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Abstract—THIS PAPER 1S ELIGIBLE FOR THE STU-
DENT PAPER AWARD. In networked systems comprised of
many agents, it is often required to reach a common operating
point of all agents, termed the network consensus. We consider
two iterative methods for reaching a ranking (ordering) con-
sensus over a voter network, where the initial preference of
every voter is of the form of a full ordering of candidates. The
voters are allowed, one at a time and based on some random
scheme, to change their vote to bring them ‘“closer” to the opin-
ions of selected subsets of peers. The first consensus method is
based on changing votes one adjacent swap at a time; the sec-
ond method is based on changing a vote via averaging with the
votes of peers, potentially leading to many adjacent swaps at
a time vote. For the first model, we characterize convergence
points and conditions for convergence. For the second model,
we prove convergence to a global ranking and derive the rate
of convergence to this consensus.

I. INTRODUCTION

In the past two decades, the theory of rank aggregation
and social choice has received renewed attention because of
its wide-ranging applications, including recommender systems
(collaborative filtering), meta-search engines, decision making
among humans or automated agents, sports and other compe-
titions, as well as elections [6], [9], [13], [14], [17].

Rank aggregation refers to a class of methods for collect-
ing preferences and collectively making decisions based upon
them. In particular, every voter has a preference ordering,
which may be a full (or partial) ranking of candidates based
on the voter’s preferences. A unique voters’ representative
full (or partial) ranking of the candidates is determined based
upon some decision rule applied to the set of individual rank-
ings. There exist many decision rules for vote aggregation,
including the simple majority and plurality rules, Borda’s
scoring method, and the Kemeny-Young approach [2], [3].

In most voting decision rules, it is assumed that the ag-
gregate is formed in one step, without allowing the voters
to adapt their rankings to the rankings of other voters. How-
ever, in many applications, a different approach — dynamic
voting over networks — may be required or may actually rep-
resent a more realistic model of social opinion aggregation.
One may regard this dynamic procedure as iterative voting,
where voters are allowed to change their preference orderings
based on fully or partially observed preferences of other vot-
ers. An equilibrium point is reached when no voter seeks to
change its preference. This approach is particularly useful for
planning in autonomous systems, consensus decision making
among humans in social networks, and modeling the evolution
of preferences of individuals. Examples include doodle and
whenisgood event schedulers, and consensus decision making
in Wikipedia [20].

We consider the problem of reaching consensus in iterative
voting systems wherein every voter assigns its initial prefer-

ence in the form of a full ordering of all candidates. Infor-
mation about preferences of voters is disseminated by either
public announcements or by communicating along the edges
of a given connectivity graph. Based on the information shared
by other voters, voters are allowed to change their votes one
at a time and based on some random scheme, so as to in-
crease general agreement in the group. Notice that the goal of
the iterative exchange of information is to achieve consensus
on the ranking of candidates, thereby eliminating the need to
track quantitative information of the voters.

As already mentioned, there exists a number of rank aggre-
gation methods that may be considered in an iterative setting
and for which voters may be assumed to communicate within a
networked environment. We focus on two such models that fall
into two conceptually different classess of aggregation meth-
ods, namely distance-based and score-based rules. Distance
based aggregation amounts to finding the median of a set of
rankings, according to a predefined distance function. Score
based aggregation is based on the simple idea that each posi-
tion in an ordering has a score associated with it, which may
be used to assess the global ranking of a candidate. Further-
more, to illustrate the full generality of the class of iterative
voting problems, we consider two different voter communica-
tion strategies.

The first model is based on pairwise comparisons, and it
falls into the family of so called Condorcet methods. Con-
dorcet methods are aggregation rules that rank the candidate
that wins every pairwise for which the solution is guaranteed
to be transitive and hence a linear order. The underlying dis-
tance measure is the Kendall distance [2]. In this scheme, each
voter starts with a preference ordering of all candidates which
is known to all other voters. At each time instant, a voter is
chosen randomly. The chosen voter then tries to identify two
adjacently ranked candidates @ and b, such that at least as
many voters prefer b to a as they prefer a to b. If such a pair
exists, the voter switches the positions of a4 and b in her rank-
ing. Performing such an operation is guaranteed to decrease
the sum of pairwise Kendall tau distances between the vot-
ers. This model is combinatorial in nature, and discussed in
Section II.

