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Abstract—We study the information rates of non-coherent, The capacity of non-coherent fading channels, where the
stationary, Gaussian, multiple-input multiple-output (MIMO)  receiver has no knowledge of the fading coefficients, has bee
flat-fading channels that are achievable with nearest neigbour studied in a number of works. Building updf [4], Hassibi and

decoding and pilot-aided channel estimation. In particula, we " . . .
analyse the behaviour of these achievable rates in the limés the Hochwald [3] studied the capacity of the block-fading chelnn

signal-to-noise ratio (SNR) tends to infinity. We demonstre that and used pilot symbols (also known as training symbols)
nearest neighbour decoding and pilot-aided channel estinion to obtain reasonably accurate fading estimates. Lozano and

achieves the capacity pre-log—which is defined as the limity  Jindal [6] provided tools for a unified treatment of pilotsea
ratio of the capacity to the logarithm of SNR as the SNR tends nanne| estimation in both block and stationary bandlichite

to infinity—of non-coherent multiple-input single-output (MISO) .
flat-fading channels, and it achieves the best so far known Vger fading channels. In these works, lower bounds on the channel

bound on the capacity pre-log of non-coherent MIMO flat-fading ~ Capacity were obtained. Lapidothl! [7] studied a single-tnpu
channels. single-output (SISO) fading channel for more general fadin

processes and showed that, depending on the predictatfility
. INTRODUCTION the fading process, the capacity growth in SNR canitey
o ) ~alia, logarithmically or double logarithmically. The extensio
Coherent multiple-input multiple-output (MIMO) flat-faatj ¢ [7] to multiple-input single-output (MISO) fading chagis
channels have a capacity that increases with the signal-{amn pe found in [8]. A lower bound on the capacity of MIMO
noise ratio (SNR) amin(n, n:) log SNR, wheren, andn; are - f34ing channels was derived by Etkin and Tselin [9].
the number of transmit and receive antennas, respectidgly [ Lapidoth and Shamai [10] and Weingarteh al. [11]
[2]. This capacity growth can be achieved using independef{,died non-coherent fading channels from a mismatched-
and identically distributed (i.i.d.) Gaussian inputs witBarest decoding perspective. In particular, they studied achieva

neighbour decoding. The nearest neighbour decoder is asim@ytes with Gaussian inputs and nearest neighbour decoding.
decoder that selects the codeword that is closest to thenehan, poth works, it is assumed that there is a genie that previde

output. In a coherent channel with additive Gaussian ntise, imperfect estimates of the fading coefficients.
decoder is the maximum-likelihood decoder and is therefore|, our work, we add the estimation of the fading coefficients

optimal in the sense that it minimises the error probability oy analysis. In particular, we study a communication
(see[[3] and references therein). However, the coherenn&tia system where the transmitter emits at regular intervalst pil
model assumes that there is a genie that provides the fadé‘%bols, and where the receiver perforchannel estimation
coefficients to the decoder, which is difficult to achieve iB,qdata detection separately. Based on the channel outputs
practice. We exclude the role of the genie by studying @responding to pilot transmissions, the channel estimat
scheme that estimates the fading via pilot symbols. Nofgoduces estimates for the remaining time instants using a
that with imperfect fading estimations, the nearest negib |inear minimum mean-square error (LMMSE) interpolator.
decoder that treats the fading estimate as if it were peiectysjng these estimates, the data detector employs a nearest
not necessarily optimal. Nevertheless, we show that, inesomeighbour decoder to decide what the transmitted message
cases, nearest neighbour decoding and pilot-aided changgs. we study the achievable rates of this communication
estimation is optimal at high SNR in the sense that it aclsievgcheme at high SNR. In particular, we study the pre-log for
the capacity pre-log. The pre-log is defined as the limitat@r fading processes of bandlimited power spectral densities.
of the ach!evable rat(? th)g.SNR_as SNR tends to mﬁmty. For SISO fading channels, using some simplifying argu-
The capacity pre-log is defined in the same way but with thgents, Lozano[T12] and Jindal and Lozano [6] showed that
achievable rate replaced by the capacity. this scheme achieves the capacity pre-log. In this paper, we
prove this result without any simplifying assumptions and
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it achieves the capacity pre-log derived by Koch and Lapidotoefficients corresponding to theh transmit antenna is given
[8]. For MIMO channels, the above scheme achieves the béstp.(t) = 1 andp.(t') = 0 for ¢’ # t. For example, the first

