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Abstract—An important problem in fiber-optic communica-
tions is to invert the nonlinear Schrödinger equation in real time
at the receiver to reverse the deterministic effects of the channel.
Interestingly, the popular split-step Fourier method (SSFM) leads
to a computation graph that is reminiscent of a deep feed-forward
neural network. This observation allows one to leverage tools
from machine learning to reduce complexity. In particular, the
main disadvantage of the SSFM is that its complexity using M
steps is at least M times larger than a linear equalizer. This is
because the linear SSFM operator is a dense matrix. In previous
work, truncation methods such as frequency sampling, wavelets,
or least-squares have been used to obtain “cheaper” operators
that can be implemented using filters. However, a large number
of filter taps are typically required to limit truncation errors. For
example, Ip and Kahn showed that for a 2000 km optical link,
a truncated SSFM with 25 steps would require 70-tap filters in
each step and 100 times more operations than linear equalization.
We find that, by jointly optimizing all filters with deep learning,
the complexity can be reduced significantly for similar accuracy.
Using optimized 5-tap and 3-tap filters in an alternating fashion,
one requires only around 2–6 times the complexity of linear
equalization, depending on the implementation.

I. INTRODUCTION

In a single-mode optical fiber, narrowband signals propagate
according to the nonlinear Schrödinger equation (NLSE) [1,
p. 40]. This is schematically illustrated in Fig. 1. In the absence
of noise, the transmitted signal can thus be recovered by
solving an initial value problem (IVP) using the received signal
as a boundary condition. In practice, the received signal first
passes through an analog-to-digital converter and the IVP can
then be solved via receiver digital signal processing (DSP).
This approach is referred to as digital backpropagation (DBP)
and was inspired by a similar idea where optical components
were used for the processing [2]. DBP was first studied as a
transmitter pre-distortion technique [3], [4].

A major issue with DBP is the large computational burden
associated with a real-time DSP implementation. Thus, various
techniques have been proposed to reduce its complexity [5]–
[13]. In essence, the task is to approximate the solution of
a partial differential equation using as few computational
resources as possible. We approach this problem from a
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machine-learning perspective. In contrast to [7], [9], [10],
we focus on deep learning and deep neural networks (NNs),
which have attracted tremendous interest in recent years [14].
Our approach is to obtain a multi-layer computation graph
similar to a deep NN by applying the split-step Fourier method
(SSFM) [1]. This can be seen as an example of a more general
methodology where domain knowledge is used to generate
computation graphs with many layers, see, e.g., [15].

Deep NNs have achieved record-breaking performance for
various tasks such as speech or object recognition [14]. In
order to explain this success, the authors in [16] argue that
most data of practical interest is generated by some form of
hierarchical or Markov process, often obeying physical prin-
ciples such as locality and symmetry. This makes it plausible
that there exist efficient multi-layer computation graphs that
can approximate these processes with few parameters. Our
design choices are directly motivated by such considerations.
In particular, our computation graph exploits the hierarchical
problem structure that is introduced by the transmission pro-
cess. Moreover, we choose the linear operators in the graph to
be short and symmetric finite impulse response (FIR) filters.

This paper is a continuation of our work outlined in a recent
summary paper [17]. It contains several novel contributions.
Most importantly, we provide a theoretical justification for the
deep learning approach. In particular, while FIR filter design
for chromatic dispersion has been studied extensively in the
past [5], [18]–[22], the designed filters have shown relatively
poor efficiency when used in a split-step method for DBP due
to truncation errors. Indeed, we argue that, for computational
efficiency, the filters used in each step should be different
and that they should be optimized jointly. We also compare
our approach with multiple truncation methods (for the filter
coefficients) and with “few-step” perturbation approaches.

∂u

∂z
= −

β2

2

∂2u

∂t2
+ γu|u|2,

single mode fiberx(t) y(t)

z
0 Lδ 2δ · · ·

t t

Fig. 1. Conceptual signal evolution in a single-mode fiber. The nonlinear
Schrödinger equation implicitly describes the relationship between the input
signal x(t) = u(z = 0, t) and the output signal y(t) = u(z = L, t). The
parameters β2 and γ are, respectively, the chromatic dispersion coefficient
and the nonlinear Kerr parameter of the fiber. The loss term αu/2, where α
is the attenuation parameter, is ignored for simplicity.