The second model is based on the simple Borda scoring
method for rank aggregation. In the Borda method a candi-
date is awarded a number of points for each vote that depends
on its position in that vote. The ranking in the consensus is
determined based on the average number of points a candi-
date is awarded, with ties broken arbitrarily. In our model, we
assume that the voters are only allowed to communicate on
edges of a given social interaction graph, in which vertices
correspond to voters. At each time, an edge is chosen at ran-
dom and the corresponding voters are asked to average their



Borda scores. This model resembles classical gossiping over
networks, with the major difference being that one requires
the consensus to be achieved only on the ordering of the can-
didates, and not on their total score. The method is discussed
in Section III.

In both models, the voters are assumed to be truthful, which
eliminates the option of strategic voting studied in [17], [18].

Related Work: The results closest in theme to the one we
discuss are the recent analysis by Ephrati and Rosenschein [6],
who proposed a voting algorithm to reach consensus which is
resistant to strategic voting and where agents do not have to
reveal their entire preference orderings; the work by Meir et
al. [17], introducing iterative voting based on the plurality rule
and using game theory; and a recent extension of the afore-
mentioned results reported in [18] and [19], including the k-
approval, Veto, and Borda rules. In all of the above papers, it
is assumed that a vote aggregation rule is used to obtain a rep-
resentative ranking after votes are not changed any longer by
voters. Note that it is not required to achieve consensus, i.e.
to have all voters reach a same ordering of candidates. This
is in stark contrast with our scheme, in which all candidates
are required to change their ranking until reaching the same
preference ordering.

In [16], the authors studied consensus in a network of vot-
ers, where a voter may adopt the opinion of one of her neigh-
bors at random, or adopt the opinion of the majority of her
neighbors. In our work, each opinion is represented by a rank-
ing of a set of candidates, while in [16], opinions are chosen
from a finite set that has no particular structure; there, it was
also assumed that a vote can be changed to any other vote.
The schemes described in what follows allow a voter only to
make “small” changes at any time.

II. CONSENSUS VIA DISTANCE BASED RANK
AGGREGATION

Assume there are n voters and m candidates. Every voter
provides a full ordering of m candidates, i.e., a permutation
o in Sy, the symmetric group of order m!. For o, 7 € Sy,
we let d- (o, 71) denote the Kendall T distance between o and
71, that is, the smallest number of adjacent swaps needed to
transform o into 7r.

The vector of votes £ = (oy,...,04) is called a profile.
For every two different candidates a,b € [m], where [m] =
{1,...,m}, ny(X) denotes the number of voters who rank
a higher than b. Hence, n,,(X) + 1np,(X) = n. To simplify
notation, whenever the profile X is clear from the context we
simply write #,;, instead of #,,(X). We also say that candidate
a is winning against candidate b if ny, > ny,.

The sum Y.;; d-(0;,0}) is the profile potential and is de-
noted by lp(ZS. It is easy to see that

Y(E)= Y di(o,0)= )
1<j<i<n 1<a<b<m

The vote aggregation algorithm, Algorithm 1, mimics a so-
cial process in which each voter may change her opinion re-
garding the relative order one pair of candidates at a time.
Such a change is the smallest change that can be applied to
a ranking. Furthermore, any change in a voter’s ranking can
be viewed as a sequence of changes in the relative order of

nab(n - nba)~

pairs of candidates. Note that changing the relative order of
two candidates in a ranking is only possible if the candidates
are adjacent in that ranking.

The algorithm may be succinctly described as follows: at
each iteration, one of the voters is allowed to change her rank-
ingo=(---,a,b,---) by swapping two adjacent candidates
a and b, resulting in the ranking o/ = (---,b,a,---); the
swap is allowed iff there are at least as many voters that prefer
b to a as there are voters that prefer a to b (equivalently, a voter
is allowed to change her/his vote from o to o’ if d(0,0’) = 1
and the value of the potential function decreases by introduc-
ing the swap). Consensus or global agreement is reached when
all voters reach an agreement on the same ranking, or alterna-
tively, when the potential function of the votes equals zero. If
the potential function does not equal zero, but no voter is al-
lowed to change her vote, we say that the algorithm reached
a local minima.

Algorithm 1. ITR-VOT (07, ..., 0y)
Input: A profile of n rankings: (071, ...,04) € (Sm)".
1.b=(by,...,by) =(0,...,0) € {0, 1}".
2.Fori=1,...,n do:
if3abst o= (--ab---) and ny, > ny, set b; = 1.

3.1t b= (0,...,0), Return (o, ..., 0n).
4. Choose randomly 1 < i < n, such that b; =1,

and find a pair a, b satisfying the condition in Step 2.
5. Swap a and b in 0; to generate O'Z-/ .
6. Replace 0; with o7 in the profile.
7. Go to step 1.

