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Abstract- The lossless rate region for the coded side informa-
tion problem is "solved," but its solution is expressed in terms of
an auxiliary random variable. As a result, finding the rate region
for any fixed example requires an optimization over a family of
allowed auxiliary random variables. While intuitive constructions
are easy to come by and optimal solutions are known under some
special conditions, proving the optimal solution is surprisingly
difficult even for examples as basic as a binary source with
binary side information. We derive the optimal auxiliary random
variables and corresponding achievable rate regions for a family
of problems where both the source and side information are
binary. Our solution involves first tightening known bounds
on the alphabet size of the auxiliary random variable and
then optimizing the auxiliary random variable subject to this
constraint. The technique used to tighten the bound on the
alphabet size applies to a variety of problems beyond the one
studied here.

I. INTRODUCTION

Generalizing our understanding of the source coding prob-
lem from point-to-point communication systems to general
networks remains a central underlying goal of source coding
research. The problem of source coding with coded side
information, perhaps one of the most basic components of
network source coding systems, is an important stepping
stone in this endeavor. The problem was introduced and
solved by Ahlswede and Korner in [1]. Their achievable rate
region describes the family of rate vectors (R x, Ry) such
that independently describing source X at rate RX and side
information Y at rate Ry allows the decoder to reconstruct X
with asymptotically negligible error probability. (See Fig. 1.)

While the characterization given by Ahlswede and Korner
is tight, it does not tell the full story. The given solution relies
on an unknown auxiliary random variable. Thus numerically
characterizing the achievable rate region for any joint distri-
bution on (X, Y) requires an additional optimization over all
admissible auxiliary random variables U.

Solution of the optimal auxiliary random variable is studied
in [2]. The central results of that work are answers to two
questions. What is the minimal achievable rate Ry when
RX = H(XIY)? What is the maximal rate Ry at which
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RX + Ry = H(X) is achievable? While the answers to these
questions allow us to precisely characterize the achievable rate
region in the special case where the answer to both questions is
Ry = I(X; Y) and to bound the achievable rate region more
generally, it, too, fails to tell the full story. For example, when
X and Y are uniformly distributed binary random variables
related through a binary symmetric channel, the answer to the
first question is Ry = H(Y) and the answer to the second
question is Ry = 0, and the results of [2] tell us very little
about the achievable rate region.
The remainder of this paper begins with background on the

coded side information problem. We then provide solutions
to a family of coded side information problems where both
source and side information are binary. As a first step, we
tighten the bound on the alphabet size of the auxiliary random
variable from Y +2 to Y 1. The technique used to improve this
bound also applies to a variety of other problems, including
those in [3], [4], [5], [6], [7]. We then derive the optimal U and
corresponding optimal rate region for a variety of examples
where X and Y are binary; JUI < 2 in these examples by
our first result. In Section IV, we prove that if the conditional
distribution of X given Y is a binary symmetric channel, then
U is optimal if and only if U and Y are related through a
binary symmetric channel as well. (See Fig. 2.) In Section V,
we show that if the conditional distribution of X given Y is a
Z-channel, then U is optimal if and only if U and Y are related
through a Z-channel as well. (See Fig. 3.) The result can be
applied to bound the achievable region for general binary pairs
(X, Y) using the concavity property derived in [8], and to fully
describe the region for (X, Y) pairs whose joint distributions
decompose into known irreducible components. (See [2].)

11. BACKGROUND

Consider the coded side inforfmation problem shown in
Fig. 1. Source X and side information Y are jointly distributed
random variables on alphabets X and Y of sizes X|, IYI < oc.
When (X, Y) are drawn i.i.d. according to a fixed joint

probability mass function (pmf), every achievable point
(Rx,Ry) satisfies RX > H(XI U) and Ry > I(Y;U) for
some random variable U satisfying Markov condition

X X Y X+ U,(1)
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Fig. 1. The coded side information problem.

and alphabet bound JUI < Y + 2 [1]. To compute the lower
convex hull of this rate region, we minimize the Lagrangian
functional H(XIU) + pI(Y; U) (p > 0) under the natural
constraints on p(y u). Unfortunately, this functional is neither
convex nor concave in p(ylu) in general since H(XIU)
is concave in p(ylu) while I(YIU) is convex in p(ylu).
Therefore, the optimization is surprisingly difficult even in the
case where both X and Y are binary random variables.

