device, other applications, all sorts of stored data, and

capture data in transit. Therefore, from a security perspective,

it is of utmost importance to be able to detect, identify and

prevent the proliferation of malware in the mobile distribution

chain (this chain includes developers, applications distributors

stores, and end users).

Given that the majority of mobile users download their

applications from application stores (such as the Google Play

Store on the Android platform and the App Store on the iOS

platform), this overview may prove useful for application store

owners in order to improve their store’s security, thus

decreasing the number existing malware, as well as decreasing

the number of potential malicious applications that try to

penetrate their application marketplaces in the future.

This paper starts by providing a short introduction to the

mobile malware problems and the existing limitations on its

identification and eradication. Next, the different mobile

malware detection and identification methods based on

machine learning approaches are presented, covering both

static, dynamic and hybrid detection methods. In this section,

the major advantages and disadvantages of each are

presented. Finally, in the last part of this paper, some

conclusions drawn from the analysis conducted are exhibited

and a comparison between the different mobile malware

detection methods studied is presented.

II. MOBILE MALWARE DETECTION AND IDENTIFICATION

One of the most important actions for malware prevention

is to be able to accurately detect and identify it. It is important

to be able to automate the detection and identification

processes, using intelligent methods, due to enormous

amounts of applications being submitted to application stores

and to mobile devices. This section presents an analysis of

state of the art machine-learning based malware detection

methods, based on static, dynamic and hybrid analysis of

mobile applications.

A. Malware Detection Methods Based on Static Analysis Data

Static analysis consists on the analysis of a given application

source code without executing it [8]. Particularly in Android, it

implies the analysis of the contents of the Application Package

(APK) file.

This type of analysis has the advantage of being fast and low

on resource consumption. However, it it vulnerable to both

code obfuscation techniques and dynamically loaded code [9]

[10].

Sanz et al. [11] developed a static malware detection

method that leverages the contents of the

AndroidManifest.xml file, which describes essential

information about a given application to the Android build

tools, Google Play, but most importantly, to the Android

operating system [12]. In order to retrieve this file from the

APK, it uses a tool named Android Asset Packaging Tool (AAPT)

[13].

Two specific fields from this file were used as features: uses-

permission, which lists every permission that the application

needs to operate correctly and uses-feature, which declares

hardware and software features the application needs (for

instance, the compass sensor) [12].

The features mentioned before were used to train the

following algorithms: Logistic Regression (LR), Nave Bayes

(NB), Bayesian Network (BN), Sequential Minimal Optimization

(SMO), an implementation of K-Nearest Neighbours (K-NN)

named IBk, Decision Tree (J48), Random Tree (RT) and Random

Forest (RF). To train these algorithms, it was used a dataset

comprised of 249 malware samples and 357 benign samples.

Peiravian and Zhu [14] developed a malware detection

framework that uses permissions and Application

Programming Interface (API) calls as features. This information

is obtained using the reverse engineering tool Apktool [15],

which extracts the AndroidManifest.xml file as well as the class

files from a given APK. For a given application, the permissions

are extracted from the AndroidManifest.xml file and are

embedded in a binary vector P, where Pi = 1 if the ith

permission is requested in its AndroidManifest.xml file,

otherwise Pi = 0. The API calls are extracted from the class files,

following the procedure explained above. As a result, every

application is represented by a single binary vector of

permissions and API calls in addition to a benign or malicious

class label.

These features were used to train the following algorithms:

Support Vector Machine (SVM), Decision Tree (DT) and
TABLE I

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON STATIC ANALYSIS DATA
References Features AUC

[11] Permissions + Used Features

0.890 (LR)
0.780 (NB)
0.790 (BN)

0.860 (SMO)
0.900 (IBK)
0.860 (J48)
0.850 (RT)
0.920 (RF)

[14]

Permissions
0.917 (J48)

0.920 (SVM)
0.956 (Bagging)

API Calls
0.918 (J48)

0.957 (SVM)
0.956 (Bagging)

Permissions + API Calls
0.936 (J48)

0.963 (SVM)
0.991 (Bagging)

Bagging [16]. To train these algorithms, it was used a dataset

comprised of 610 malware samples and 1250 benign samples.