Remark 1. Note that while Algorithm 1 is not described as a
distributed algorithm, it can be easily rewritten in this form:
voters, one at a time and in some arbitrary order, check if they
are allowed to make an adjacent swap. The process terminates
once no changes to votes are allowed.

Let 711,..., M, be some ordering of the m! permutations
in S;. Given a profile £ € (S;,)", we define m! vari-
ables 1y, ..., My, where n; indicates the number of voters
who decided in favor of the j-th ranking, 7Tj. Note that
):T=!1 nj = n. With a slight abuse of notation, we also call
the vector n = (#11,...,ny,) a profile, since it provides the
same information as the previously defined list of profiles.
We say that a profile n = (n1,...,n,,) has a good move
if there exists an allowed swap as defined in Step 2 of Algo-
rithm 1. A good move decreases the profile potential. A profile
n is called a good profile if it has a good move, and is called a
bad profile otherwise. Note that Algorithm 1 terminates when
it reaches a bad profile. A bad profile is also called a local
minimum since it is a local minimum point for the profile po-
tential function 1p. We also say that the algorithm converged
when reaching a bad profile if all voters arrived at the same
permutation, and say that the algorithm diverged otherwise.

Example 1. Consider the following profile
¥, =(123,231,132).

In this case, both the second and third voter have a good move.
The second voter may change her permutation to 213, while



the third voter may change her vote to 123. Assume that the
second voter changed her permutation. In the following step,
the same voters have a good move. Assume now that the third
voter changed her permutation to 123. In the last step, the sec-
ond voter will change her permutation to 123 as well. Hence,
Algorithm 1 converges to (123,123,123) given the profile
.

As another example, note that Algorithm 1 diverges on the
profile £, = (123,231,312).

A. Characterizing Profiles

In what follows, we characterize some useful properties of
profiles that will allow us to assess when Algorithm 1 con-
verges. We start with describing a sufficient condition for a
good profile.

Lemma 1. A profile n is good if there exist two candidates
a,b and two rankings i, 0}, such that o; is of the form
o = -~~ab~~-,Whileojisoftheformoj =---ba---

Proof: Suppose this is not the case, i.e., n is a bad pro-
file. Since swapping a and b in o; is not a good move, we
have n,, > ny,. Similarly, since swapping b and a in o is
not a good move, we have ny, > n,,, which leads to a con-
tradiction. ]

Lemma 1 implies that a profile # at a local minimum cannot
contain two votes differing in a single adjacent swap, or a vote
and its reverse.

Lemma 2. Let n be a profile at a local minimum and o a permu-
tation of one of the voters. Then the permutation o eliminates

m :mil— krr(m =1 m—k)! ~ _m
Nom = L 0 (" ot

e
other permutations from being included in the profile.

From Lemma 2, it follows that a bad profile can have ap-
proximately at most m?' different permutations. We next show
how to improve this upper bound.

For a given profile n, we construct its profile graph, G, =
(Vg,,Eg,), also known as a tournament graph, as follows.
The vertices set of the profile graph consists of all candidates,
i.e. Vg, = [m], and there is an edge (a,b) if candidate a is
winning against candidate b (i.e., if ng, > ny,). For simplic-
ity, we assume that the number of voters is odd so that it is
impossible to have n,, = ny, for any pair a,b. As a result,
for any profile n, the graph G, is a complete directed graph
with no inner loops or symmetric edges. The next lemma is a
generalization of Lemma 1.

Lemma 3. If there exist two candidates a,b and a voter with
ranking 0; = ---ab---, while (b,a) € Eg,, then n is a good
profile.

Proof: Since (b,a) € Eg,, we know that np, > g,
Therefore, according to the conditions of Step 2 in Algo-
rithm 1, the i-th voter has a good move and thus # is a good
profile. [ |

From Lemma 3 we conclude that a voter cannot reduce
the potential function value if its permutation corresponds to
a Hamiltonian path on the graph G,. Hence, given an upper
bound on the number of different Hamiltonian paths in a tour-
nament graph, one may derive an upper bound on the number
of different permutations in a bad profile. Let T(m) denote the
maximum number of Hamiltonian paths in a tournament graph
with 7 candidates. Alon [5] proved that T(m) < cm®/2 -
m!2~(m=1) ang Friedgut and Kahn [10] subsequently showed
that T(m) < O(m3/2~€m12=™), where & < 0.2507... . We
hence have the following lemma.

Lemma 4. If the number of different permutations in a profile
is greater than T (m), then the profile is necessarily a good pro-
file.

When combined, the above lemmas lead to the theorem below.

Theorem 5. If n is large enough, then the fraction of good pro-

files is at least
Z?Z!T(m)+] (H;') AR S(Tl, Z)

(m!)" ’
where S(n,{) & Zfzo(—l)gft(f)t”. In particular, as n
grows, this fraction approaches one.