III. ALPHABET SIZE OF U

While the following result treats the coded side information
problem, the method used to prove it applies more widely.

Theorem 1: Alphabet size 1U < Y suffices to achieve any
point (Rx, Ry) on the lower boundary of the achievable rate
region for the coded side-information problem.
Proof: The usual time-sharing argument implies that our
achievable rate region is convex. Thus any point can be
described by some auxiliary random variable U that minimizes
H(X U) + pI (Y; U) subject to constraint (1) for some p > 0.
Since H1(Y) is fixed, U minimizes H(XIU)+pI(Y; U) if and
only if it minimizes H(XIU)- pH(YIU). Now fix an alphabet
U, and for each u C U, fix a conditional pmf {P(yU)}yGey.
We next show that no matter how large the original alphabet
U and no matter which conditional distribution {P(y U)} Gy
is used for each u C U, the optimal solution sets p(u) = 0 for
all but at most IYI values of u.
The given optimization problem is equivalent to choosing

the pmf {p(u)}uE]u that minimizes

Z [H(X U = u) -pH(Y U = )]p(u)

EUGU P(U) =1
subject to p(y) =p()P(Y U) V y E Y

p(U) > 0 V a C U.
Fixing {p(y u)}yey for each u EU means that H(XIU = U),
H(YIU = u), and p(ylu) are constants for each a, and the
minimization is a linear program. Since the optimal point for
any linear program can be achieved at a corner point, there
exists an optimizing solution that satisfies JUI constraints with
equality. There is one constraint of the form EucZP(u) =

1, and there are JY -1 independent constraints of the form
p(y) = p(u)p(ylu) for some y E Y. Thus the remaining JUI-
(1 + JY -1) constraints that are satisfied with equality must
take the form p(u) = 0 for some u E U. D

IV. BINARY SYMMETRICAL CASE

In this section, we consider the case where X and Y
are related through a binary symmetric channel, namely,

PXly(1IO) = Pxly(Ol1) = e for some 0 < e < 1/2 (the
trivial cases e = 0 and 1/2 are excluded). Theorem 2 is our
central result for this case. For any x, e C [0, 1], we define
H(x) :=- xlogx -(1-x) log(- x) and He(x) H (x,),
where x, := x(1 -) + (1- x) = + (1- 2)x.

Theorem 2: If (X, Y) is a binary pair with Py (0) = p and
Px y (1 I0) = Px y (° 1) = e, then the lower boundary of the
achievable rate region is described by

{(Rx, Ry) Rx = He (7), Ry = H(p)-H(Hy),
' C [0,min{p, -p}]}.

This is achieved by binary auxiliary random variable U with
U - Y - X if and only if Pylu(I O) = Pylu(0ll) = y.

U
A

il-A

y x

1 -3 ip 1 -

Fig. 2. The binary symmetric case.

To prove this theorem, let U be a binary random variable
with U -X Y -X X, A = Pu(0), a = PyIu(I 0), and / =

Pylu(OlI). Since p =A(I - a) + (I1-A)~, A=(p- )/(I1-
a /-). and

H(XIU) 1 p He(a) + a He()

H(YIU) = -H(a)± H(/).1 a 3 1 a 3s

Therefore, finding an optimal U is equivalent to solving

max [1 a H(a) +
I a dH()]

subject to pI He (a) +
I aHe(/)1 a/36 1 a/3

(2)
K

over 0 < a,/3 < 1 for some K. Note that H1(c) < K =

AH6(a) + (1 -A)HE(/) < HE(Aa+ (1 -A)/) = He(1 -p).
We use the next theorem, which is proven in Appendix A, to
solve this optimization problem.