Almin and Chatterjee [17] developed a permission-based

malware detection method through an application that is

composed of five major components.

The first and second components consist on identifying a

users installed applications and extracting the permissions,

respectively. The former is done using the Android

PackageManager class using the getPackageManager method

and the latter using the PackageInfo class, which holds all the

information that is present on an

AndroidManifest.xml file, such as permissions. The third

component trains a clustering algorithm, namely KNN, using a

vector of the permissions of a given application as input. This

process’s objective is twofold: creating clusters that represent

different malware families as well as creating a benign

applications cluster. The fourth component trains the NB

algorithm in order to classify applications more accurately,

since the previous step could have produced false positives. In

order to train this algorithm, both the cluster number as well

as the set of permission combinations that occur in a cluster

are used as features. The last component presents a user with

the list of malicious applications that were detected as well as

the option to delete them.

Table I displays the performance of the studied Android

malware detection methods based on static analysis, using

Area Under the Curve (AUC) as the performance metric.

Observing table I, it can be concluded that the algorithm that

achieves the best performance is Bagging. Furthermore, the

combined use of permissions and API calls achieves better

results than using them separately.

B. Malware Detection Methods Based on Dynamic Analysis

Data

Contrary to static analysis, dynamic analysis consists of the

execution of a given application in a sandboxed environment,

in order to monitor its behaviour. This type of analysis has the

advantage of being able to detect unknown malware although

it demands more computational power and is more

timeconsuming than static analysis [9].

Singh and Hofmann [18] developed a malware detection

method that uses the frequency of system calls as features.

The first stage of this process consists of executing each

application of the sample set, which is comprised of 216

malicious samples and 278 benign samples, in an emulator

using a tool named Monkey [19]. This tool generates

pseudorandom user actions (clicks, touches, gestures and

system-level events) [20]. Afterwards, a total of 337 Linux

system calls of each application are monitored, resulting in a

feature vector of 337 elements, where each element

represents how many times that specific system call was

invoked during runtime. In the next stage, every system call

that has zero variance is removed from the feature vector,

resulting in a final feature vector of 43 attributes, excluding the

class label. This feature vector is used to train the following

algorithms: DT, RF, Gradient Boosted Trees (GBT), KNN, SVM,

Artificial Neural Networks (ANN) and Deep Learning (DL). In

order to improve the performance of the chosen classifiers,

three feature weighing techniques were also applied before

training and testing the algorithms once more, namely,

Information Gain (IG), Chi-square statistic and correlation.

Bhatia and Kaushal [21] developed an Android malware

detection solution that also uses the frequency of invoked

system calls at runtime as features. Using a dataset comprised

of 50 malicious samples and 50 benign samples, every

application is executed in an Android Virtual Machine (VM)

using the Monkey tool for one minute, generating 500

gestures with a 500 millisecond delay between each event,

while the Linux command strace is executed in parallel to

extract the frequencies of every invoked system call during

that period. This information is aggregated in a single matrix

where each row represents the frequency of the system calls

of a given application and each column represents the

frequency of a given system call for every application.

Afterwards, this matrix is converted to a .csv file that is used to

train two algorithms: J48 and RF.

Afonso, de Amorim, Grgio, Junquera, and de Geus [22]

developed a malware detection system leveraging the

frequency of both API and system calls that are invoked at

runtime.

In order to extract the API calls, the tool APIMonitor [23] is

executed for five minutes while it is being executed on an

emulator using the tool MonkeyRunner [24], which generates

random events automatically (such as sending keystrokes).

Furthermore, the file that handles the collection of API calls

contained in this tool was modified in order to monitor

additional API calls related to network access, process

execution, string and file manipulation and information

reading. The Linux command strace is also used during this

period in order to extract the system calls. This information is

aggregated into a vector of 74 API calls and 90 system calls,

amounting to a total of 164 dimensions, each one representing

how many times that particular API or system call was invoked.