A direct result of the above theorem is that the number of
local minimum points to the total number of points in (S,)"
converges to 0 as n — oo.

B. Convergence Properties

In voting theory, a Condorcet winner is a candidate who is
winning against every other candidate in pairwise competition.
Note that in general a Condorcet winner may not exist. In the
tournament graph, a Condorcet winner corresponds to a vertex
with zero in-degree. A Condorcet loser is defined similarly.

Lemma 6. If the initial profile has a Condorcet winner, then at-
ter Algorithm 1 terminates, the Condorcet winner is ranked first
in every vote in the resulting profile.

Similarly, it is possible to show that if there is a Condorcet
loser, after the algorithm terminates, the Condorcet loser is
ranked last in every vote. We omit the proof of Lemma 6 as
it is a special case of a more general lemma, Lemma 7, stated
below.

A winning set in a profile is a set S C [m] such that every
candidate a € S is winning against every candidate b ¢ S.

Lemma 7. Assume S C [m] is a winning set in the initial pro-
file. After Algorithm 1 terminates, every a € S is ranked higher
than every b ¢ S in every vote in the resulting profile.

Proof: Without loss of generality, assume that S is the
set {1,...,i}, for some i € [m]. At any step of Algorithm 1,
assume that there is a ranking o; of some voter j such that
at least one candidate indexed by an element in {1,...,7} is
ranked lower than at least one candidate indexed by an element
in {i+1,...,m}. Then, there are two candidates 1 < k < i
andi+1 gﬁgmsuchthat(fjisoftheform(rj = bk,
Thus, swapping k and ¢ is a good move. When the algorithm



terminates, there are no good moves, so all the candidates in
S have to be ranked higher than those in [m] \ S in every vote.
|
If the graph G, does not have a cycle, then there exists a
permutation 77 = ay - - - a,, such that {a1,...,a;} is a win-
ning set for each i € [m]. Hence, if G, has no cycles, then
Algorithm 1 converges to 7r*. Furthermore, 77* is the solution
to the Kemeny-Young problem,
m
arg 7rrreugr’}, 1; d-(7,07).
In other words, 77* is the median of X under the Kendall T
distance. The number of steps needed for the algorithm to
converge to 7% equals

m
Y d(n*,00),
i=1

since each move decreases the distance of a ranking to 77* by
one.

On the other hand, whenever there is a cycle in G, Al-
gorithm 1 diverges. To see this, note that Algorithm 1 cannot
change the directions of the edges in the tournament graph, so
it is not possible for the algorithm to “break” a cycle. Thus,
we have the following theorem.

Theorem 8. Algorithm 1 converges if and only if the graph G,
does not have a cycle.

It is known that if every voter draws her ranking uniformly
at random from S;, (sometimes called the impartial culture
model), then the tournament graph will have a cycle with prob-
ability which is approaching one as the number of candidates
grows; see e.g. [4], [7]. Therefore, the same statement holds
regarding the convergence of Algorithm 1, even though if 7 is
large enough, the fraction of good states approaches one. In
practical social choice scenarios, cycles occur rarely [8], [12].

It is also possible to extend Algorithm 1 so as to accom-
modate more than one adjacent swap, i.e. to accommodate the
update procedure to include permutations at distance larger
than one but less than b from each other. An interesting result
is that if b = m — 1, then every profile is a good profile and
thus Algorithm 1 always converges. Furthermore, the value
b = m — 1 is tight in terms of ensuring that every profile is a
good profile. Details of this analysis are omitted due to lack
of space.

IIT. CONSENSUS VIA ITERATIVE BORDA SCORING

We describe next a method for iterative vote aggregation
based on Borda [1]. The gist of the approach is to assign
scores to candidates based on their ranking: in any ordering,
the first candidate receives m points, the second candidate re-
ceives m — 1, points and so on. The total score of a candidate
equals the cumulative sum of her scores over all votes cast, and
ranking is performed in decreasing order of the scores. Other
scoring methods are possible as well, for example assigning
score s; to the ith ranked candidate, where s1,Sy,--- ,Sy, is a
predetermined decreasing sequence.