Theorem 3: The following inequality holds for any 0 <
a < y </ < 1/2 and 0 < c < 1/2

H(/) H1(7) <He(S) He(a)
H(/) H1(a) He(3)- He(a)

Fix any K [H1(e), H6(p)] and let 0 < y < 1/2 be chosen
such that K 1e(7). Then H11(x) increasing in x C [0,1/2]
implies that 0 < y < min{p, 1 -p}. We wish to show that

H(7) > AH(a) + (1- A)H(1)
for any distinct a and / satisfying

K=1H I(a)±+ (/3)a
1 a 1 a /3~
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Without loss of generality, we assume that 0 < a < / < 1/2
(if not, a or / can be replaced with 1- a or 1 -/, and the
optimization problem is the same with an appropriate change
of the formula of A in terms of a and /). Then y e (a, )
and H,(1) = AH,(a) + (1 -A)H,(/), giving A = (He(/)
He (7))/(He ( I)-H, (a)). By Theorem 3, H(7) > AH(a) +
(1 -A)H(/3), which implies that the symmetrical solution is
optimal. On the other hand, for any K C [H(ce), H (p)], there
always exists some y e [0, min{p, 1 p}] such that K
H, (Qy). Hence by letting a = ,= y,

H(a =1 a /3H(a) + 1 a /H(/)
is maximized under the constraint

K p iHep(a)a+P aHe1 a /H(±1 a H(/)

This completes the proof.

V. Z-CHANNEL CASE

We next consider X and Y related through a Z channel.
Theorem 4: If (X, Y) is a binary pair with Py (0) = p,

PxIy(1I 0) = 0, and PxIy(OI 1) = 1-c, then the lower
boundary of the achievable rate region is described by

{(Rx,Ry) : Rx = '-PHe(7))
Ry H(p') '- PH(7)) a [-,l}

If U is binary with U - Y -÷ X, then U achieves this bound
if and only if Pylu(I 0) = 0 and Pylu(1I1) = .

U y

Then the following is true

/3/3(1a H(a)+(1P) H()< H ). (4)

Proof. We first show that (3) implies that 1 -p < y </.
Consider any 0 < T < 1, and some distinct x and y such that
x C [a),1 -p] and y e [1 -p, ], let

(X ) y- H(TX)_ (1 H(Ty).y Nx y tx
Note that

dxd-OT(x, y)

and that

dyT(x, Y)
(1 p) XD(T TTY) < 0.
(y X~)2

Hence for any T, 0T(X, y) is strictly increasing in x (when y
is fixed) and strictly decreasing in y (when x is fixed).
Rewriting (3) as O,(a, /) (0,7)s, we have immediately
that

0e(°M < 0e(a:S)0e(°A ):
which proves / > 7y.
The condition (3) implies that

O,(a, ) O,(a,/3) O,(a, ' (0, )

or equivalently,

(1 P) -a D(ea IJy)dy
= AT(y (a)'

x
A

il-A
/3

I-p
c

Fig. 3. The binary Z-channel case.

To prove this result, define a, /, and A as before. (See
Fig. 3.) Note that Aa±+( -A) = 1-p implies a < 1-p < /
or a > 1 -p > /. Without loss of generality, we suppose
a< -p</3.Here

H(XIU)

H(YIU)

- (1-P) H(ea) + (1 P) aH(e)
/-(-P) H( /3)+ ( aP) H(/).

Theorem 5 relates this quantities.
Theorem 5: Suppose 0 < a < 1 -p </, a z/ /, and

1-p< < 1. Choose0<e<1 suchthat

d _ P)H(') ± (1 -p) -a H(e) 1-PH ().

(3)

i.e.,
f,'O (1-P)-ceD(,a( pY-

o (-( -P2) D (
( X)2 (

Now for any 0 < x < aa 1
(see Appendix B), we have

'y -(1 -P)D 1x)

D(ally)
which implies that

a (e IY)fo (1y P) D x)dx

D(aly)
Hence for any iy < y </,

D(ally))
fol y (1 P)-D x)dx

(-y X)2 DQy

which leads to

Ica Icy)dy
Iy7 cZx)dx

1.