Using a dataset of 2295 malicious samples and 1485 benign

samples,
TABLE II

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON DYNAMIC ANALYSIS DATA
Reference Features F-score

[18]

System Calls, no feature weighing

0.946 (RF)
0.943 (SVM)

0.973 (DT)
0.976 (GBT)
0.901 (KNN)
0.912 (ANN)

0.937 (DL)

System Calls, using IG

0.939 (RF)
0.966 (SVM)

0.972 (DT)
0.981 (GBT)
0.961 (KNN)
0.952 (ANN)

0.977 (DL)

System Calls, using Chi-square statistic

0.946 (RF)
0.966 (SVM)

0.967 (DT)
0.981 (GBT)
0.960 (KNN)
0.946 (ANN)

0.965 (DL)

System Calls, using correlation

0.961 (RF)
0.969 (SVM)

0.972 (DT)
0.991 (GBT)
0.986 (KNN)
0.920 (ANN)

0.968 (DL)

[21] System Calls
0.850 (J48)
0.885 (RF)

[22] System Calls and API Calls 0.968 (RF)

the following algorithms were trained in order to determine

which one will be used by the proposed method: RF, J48, LR,

NB, BN, SMO, and IBk. RF achieved the best performance using

the dataset mentioned above, so it was tested afterwards

using a dataset comprised of 2257 malware samples and 1483

benign samples.

In order to evaluate the comparative performance of the

analysed papers, we can use the Precision and Recall values to

compute their respective F-scores, since not every dataset is

balanced regarding their benign sample to malicious sample

ratio. The F-score of an algorithm is given by the following

equation (Equation 1):

 (1)

Table II displays the performance of the studied Android

malware detection methods based on dynamic analysis, using

F-score as performance metric.

Observing table II, the best performing algorithm is GBT

using correlation as the feature weighing algorithm.

C. Malware Detection Methods Based On Hybrid Analysis

Hybrid analysis consists on combining both static and

dynamic analysis in order to overcome their respective

limitations with the main purpose of achieving better

detection results [10].

Zhao, Xu and Zhang [25] developed a system that extracts

permissions and API calls as static features and runtime

behaviour as dynamic features in order to classify applications.

In the static analysis process, a tool named Androguard [26] is

used to extract the permissions from the

AndroidManifest.xml file, resulting in a permission feature set

that is further optimized in order to remove features that

rarely appear. This results in a binary permission feature vector

of 45 dimensions, representing the presence of each

permission in a given application. Additionally, the API calls of

applications from various sample sets are extracted through

the analysis of their respective classes.dex files, using both

Androguard and a reverse-engineering tool named baksmali

[27]. In order to optimize the obtained API feature vector, the

filter feature selection algorithm named Relief [28] is used,

resulting in a final API call feature set of 22 dimensions where

each dimension represents an API call. In the dynamic analysis

process, every application is installed and executed on an

emulator. In order to extract runtime behaviours as features,

the tool Monkey [19] is executed while another called

DroidBox [29] monitors the runtime behaviour to determine

whether a given application exhibits malicious behaviour such

as automatic network connection, malicious SMS sending,

private information logging, among others. Additionally, the

number of occurrences of each behaviour is registered and the

Relief algorithm is used to remove irrelevant features,

resulting in a final feature vector of 20 dimensions such as

battery usage, user activity, network features, among others.

Afterwards, this information is aggregated into a single feature

vector with 87 dimensions. Using a dataset comprised of 359

malware samples and 500 benign samples, 150 malicious

samples and 150 benign samples were chosen randomly to

form both training and testing datasets, which were used by

the following algorithms: SVM, KNN, NB, DT and RF.

Liu, Zhang, Li and Chen [30] developed a method that

employs static analysis or dynamic analysis depending on the

result of the APK extraction process. Using the tool Apktool

[15], if it can successfully decompile a given application, it

proceeds to the static analysis stage. However, if it does not

produce useful information (for instance, if code obfuscation

techniques were used) it employs dynamic analysis.