so far known lower bound on the capacity pre-log obtained pilot vector isp; = (1,0,---,0)", where (-)" denotes the
[Ql. transpose. To estimate the whole fading matrix, we thus need
The paper is organised as follows. Sectloh Il describés send then, pilot vectorsps, ..., py,.

the channel model and introduces the encoding and decodin@he transmission scheme is as follows. Evelytime
scheme. Section_lll defines the pre-log and presents the mastants (for some. € Z), we transmit then, pilot vectors
result. And Sectiofi IV outlines the proof of this result. p1,...,Pn,. Each codeword is then split up into blocks of
L — n; data vectors, which will be transmitted after the
pilot vectors. The process of transmittidg— n data vectors
We consider a discrete-time, x n; MIMO flat-fading and n; pilot vectors continues until allvV data vectors are
channel, whose channel output at time instart Z (where completed. Herein we assume thdtis an integer multiple
Z denotes the set of integers) is the complex-valugd of L — n.[} Prior to transmitting the first data block, and

Il. SYSTEM MODEL

dimensional random vector given by after transmitting the last data block, we introduce a guard
period of L(T' — 1) time instants (for som& < Z), where we
Y, = SNRkak + Zs. (1) transmit everyl time instants the pilot vectorspy, ..., px,,

L but we do not transmit data vectors in between. The guard

Herex) € C™ denotes the timé-channel input vector (with period ensures that, at every time instant, we can employ a
C denoting the set of complex numberE), € C"*" denotes channel estimator that bases its estimation on the channel
the fading matrix at timé; andZ;, € C™+ denotes the additive outputs corresponding to thE past and thel’ future pilot
noise vector at time. transmissions. This facilitates the analysis and doesnuairi
The noise proces$Z;,k € Z} is a sequence of inde-a loss in terms of achievable rate. The above transmission
pendent and identically distributed (i.i.d.) complex Gsias scheme is illustrated in Figuid 1. The channel estimator is
random vectors of zero mean and covariance matripwhere described below.
I, is then, x n, identity matrix. SNR denotes the average Note that the total block-length of the above transmission
SNR for each received antenna. scheme (comprising data vectors, pilot vectors and guard
The fading proces$Hy, k € Z} is stationary, ergodic and period) is given by
Gaussian. We assume that the n processe$ Hy(r,t),k €
Z}y,r=1,...,n,t=1,...,n are independent and have the N'= Ny + N+ Nun )
same law, with each process having zero-mean, unit-va&iaghereN,, denotes the number of channel uses for pilot vectors,
and power spectral densitft; (\), —3 < A < 3. Thus,fz(:) and whereV,,, denotes the number of channel uses during the

is a non-negative function satisfying silent guard period, i.e.,
1/2 ) N
E [Hk+m(r,t)H,1 (r,t)} - / 2T FL (AN (2) N, = (— +1+42(T - 1)) ne (5)
-1/2 L —mny

where ()T denotes complex conjugation. We further assume Nun = 2(L = ne)(T = 1). (©)
that the power spectral densiffg;(-) has bandwidth\p < We now turn to the decoder. L& denote the set of time
1/2,i.e., fu(A) =0 for [A| > Ap and fy(\) > 0 otherwise. indices where data vectors of a codeword are transmitted,
We finally assume that the fading procdds,, k € Z} and and let P denote the set of time indices where pilots are
the noise proces§Z;, k € Z} are independent and that theitransmitted. The decoder consists of two partschannel
joint law does not depend ofwy, k € Z}. estimator and adata detector. The channel estimator considers
The transmission involves both codewords and pilots. Thige channel output vectols,, k € P corresponding to the past
former convey the message to be transmitted, and the laéier and futureT pilot transmissions and estimaték; (r,t) using
used to facilitate the estimation of the fading coefficieats a linear interpolator, i.e., the estimafggT) (r,t) of the fading
the receiver. The codeword is selected from the codelthokcoefficientHy(r,t) is given by
which is drawn i.i.d. from a zero-mean unit-variance comple AT
Gaussian distribution. The codeword is assumed to satigfy t I;IIET) (r,t) = Z aw (r, )Y (1) @
average-power constraint