In this setting, consensus may be achieved through gos-
siping protocols [15] in a networked set of voters. The voter

network G = ([n], E) is a connected, undirected graph with
vertices representing the voters, and an edge set E that cap-
tures the social connectivity patterns of the voters. Initially,
each vertex i has a preference ordering o; of m candidates,
based on which an initial score is assigned to each candidate.
Let b;(0) denote the vector of initial scores assigned by voter
i, based on some initial ordering of the candidates. At each
time instance, one picks an edge {x,y} € E with probability
Pxy > 0, where Y1, 1 cp pxy = 1. Then, agents x and y each
update their score vector to the average of the two vectors.
The procedure is repeated until the correct global ranking is
reached, if allowed by the distributed protocol

Algorithm 2. ITR-BORDA

Fort=0,1,2,... do:
1. Pick an edge {i, j} € E with probability p;;.
2. Let voters i, j exchange their estimates b;(t), b;(t).
3. Let b(t+1) = by(t+1) = L(b;(t) + ba(t)).
4. For L #1,7], set bp(t+1) = by(t).
5. Stop when all voters agree on one ranking.

Let b = L y™ b;(0). As a direct consequence of the re-
sults in [11], we have the following lemma.

Lemma 9 IfG = ([m], E) is connected, then lim; o b;(t) =
b holds almost surely.

As a result, the score vector of each candidate converges
to the average score of the candidate, i.e., its Borda score.
However, our goal is to find the correct ordering of candidates
based on their score in b, rather than the vector b itself. Thus,
it is not important that the estimates of the ranking vectors
converges to b, but that the estimates of the actual ranks are
correct. In other words, if for some time ¢, for all agents i, the
ordering of b;(t) matches the ordering of b for all i € [m],
then the society has achieved consensus over the ranking of
the candidates. We derive next a probabilistic bound on the
number of iterations needed to reach the Borda ranking in a
distributed fashion.

Without loss of generality, assume that b is ordered, i.e.
b! < b? < -+ < b", with superscripts denoting candidates.
We say that t is a consensus time for the aggregate ranking if
the ordering of b;(t) matches the ordering of b for all i € [m].
The following result is a consequence of this definition.

Lemma 10 If ¢ is a consensus time for the ranking, then any
t' > t is a consensus time for the ranking.

Proof: Tt suffice to show the result for ' = t + 1. Let
{i,i'} be the edge that is chosen randomly at time t. Since #
is a consensus time for the ranking, we have bil(t) <o K
b (t) and b}, (t) < --- < b%(t), and thus we also have

1
b(E+1) = 5 (811 + B (1))
<lo<pe)
1
5 (b7(1) + by (1)),

which proves the claim. [ ]



Define the consensus time as:

T = min{f > 0 | tis a consensus time for the ordering}.

Note that for the random gossip scheme, T is a random
variable and if we have an adapted process for the random
choice of edges, T is a stopping time. Our goal is to provide
a probabilistic bound for T.

To this end, let ¥/ = min {b/*1 — b/, b/ —bi~1} and let
d/ = max; b{(O) min; b] (0). That is, 7/ equals the mini-
mum distance of the average rating of j from its neighboring
candidates, while d/ equals the spread of the initial ratings of
the agents for the candidate j. Then, we have the following
result.

Theorem 11 The consensus time T of the ordering satisfies

4mAL (W i (d]> ,

P(T>t) <
where W = }.1;incg Pir (1 — 3(ei—ey)(ei — ei’)T>7 e =
[0---010 --- 0]T isanm x 1 vector with ith element equal
to one, and Ay (W) is the second largest eigenvalue of W.

Proof: Let b/ (t) be the score vector of candidate j at time
t, obtained from the votes of m agents and let y/(¢) = b/(t) —
—. . i\ 2 : _.
bl Note that ||y/(t)]|? < (7’) implies that |b/(t) — b/| <
. , i\ 2
Y Vi € [n]. Thus, if ||y (t)]? < (7’) holds Vj € [n], then

bl(t) < (b] + BT,

where the last inequality follows from the fact that r <
b/T1 —bJ. Similarly, we have:

<P+ =<
+2

pi+l

I () > Bt — - > %(Ef“ +b/),

which follows from /1 < bi+1 — pJ. Hence,
1 wn—1 wn m
<o ME B <),

and f is a consensus time for the algorithm. Thus,
n ‘ /i 2
r>ncUiwors(3) i
j=1
which, after invoking the union bound, leads to

n j 2
prsn<Lr(Wors(3) ). o

Markov’s inequality gives

p(1ior= (3) ) < (2) e[

Using the analysis in [11], it can be shown that

E[IV01] < %Iy ©)IF < mas (@)

Combining the above two relations, we find

) j di
J(e2 r ¢4
(i) > (2) <4mA2(ﬂ-)

Replacing the last inequality in (1) proves the assertion. M
Note that from [11] it follows that if G is connected, then
Ay < 1, and thus the probability P(T > t) decays exponen-
tially.
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