In the static analysis stage, the AndroidManifest.xml file is

extracted from each application and every permission is

mapped to a feature vector of 151 dimensions, each

dimension representing a single permission. Additionally,

every API call is extracted using the tool baksmali and is

mapped to a feature vector of 3262 dimensions, each

dimension representing an API call. Both feature vectors are

joined afterwards, resulting in a final feature vector of 3413

dimensions. In the dynamic analysis phase, a system call

feature vector of 345 dimensions is created where each

dimension represents the frequency of the invoked system

calls. To extract these features, the ADB (Android Debug

Bridge) tool [20] is used. Afterwards, the application is

executed and the invoked system calls are monitored using the

Linux command strace while the Monkey operates it. Using a

dataset comprised of 500 malicious samples and 500 benign

samples, the following algorithms were trained: KNN, SVM and

NB.

Arshad et al. [31] developed a hybrid malware detection

model where the static analysis phase is carried out on a

remote server and the dynamic analysis phase is employed on

the device. This model is composed of two major components:

a client application in which the dynamic analysis process

occurs, and a remote server that handles the static analysis

process as well as the training and testing of the machine

learning algorithms.The client application is developed in

order to let the user dynamically analyse an application of

his/her choice. Once it does, the client application hooks the

strace command with that application which monitors its

invoked system calls. The client application was programmed

to monitor the frequency of 10 specific system calls related to

file operations and network access were called. Afterwards, a

system call log file is generated and sent to the remote server.

In the static analysis phase, the remote server receives the

application identifier through the client application, and the

server queries its database in order to check if it was not

previously classified. If so, a report is sent back to the user,

otherwise the server downloads the application and employs

static analysis. This process consists of the extraction of several

features such as requested hardware components, requested

permissions, application components (services, broadcast

receivers and content providers), Intent filters, suspicious API

calls and restricted API calls. The first four are extracted from

the application’s

AndroidManifest.xml file using the AAPT (Google, 2019a) tool.

The last two are extracted from disassembling the application

code from the classes.dex file using the baksmali tool.

Afterwards, the remote server generates both static and

dynamic binary feature vectors in order to train the following

algorithms: SVM, RF, DT and NB. The mentioned algorithms

were evaluated using the Drebin dataset [32], which is

comprised of 5560 malware samples and 123453 benign

samples.

Table III displays the performance of the studied Android

malware detection methods based on hybrid analysis, using

Accuracy as performance metric.

Observing table III, and given that [25] and [30] use balanced

datasets, their results are comparable. Therefore, it can be

concluded that the algorithm that achieved the best

performance is SVM using both permissions and API calls as

features.

III. CONCLUSIONS

As the number of users using smartphones and mobile

applications continues to grow also the security risks to which

users’ data is exposed are also increasing. These mobile

platforms are already a target of choice for attackers/criminals

that are exploring several attacks to compromise the users.

One of the biggest risk mobile application users are exposed to

is the impersonation of mobile applications applications that

advertise a given set of functionalities but underneath operate

in an obscure manner as a way to compromise users data, and

eventually launch additional attacks against the users
TABLE III

PERFORMANCE OF MALWARE DETECTION METHODS BASED ON HYBRID ANALYSIS DATA
References Features Accuracy (%)

[25]

Static

85.74 (NB)
88.19 (J48)
92.07 (RF)

91.27 (SVM)
84.56 (KNN)

Hybrid

84.52 (NB)
89.34 (J48)
94.89 (RF)

93.66 (SVM)
86.71 (KNN)

[30]

Permissions
93.33 (NB)

96.52 (SVM)
95.58 (KNN)

API Calls
94.23 (NB)

99.07 (SVM)
98.42 (KNN)

Permissions + API Calls
94.41 (NB)

99.28 (SVM)
98.66 (KNN)

System Calls
90.00 (NB)

85.75 (SVM)
87.92 (KNN)

[31]

Static

91.60 (NB)
99.07 (RF)

98.97 (SVM)
98.56 (DT)

Dynamic

62.07 (NB)
82.76 (RF)

82.76 (SVM)
72.41 (DT)

(sniffing data, extracting private information, redirecting users

to malicious sites, steal payment information, downloading

extra functionalities or other malicious applications, or simply

displaying obnoxious and intrusive advertising). This type of

applications is commonly designated as malware. Malware is

a serious problem in mobile platforms, in particular, if they

manage to be present on the official application stores to be

download by the smartphone users - every other month,

Google Play Store removes hundreds of malicious applications

from the store.