II. DIGITAL BACKPROPAGATION

We assume that the signal x(t) is launched into an optical
fiber where it propagates according to the NLSE as shown in
Fig. 1. After distance z = L, the received signal y(t) is low-
pass (LP) filtered and sampled at t = kT to give a sequence of
samples {yk}k∈Z. Our goal is to efficiently recover the signal
x(t) (or a sampled version thereof) from {yk}k∈Z.

A. Split-Step Fourier Method

The popular SSFM is based on a block-wise receiver
processing. To that end, assume that we collect n received
samples into a vector y = (y1, . . . , yn)> ∈ Cn. Consider now
the time-discretized NLSE

du(z)

dz
= Au(z) + γρ(u(z)), (1)

where A = W−1 diag(H1, . . . ,Hn)W , W is the n × n
discrete Fourier transform (DFT) matrix, Hk = −β2

2 ω
2
k,

ωk = 2πfk is the k-th DFT angular frequency, and ρ is defined
as the element-wise application of ρ(x) = x|x|2. To derive the
SSFM, the fiber is conceptually divided into M segments of
length δ = L/M . Then, it is assumed that for sufficiently
small δ, the effects stemming from the two terms on the right
hand side of (1) can be separated. More precisely, for γ = 0,
(1) is linear with solution u(z) = Azu0, where Az , ezA.
For β2 = 0, the solution is u(z) = σz(u0), where σz is the
element-wise application of σz(x) = xeγz|x|

2

. Alternating
between these two operators for z = −δ leads to the block
diagram shown in the top part of Fig. 2.

The degree to which the obtained vector z constitutes a
good approximation of x(t) is now a question of choosing
M , T , and n. In practice, 1/T is typically an integer multiple
of the baud rate and n is chosen to minimize the overhead in
overlap-and-save techniques for continuous data transmission.
Increasing M leads to a more accurate approximation, but also
increases complexity, as discussed in the next section.

B. Implementation Complexity and Few-Step Approaches

Ignoring the complexity of the nonlinear steps, the SSFM
can be implemented using M DFT/IDFT pairs, utilizing the
fast Fourier transform. On the other hand, a linear equalizer
can be implemented using a single DFT/IDFT pair. Based
on this reasoning, the SSFM is at least M times more
complex than linear equalization. This motivates a number of
approaches that focus on reducing the number of steps, see,
e.g., [6], [8], [11] and references therein.

III. DEEP FEED-FORWARD NEURAL NETWORKS

Deep feed-forward NNs map an input vector a to an output
vector b by alternating between affine transformations and
pointwise nonlinearities [14], [16, Eq. (6)]. This is illustrated
in the bottom part of Fig. 2. The matrices W (1), . . . ,W (`)

and vectors b(1), . . . , b(`) are the network weights and biases,
respectively, and ` is the number of layers. The nonlinearities
typically correspond to some activation function, e.g., the
logistic or sigmoid function.
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Fig. 2. Block diagram of the split-step Fourier method to numerically solve
the nonlinear Schrödinger equation (top) and the canonical model of a deep
feed-forward neural network (bottom).

While the similarity between the two computation graphs in
Fig. 2 is apparent, there are, however, important differences.
The one that is most relevant for this paper is the sparsity level
of the linear operators. In order to be computationally efficient,
deep NNs are typically designed to have very sparse weight
matrices in most of the layers, whereas the linear propagation
operator Aδ in the SSFM is a dense matrix.

Remark 1. In that regard, one may argue that (1) is a
“computationally inefficient” time-discretization of the NLSE,
in the sense that it relates local propagation changes to all time
instances. A different time-discretization approach is via par-
tial discretization or finite-difference methods. Indeed, finite-
difference methods can be more computationally efficient than
the SSFM in some applications [1, Sec. 2.4.2]. However, to
the best of our knowledge, finite-difference methods have not
been studied for real-time DBP. One reason for this might be
that many methods that show good performance are implicit,
i.e., they require solving a system of equations at each step.
This makes it challenging to satisfy a real-time constraint.

IV. FILTER DESIGN FOR CHROMATIC DISPERSION

According to the NLSE, chromatic dispersion acts as an
all-pass filter with frequency response H(ω) = eκω

2

, where
κ , −β2δ/(2T 2), ω , 2πfT , and δ is the transmission dis-
tance. Various approaches have been proposed to approximate
this response (over a fixed bandwidth) with an FIR filter. For
example, since the inverse Fourier transform of H(ω) can
be computed analytically, filter coefficients may be obtained
through direct sampling and truncation [18]. Other approaches
include frequency-domain sampling (FDS) [5], wavelets [20],
and least-squares (LS) [21], [22].