k'=k—TL:
1 N k'eP
N S EIXn(m)|?] <m, meM (3)  where the coefficients, (r, t) are chosen in order to minimize
n=1 the mean-squared error.

where M = {1,...,e"%} is the set of possible messages,
and N and R denote the codeword length and the coding rate.'If NV is not an integer multiple of. — ns, then the lastr, — n; instants
T . he fadi . . h | pil re not fully used by data vectors and contain therefore timtants where
0 estimate the fading matrix, we transmit orthogonal pi e do not transmit anything. The thereby incurred loss ilrimfation rate

vectors. The pilot vectorp, used to estimate the fadingvanishes asv tends to infinity.
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Fig. 1. Structure of pilot and data transmission far= 2, L =7 andT = 2.

Note that, since the pilot vectors transmit only from on@H,ﬁT)(r, t), k € D}) to the data detector. We shall denote its

antenna, the fading coefficients corresponding to all trains realisation by{HéT)jk € D}. Based on the channel outputs
and receive antenngs, t) can be observed. Further note thatfy, & € D} and fading estimate$|3|§€T),k € D}, the data

since the fading process€s$iy(r,t),k € Z}, r =1,...,n,,
t=1,...,n; are independent, estimatirig (r,t) only based
on {Yy(r), k € Z} rather than oY}, k € Z} incurs no loss
in optimality.

Since the time-lags betweéfy,, k¥ € D and the observations
Y., k' € P depend ork, it follows that the interpolation error

EXD (v t) = Hy(r,t) — A (r,1) 8)

is not stationary but cyclo-stationary with peridd Neverthe-
less, it can be shown that, irrespective(oft), the variance
of the interpolation error

2 i (T) 2
o2r(b,r,t) = E || Hi(r,t) = " (r,1)| (©)
tends to the following expressions @stends to infinity [13]
o2(0) & lim o2, (4,r,t) (10)
T—o0 ’
1/2 2
~1/2 SNRfHL’O(/\) +1

where? = k£ mod L denotes the remainder &f/L. Here
fr. (-) is given by

12 . (A=) A
_ 7 - i2mg 2
fHL,Z(/\) -7 jz::o Ju <T) €

and fg(-) is the periodic function of periof-1/2,1/2) that
coincides withfg(A\) for —1/2 < X <1/2. If

(12)

1
< —_
L< g (13)
then|fm, ¢(-)] becomes
1 A 1 1
it = f o) = 1 (3 ) =5 <A< 3. @9

In this case the interpolation error is given by
2

/2 SNR(fu (M)
2 _1_ — —
o2(0) = 1 /1/2 RIS LT (=0 L1 015)

which vanishes as th8NR tends to infinity. Recall thahp

denotes the bandwidth ofg (). Thus, [AB) implies that no

aliasing occurs as we undersample the fading protdsses.

detector uses a nearest neighbour decoder to guess which
message was transmitted. Thus, the decoder decides on the
messagen that satisfies

m = arg néin D(m) (16)
where
~ 2
Dim) £y Hyk — /SNR/n H;”mk(m)u (17)

keD

and wher¢|| - || denotes the Euclidean norm.