Due to the enormous amount of mobile applications that

are submitted to stores (tens of thousands per day), it is

important to automate the detection of malicious applications

[33]. Traditional anti-virus tools based on signatures have

limited effectiveness on malware detection because of

malware authors are constantly innovating the way to develop

their applications. Therefore, more intelligent and adaptive

ways are required to effectively detect evolutionary mobile

malware. There are different strategies for malware detection

based on machine learning: static, dynamic and hybrid

analysis. The state-of-the-art analysis conducted on the

existing machine learning techniques to help detect mobile

malware, revealed that the use of machine learning

techniques, in general, achieve high performance when

applied to Android malware detection. This means that the

usage of machine learning techniques will play a major role in

the development of future Android malware detection

solutions, in order to control the rampant proliferation of

malware in the Android platform.

Static analysis-based malware detection methods proved to

be a simple and fast way to detect malware. However, they are

highly vulnerable to code obfuscation techniques, meaning

that they might only be effective as a preliminary line of

defence against known malware. The main types of features

used in these methods are permissions and API calls, and their

combined use always achieves better performance than the

use of each of them separately. Dynamic analysis-based

malware detection methods achieved high performance as

well but are more time and resource consuming than their

static counterparts. However, dynamic analysis methods are

more effective on the detection of new malware as well as

variations of existing malware. This type of method could be

used in order to detect the appearance of new malware in a

deliberate manner. Hybrid analysis-based malware detection

methods use both static and dynamic analysis in tandem in

order to cover their individual weaknesses, therefore being

more versatile. However, only one of the analysed solutions

combined both static and dynamic features in order to train

machine learning algorithms and while achieving good

accuracy, it also showed very high false positive rates which is

not ideal. This type of method seems to be the one that has

most potential, given that it is the most exhaustive one.

Another important aspect to consider in the development of

future machine learning-based malware detection solutions

are the used datasets. Every existing approach considers only

small datasets, which can lead to poor generalisation on the

trained models, since they rely heavily on the data that they

observe during the training phase. Moreover, the datasets

need to be varied, meaning that they need to represent a large

amount of the malware landscape. Finally, the datasets need

to be balanced regarding the number of malware and benign

samples, especially when the metric used to measure an

algorithm’s performance is its accuracy.

ACKNOWLEDGEMENTS

This work is part of the AppSentinel project, co-funded by

Lisboa2020/Portugal2020/EU in the context of the Portuguese

Sistema de Incentivos a I&DT - Projetos em Copromoc¸`

 ao˜ (project 33953).

REFERENCES

[1] Ericsson, “Ericsson Mobility Report”, Tech. Rep., Ericsson, 2018.
[2] Dave Chaffey, “Mobile Marketing Statistics compilation”, 2018.
[3] Liran Einav, Jonathan Levin, Igor Popov, and Neel Sundaresan, “Growth,

Adoption, and Use of Mobile E-Commerce”, American Economic

Review, vol. 104, no. 5, pp. 489–494, 2014.
[4] Jaeki Song, Jeff Baker, Ying Wang, Hyoung Yong Choi, and Anol

Bhattacherjee, “Platform adoption by mobile application developers: A

multimethodological approach”, Decision Support Systems, vol. 107,

pp. 26–39, 2018.
[5] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj

Singh Gaur, Mauro Conti, and Muttukrishnan Rajarajan, “Android

security: A survey of issues, malware penetration, and defenses”, IEEE
Communications Surveys and Tutorials, vol. 17, no. 2, pp. 998– 1022,

2015.
[6] IDC, “Smarphone Market Share”, 2019.
[7] Daniel R Thomas, Alastair R Beresford, and Andrew Rice, “Security

metrics for the android ecosystem”, in Proceedings of the 5th Annual

ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices. ACM, 2015, pp. 87–98.

[8] Belal Amro, “Malware Detection Techniques for Mobile Devices”,

International Journal of Mobile Network Communications & Telematics
(IJMNCT), vol. 76, no. 45, pp. 1–10, 2017.

[9] Ms Prajakta, D Sawle, and A B Gadicha, “Analysis of Malware Detection

Techniques in Android”, International Journal of Computer Science and
Mobile Computing, vol. 33, no. 3, pp. 176–182, 2014.