-p < y < y < /, by Lemma 5

('-(y)2 D(cil jex)
D(caI Icy)

fo -(1-P)D(e lx)dx

D(caI Icy)

D(eaI Icy)
f0cY 'j(')D(c'7l lx)dx'

01(a,<) 01(a,)f(a, ((P)) cD(°y)dy
01 (a, 01 (°' fy) o(()P)D(d11x)dx

f' ('-P a2 D (ea Icy)dy
fc'(_)2 D(e7j1ex)dx
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Thus, (4) holds.

Note that 1aPH(c'y) ranges from (1
(when i = 1) to H(c(1 -p)) = H(X)
any K C [H(XIY),H(X)], let 7 e [1 -

D Then one has

-p)H(e) = H(X Y)
(when i = 1-p). For
-p, 1] be such that

I1-pK= H(u7).
1

Then by Theorem 5, for any distinct pair (a, /) satisfying
O< a <1-p </3such that

K /3H(1p (,) + (1 P) aH
a H(a) j a

/3 (1 P) + (1 p) aH(() <
/3 a H(a)± a

Therefore, for every optimal solution, a = 0. Conversely, for
any pair (a, /) with a < 1-p < /, there exists ri e [1 -p, 1]
such that (3) holds, and then (4) holds by Theorem 5.

APPENDIX
A. Proof of Theorem 3
We prove Theorem 3 by combining the following four

lemmas.
Lemma 1: Let f and g be nonnegative differentiable func-

tions on [a, b] for some a < b.1 If f'(x)/g'(x) is (strictly)
increasing, then

(a)

(b)

f (x) - f(0)
g(x) - g(O)

is (strictly) increasing in x for x such that g(x) / g(0).

f (1) - f (x)
g(1) - g(x)

is (strictly) increasing in x for x such that g(x) g(l) .

Proof. Without loss of generality, we assume that a = 0 and
b 1. Given O < t < 1, and O < A < 1-t. Foreach
n e N, consider the partition of [0, t]

n n nn
and the partition of (t, t + A]

(t
A

1)(
A 2A (t+(n -1)A t+AJ{(t,t± -],(t± n,tn ],...,(t± ( ) ,t±Af]}.

Define the corresponding Riemann sums as follows

Sf,n

Sg,n

Tf,n

Z kt t
nfl

k=l
n kt t

I: 9 ( n ) nnfl
k=l
ZJ't±kA A, f ' (t +-)_n n
k=l
n kA AI:g' (t±+ )-.'n n

k=l

This lemma still works when a =-oo or b = oo.

lim Sf,n
n-+cx

lrn Sg,n
n-+cx

lrn Tf,n
lrm Tg n

n-+cx g,

f(t) - f(O)
g(t) - g(o)
f(t +A) - f(t)
g(t +A) - g(t),

and

lim Sf,n f (t) f(0)

lim Tf,n f(t + A)-f(t)
nf+oc Tg,n g(t + A) -g(t)

Now, since the function f '(x)/g'(x) is increasing,

Sf,n < Sf,n + Tf,n
Sg,n - Sg,n + Tg,n

and therefore

f(t) - f(O) < f(t + A) - f(0)
g(t) - g(O) - g(t + A) - g(0)

A similar argument leads to (b).

Lemma 2: The function

H" (x)
H" (x)

D-

(1-2()2(1-x)
x6(1 -x6)

is strictly increasing for x e (0,1/2).