Ill. THE PRE-LOG

We say that a rate is achievable if the error probability
tends to zero as the codeword length tends to infinity. In this
work, we study the maximum rat®*(SNR) that is achiev-
able with nearest neighbour decoding and pilot-aided chlann
estimation. We focus on the achievable rates at BiyR. In
particular, we are interested in the maximum achievable pre
log, defined as

AL R*(SNR)
M- = lmsup 30 SNR
The capacity pre-log—which is given by _{(18) but with
R*(SNR) replaced by the capacity(SNR)—of SISO fading
channels was computed by Lapidoth [7] as

le = p({A: fu(N) =0}) (19)

where u(-) denotes the Lebesgue measure on the interval
[-1/2,1/2]. Koch and Lapidoth[[8] extended this result to
MISO fading channels and showed that if the fading processes
{Hy(t),k € Z},t = 1,...,n; are independent and have the
same law, then the capacity pre-log of MISO fading channels
is equal to the capacity pre-log of the SISO fading channel
with fading procesq Hy (1), k € Z}. Using [19), the capacity
pre-log of MISO fading channels with power spectral density
of bandwidthAp can be evaluated as

e =1-2Ap.

Since R*(SNR) < C(SNR), it follows thatIlz. < Il¢.
To the best of our knowledge, the capacity pre-log of MIMO
fading channels is unknown. For independent fading presess

(18)

(20)

The channel estimator feeds the sequence of fading et (r,¢),k € Z}, t =1,...,n, r = 1,...,n, that have the
mates{]HIEcT), k € D} (which is composed of the matrix entriessame law, the best so far known lower bound on the MIMO



pre-log is due to Etkin and Ts&l[9] which cannot be larger thaly (8\p). The same holds for the

II¢ > min(ny, nr)(l — min(ny, nr),u({/\: fua(X) > 0})? lower bound (2.
21) IV. PROOFOUTLINE

For power spectral densities that are bandlimited\tg this We first note that it suffices to consider the case where:
becomes n,. If ny > n,, then we employ only,, transmit antennas, and
(22) if n, > ng, then we ignoren, — ny antennas at the receiver.

This yields in both cases a lower bound on the achievable rate
Observe that[{22) specialises 01(20) for = 1. It should  To prove Theorenfll, we analyse the generalized mutual
be noted that the capacity pre-log for MISO and SISO fadingformation (GMI) for the above channel and communication
channels was derived under a peak-power constraint on Hiheme. The GMI, denoted Hy™i (SNR), specifies the high-
channel inputs, whereas the lower bound on the capacity pegt information rate for which the average probability aber
log for MIMO fading channels was derived under an averaggveraged over the ensemble of i.i.d. Gaussian codebookis te
power constraint. Clearly, the capacity pre-log corresfio to zero as the codeword lengfli tends to infinity (seel]3],
to a peak-power constraint can never be larger than tji@], [11] and references therein).
capacity pre-log corresponding to an average-power cainstr Let E{") denote the estimation error in estimatifig, i.e.,
It is believed that the two pre-logs are in fact |dent|cale(qu is composed of the matrix entrieS,iT) (r,t) (). Then,

the conclusion in[]7]). o for the above channel model, the GMI can be evaluated as
In this paper, we show that a communication scheme that

employs nearest neighbour decoding and pilot-aided cthanne ]gmi(SNR) = sup <OB(SNR) — K(6, SNR)) (27)
estimation achieves the following pre-log. 6<0

Theorem 1: Consider the above Gaussian MIMO flat-fadingvhere
channel withn; transmit antennas and, receive antennas.

Then, the transmission and decoding scheme described in  B(SNR) Z E [nr—F /SNR /¢ HE(T)H ] (28)
SectionJ) achieves

Il > min(ng, nr)(l — min(ny, ny) 2)\D).