[10] Saba Arshad, Munam A. Shah, Abdul Wahid, Amjad Mehmood,

Houbing Song, and Hongnian Yu, “SAMADroid: A Novel 3-Level Hybrid
Malware Detection Model for Android Operating System”, IEEE Access,

vol. 6, pp. 4321–4339, 2018.
[11] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo

Garcia Bringas, and Gonzalo Alvarez, “PUMA: Permission usage´ to

detect malware in android”, Advances in Intelligent Systems and

Computing, vol. 189 AISC, pp. 289–298, 2013.
[12] Google, “Android Debug Bridge (adb) — Android Developers”, 2019.

[13] Google, “AAPT2 — Android Developers”, 2019.
[14] Naser Peiravian and Xingquan Zhu, “Machine learning for Android

malware detection using permission and API calls”, Proceedings

International Conference on Tools with Artificial Intelligence, ICTAI, pp.

300–305, 2013.
[15] ApkTool, “Apktool - A tool for reverse engineering 3rd party, closed,

binary Android apps.”, 2019.
[16] Leo Breiman, “Bagging predictors: Technical Report No. 421”, Machine

Learning, , no. 2, pp. 19, 1994.
[17] Shaikh Bushra Almin and Madhumita Chatterjee, “A novel approach to

detect Android malware”, Procedia Computer Science, vol. 45, no. C, pp.
407–417, 2015.

[18] Latika Singh and Markus Hofmann, “Dynamic Behavior Analysis of

Android Applications for Malware Detection”, 2017 International
Conference on Intelligent Communication and Computational

Techniques (ICCT), , no. 2013, pp. 1–7, 2017.
[19] Google, “UI/Application Exerciser Monkey — Android Developers”,

2019.
[20] Google, “App Manifest Overview — Android Developers”, 2019.
[21] Taniya Bhatia and Rishabh Kaushal, “Malware detection in android

based on dynamic analysis”, 2017 International Conference on Cyber

Security And Protection Of Digital Services, Cyber Security 2017, 2017.
[22] Vitor Monte Afonso, Matheus Favero de Amorim, Andr Ricardo Abed

Gregio, Glauco Barroso Junquera, and Paulo Lcio de Geus, “Identifying´

Android malware using dynamically obtained features”, Journal of

Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 9–17,
2015.

[23] “droidbox/APIMonitor at master · pjlantz/droidbox · GitHub”.
[24] “monkeyrunner — Android Developers”, 2019.
[25] Yang Zhao, Guangquan Xu, and Yao Zhang, Quality, Reliability, Security

and Robustness in Heterogeneous Systems, vol. 234, Springer
International Publishing, 2018.

[26] Anthony Desnos and Subho Halder, “Androguard”, 2019.
[27] Ben Gruber, “BakSmali”, 2019.
[28] Girish Chandrashekar and Ferat Sahin, “A survey on feature selection

methods”, Computers and Electrical Engineering, vol. 40, no. 1, pp.
16–28, 2014.

[29] Patrik Lantz, “Droidbox”, 2017.
[30] Yu Liu, Yichi Zhang, Haibin Li, and Xu Chen, “A hybrid malware detecting

scheme for mobile Android applications”, 2016 IEEE International

Conference on Consumer Electronics, ICCE 2016, pp. 155–156, 2016.
[31] Saba Arshad, Munam A. Shah, Abdul Wahid, Amjad Mehmood, Houbing

Song, and Hongnian Yu, “SAMADroid: A Novel 3-Level Hybrid Malware

Detection Model for Android Operating System”, IEEE Access, vol. 6, pp.
4321–4339, 2018.

[32] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and¨

Konrad Rieck, “Drebin: Effective and Explainable Detection of Android
Malware in Your Pocket”, Proceedings 2014 Network and Distributed

System Security Symposium, , no. August, 2014.
[33] Ana Fernandes, Antnio Ravara, and Joo Casal, “App Threat Analysis:

Combining static analysis with users feedback to accelerate app store

resposne to mobile threats”, Tech. Rep., Universidade Nova de Lisboa,

2018.