Proof: Notice that

d x(1- x) _ (1- 2x)x(- x)
dx x,(I- x) (x(l- Xe))2

(1 -2c)(1 -2x,)x(1 -x)
(x6 (1 XE))2

Therefore, it suffices to show that

(1 -2x)x(I1 - x) - (1 -2c)1 -2x7)x(1 -x) > 0

for x C (0,1/2). Fix x C (0,1/2). Consider the function

O($I) (1- 2x)x(1-x)
-(1- 2I)(1- 2x)x(1 -x)

for Ti C [0,1/2].
Since x = ±+ (1- 2x)i, the function x,(1- x) is strictly
concave in Ti, and the function (1- 2i)(1- 2x,) is convex
in i7. Thus 0(77) is strictly concave in i7. Now O(0) = 0 and
0(1/2) = (- 2x)/4 > 0, hence O(e) > 0. D

Lemma 3: (a) The function H (x)/H'(x) is strictly in-
creasing for x e (0,1/2).

(b) The function
H11(x) -1He(a)
H(x) -H(a)

is strictly increasing for x e (a, ).
(c) The function

H6E(/) -H6(x)
H(/3) -H(x)
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is strictly increasing for x E (a, /3).

Proof.
(a) By Lemma 2, H"'(x)/H"(x) is strictly increasing for

x E (0, 1/2). Since

H'(x)
.H'(x) H'(1/2) -H'(x)'

Lemma 1 (b) implies that H (x) /H'(x) is strictly
increasing for x C (0,1/2).

(b) (H(x) -He(a))/(H(x) -H(a)) is strictly increasing
for x C (a, /) by (a) and Lemma 1 (a).

(c) (He1(F) -H,(x))/(H(4) -H(x)) is strictly increasing
for x C (a, 4) by (a) and Lemma 1(b).

Lemma 4: For any x E (a,) ),

He1(S) -He(a)1H(x)
11(43) 11H(a)
He (a)1H(4) -1H(a)1H6(13) > He(x).
± H1(73) -H(a)

Proof. By Lemma 3(b),

H1e (/) - (a)()> l He (x) -1H (a)
H(3) -H(a) X-oa+ H(x) -H(al)

(1 -2c) ln(I a) -ln(a6)
ln(- a) -ln(a)

Similarly, by Lemma 3(c),

He () -1He (a)
H(43) -H(a)

< lim He(S) -H,(x)ln(1436 Hn(4) -Hx
- 2 ln(I -e) - ln(e,) kr-

(1 2c) ln(- 4)-ln(G)
Let

$(x) = H1(43) -H1(a)H(x) -H1(x)11(43) 11H(a)
He (a)1H(43) -H(a)H1 (13)

H(/3) -H(a)

for x E (a, 3). (A-1) and (A-2) imply that p'(a) > 0 and
q$'(4) < 0. Now

d' (x)
He (3) -H (a) HIX(x)H (x).

Since the function H (x) /H'(x) is strictly increasing by
Lemma 3(a), there is only one point s E (a, /) such that
O'(s) = 0. This implies that O(x) > 0 for x E (a,4).

B. Proof of Lemma 5

Lemma 5: If 0 < x < a < ry < y < 4, then for a
ce (, 1),

D(ea I cy) D(al y)
D(Eci 1cx) D(y1 1x)

Proof. For any fixed s z/ t, consider D(Ts ITt) as a function
of T C (-oo, 1]. Then

D'(Ts Tt) d D' (TS Tt)Tt)
1 -TS 1 -TS

slIn-- sln -s + t
t 1 -Tt 1- Tt

and

D"(TSlITt) = >-.t)2(1 TS) (I1 Tt)2
Thus the function

D" (Ta TY)
D"(T1 TX)

(a y)2 (1- T)(1 TX)2

is positive and is strictly increasing in T.
E Hence by Lemma 1,

D'(Ta TY)
D'(T1 TX)

is strictly increasing in T.
Note that

(A-1)

fT00 D"(TjajjTy)dTj
fT D"ll(rjjrjx)dTj

lim D'(Ts ITt)= 0,
TX-+00

hence D'(TsITt) > 0 for all T E (-oo, 1]. Thus by Lemma
1 again, the function

D(TaI TY)
D(T1 TX)

f¾T D'(Tja jy)dTj

fT_D'(y1rTllx)dTi
is strictly increasing in T. In particular,

D(ea Icy) DD(a Iy)
D(e7j Jx) D(q1 1x)

-2) D
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