Mg > min(ng, ny) <1_ min(nca”r)) (23) (with || - || denoting the Frobenius norm); and where
L* k(6, SNR) is the conditional log moment-generating function
of the metricD(m’) associated with an incorrect message—
conditioned on the channel outputs and on the fading
estlmates—whlch is given by

where L* is the largest integer satisfying* < 5.
Proof: Due to page limitations, only an outline of the

proof is given in Sectiof 1V. [ ]
Remark 1. We derive Theorerfil1 for i.i.d. Gaussian inputss (6, SNR)
satisfying the average-power constraint (3). Nevertlselas- L—ny

—1
ing truncated Gaussian inputs, it can be shown that Theorem = — Z E [QYéT <|nr _ GSl\I—RIF}IgT)HZ(T)) Yz]
(@ also holds when the channel inputs have to satisfy a peak- L =1 T
power constraint, i.e., with probability oré&;| < 1. L—ny

If 1/(2\p) is an integer, ther (23) becomes - = Z E [10gd€t (

g > min(nt,nr)(l — min(n, ny) 2/\D). (24)

95'\'—RH§T>HZ<T>)] . (29)
Tt

Following [14-] it can be shown that fat < 0

Thus, in this case nearest neighbour decoding together with

pilot-aided channel estimation achieves the capacitylqyef E [GYJ <|nr _ SNR T)H(T)> Ye] <0. (30)

MISO fading channeld (20), as well as the lower bound on the

capacity pre-log of MIMO fading channels_(22). As observed in[[T4], the choice — — 1 i
Comparing [[ZB) and [{22) with the capacity pre-log +(SNR/ne)neneoly o

min(n¢,n,:) for coherent fading channel§1[1].]1[2], we obyIeIdS a good lower bound at high SNR. Here

serve that, for a fading process of bandwidMp,

penalty for not knowing the fading coefficients is roughly

(mm(m’ nr)) 2Ap. Consequently, the lower bourid (23) doegubstituting this choice to the right-hand side (RHS)[of)(27

not grow linearly with min(n¢,n,), but it is a quadratic . i} -
function of min(n¢, n,) that achieves its maximum at and applying[(30) to upper-bound?, SNR), we obtain

Oge —maxE UE( ) (r t)r] (31)

I+ I8™(SNR)
min(ne, nr) = 5 (25) Z" o det SNR Iy}
This gives rise to the lower bound L —~ ogdet { ln, + nyne + g SNRoZ, 1
My > 2 (26) S Lo (32

4 L



We continue by analysing the RHS ¢f {32) in the limit asote that
the size of the observation winddiv of the channel estimator 1/2
o ; . 2 SNRfH(A)L
tends to infinity. To this end, we note that, fér< By the SNRoz. =

FAA< L (41)
interpolation error tends td (IL5), namely

,1/2 SNRfH(A) +

12 SNR(f ()\))2 which implies thatog (n:*+n:?SNR 2. ) is finite, too. Thus,
0% = lim o2 ;=1 _/ —HLd,\_ (33) computing the ratio of the RHS df(B9) tog SNR in the limit

¢ Tooe —1/2 SNRfm (A) + as theSNR tends to infinity, we obtain the lower bound
Similarly, since by the orthogonality principlé!” andE{"’ Mg > (1 _ ﬂ) - (42)
are independent, and since all entriedinhave unit variance, o L ) )
it follows that — min(ne,ny) (1 S0 g o L g
2 L 2)\[)

, /2 SNR(fr(N)
o} = lim (1—o0Z 1) =/ Qdk (34) where we have used that, = n, = min(ng,n,). The
T—o00 —1/2 SNRfy(A) + L .. . . .
condition L < 1/(2Ap) is necessary since otherwide J(15)
We thus have by[(34) that, irrespective ffthe estimate \would not hold. This proves Theordm 1.
(™ tends toH in distribution
o (T) (T - REFERENCES
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(35)

[1] G. J. Foschini, “Layered space-time architecture foreleiss commu-
nication in a fading environment when using multi-elementeanas,”

as T tends to infinity, where the entries df are i.i.d., Bell Labs Tech. J, vol. 1, no. 2, pp. 41-59, 1996.
I. E. Telatar, “Capacity of multi-antenna Gaussian ahels,” European

. . . . 2
u_rcularly—symmetnc, complex Gaussian random va_rlableg] Trans. Telecomm., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.
with zero mean and variance — o2.. Consequently, since [3] A. Lapidoth, “Nearest neighbor decoding for additivenagaussian noise
the functionA — log det(l 4 A) is continuous and bounded channels,”IEEE Trans. Inf. Theory, vol. 42, no. 5, pp. 1520-1529, Sep.
. ) 1996.
from below, we obtain from Portmanteau’s Lemrhal[15] that[4]

T. L. Marzetta, “BLAST training: Estimating channel aiaateristics for
() 2t (T) high-capacity space-time wireless,” iitoc. 37th Annual Allerton Conf.
lim E |logdet [ I, + SNR Hz Hz on Communication, Control, and Computing, Monticello, IL, Sep. 1999,
T-500 " ngny + ngneSNRo2, . pp. 958-966. o .
’ [5] B. Hassibi and B. M. Hochwald, “How much training is neddi

SNR HHT ) ] (36) multiple-antenna wireless linksPEEE Trans. Inf. Theory, vol. 49, no. 4,

>E {1og det (Inr + SNRo2 pp. 951-963, Apr. 2003.
MMy + Ny Oex [6] N.Jindal and A. Lozano, “A unified treatment of optimunigpioverhead
i ; i . in multipath fading channelsEEE Trans. Commun., vol. 58, no. 10,
which yields the following lower bound on the GMI: o, 29302048, OCL. 2010,
lim Igmi(SN R) [7] A. Lapidoth, “On the asymptotic capacity of stationarp@@sian fading
T— 00 channels,”|EEE Trans. Inf. Theory, vol. 51, no. 2, pp. 437-446, Feb.

L —n, SNR HAT ﬂ 2005.

[8] T. Koch and A. Lapidoth, “The fading number and degreesreédom
ngny + neny SN Rag* in non-coherent MIMO fading channels: A peace pipe,'Piroc. |[EEE
L —n Int. Symp. Inf. Theory, Adelaide, Australia, Sep. 2005, pp. 661-665.
(37) [9] R. H. Etkin and D. Tse, "“Degrees of freedom in some uncreegp
L MIMO fading channels,"IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.

_ ot 1576-1608, Apr. 2006.
> L= m <E [log det < SNR HH >} — 1) (38) [10] A. Lapidoth and S. Shamai, “Fading channels: how pénfeed “perfect

> E [log det <|nr +

- L Ny + 1Ny SN RU?* side information” be?1EEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1118—
1134, May 2002.
L —ng 2 2 2 [11] H. Weingarten, Y. Steinberg, and S. Shamai, “Gaussiades and
= I nglog SNR — n¢ log (”t + ng SNRUe*) weighted nearest neighbor decoding in fading multiplesan& chan-
nels,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1665-1686, Aug.
2004.
+E [log det HHT} -1 (39) [12] A. Lozano, “Interplay of spectral efficiency, power abppler spec-
' trum for reference-signal-assisted wireless communingtl EEE Trans.
Wireless Commun., vol. 7, no. 12, pp. 5020-5029, Dec. 2008.
Here the second step follows by Iower-boundlndet(l 4 [13] S. Ohno and G. B. Giannakis, “Average-rate optimal PSAdsins-

. . . missions over time-selective fading channellZEE Trans. Wreless
A) = logdet A; and the third step follows by evaluating the  cormun vol. 1, no. 4, pp. 712-720, Oct. 2002.

determinant and by using that, by our assumptign= n,. [14] A. T. Asyhari and A. Guilen i Fabregas, “Nearest neighbour decoding

To compute a lower bound on the pre-log in MIMO block-fading channels with imperfect CSIRSubmitted to
) |IEEE Trans. Inf. Theory, Mar. 2010.
N I18™1(SNR) [15] A.W.van der Vaart and J. A. Wellneweak Convergence and Empirical
Ilg- = T INT- (40) Processes. New York, NY: Springer-Verlag, 1996.

500 log SNR
SNR—oo log [16] A. Gran_t, “Rayleigh fadin_g multi-antenna channelEJRASIP Journal
we first note that, by [16]E[log det HHT] is finite. We further on Applied Signal Processing, vol. 3, pp. 316-329, Mar. 2002.



	I Introduction
	II System Model
	III The Pre-Log
	IV Proof Outline
	References