A. Parameter Efficiency in Split-Step Methods

Time-domain FIR filtering has been suggested for DBP in,
e.g., [5], [12], [13], [19], [20]. In the SSFM, approximating
H(ω) with a short FIR filter can be interpreted as a truncation
of Aδ to obtain a sparse banded matrix.
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Fig. 3. Schematic illustration of the truncation error when using the same (or
very similar) FIR filters in a split-step method, where ∗ denotes convolution.

To estimate the required filter length, one may use the fact
that chromatic dispersion leads to a group delay difference of
2πβ2∆fδ over a bandwidth ∆f and distance δ. Normalizing
by the sampling interval T , this confines the memory to

Kcd = 2πβ2∆fδ/T (2)

samples. For example, we have β2 = −21.668 ps2/km, δ =
80 km, and 1/T = 32.1 GHz for the system studied in [5]. The
receiver bandwidth is 32.1 GHz, but it is limited by an LP filter
with 3-dB cutoff at 12.4 GHz. Thus, FIR filters with 4–12 taps
should be sufficient. However, 70-tap filters are required to
obtain acceptable accuracy using FDS [5]. Similar observation
apply to the results in [12], [13], [19], [20], i.e., the required
filter length is significantly longer than predicted by (2).

B. Joint Filter Optimization

In previous work, a single filter or filter pair is designed and
then used repeatedly in the SSFM. In this case, the truncation
error accumulates coherently, leading to an undesired overall
magnitude response as illustrated in Fig. 3. The effect is well
known and a simple way to control it is by increasing the filter
length. We propose instead to optimize all M filters jointly.

Remark 2. In [12], [13], filter coefficient quantization is
studied for time-domain DBP. They highlight the effect of
correlated quantization errors and propose random dithering
[12] and co-optimization of quantization levels of filter pairs
[13]. While this does not address the truncation error problem
directly, it does alleviate it somewhat.

In this section, we illustrate how a joint filter optimization
can be done in a way such that the problem admits a (possibly
suboptimal) solution strategy via iteratively solving a set of
weighted LS problems. This approach is simple and provides
valuable insight into the problem. The optimized coefficients
are then used as the initial starting point for the gradient-based
deep learning approach discussed in the next section.

For simplicity, it is assumed that each of the M filters
h(i) = (h

(i)
−K , . . . , h

(i)
0 , . . . , h

(i)
K )> for i = 1, . . . ,M has

2K + 1 taps. The generalization to unequal filter lengths
is straightforward. Let F(h(i)) =

∑K
k=−K h

(i)
k e−kω be the

discrete-time Fourier transform of h(i). We use F(h(i)) $
eκω

2

to denote an objective, i.e., the symbol $ may be
interpreted as “should be close to”. The standard filter design
uses the same objective for each of the M filters, i.e., each
filter should approximate, as closely as possible, the chromatic
dispersion transfer function eκω

2

over some frequency range.

In this case, one finds that all M filters should be the same.
In particular, after discretizing the problem with ωi = 2πi/N
for i = −N/2, . . . , N/2, one may use standard techniques
to solve the linear LS problem minh(i) ‖Bh(i) − d‖2, where
d = (d−N/2, . . . , d0, . . . , dN/2)> with di , eκω

2
i and B is

an (N + 1)× (2K + 1) DFT matrix.
On the other hand, by sacrificing some accuracy for the

individual frequency responses, it may be possible to achieve
a better combined response of neighboring filters and also a
better overall response. This leads to the set of objectives

F(h(i)) $ eκω
2

, i = 1, 2, . . . ,M

F(h(i) ∗ h(i+1)) $ e2κω
2

, i = 1, 2, . . . ,M − 1

...

F(h(1) ∗ · · · ∗ h(M)) $ eMκω2

.

(3)

Keeping the coefficients for all but one filter constant,
(3) can be written as a standard weighted LS problem.
Since, e.g., F(h(i) ∗ h(i+1)) = F(h(i))F(h(i+1)), we have
(Bh(i)) ◦ (Bh(i+1)) in the discretized problem, where ◦
denotes element-wise multiplication. Hence, one obtains

min
h(i)

Oi∑
j=1

λj‖(Bh(i)) ◦ ej − dj‖2, (4)

where Oi is the number of objectives, λj > 0 are weights, ej
are constant vectors representing the influence of other filters
and dj are the discretized objective vectors. A simple strategy
for the joint optimization is then to solve (4) for each of the
M filters in an iterative fashion. The weights λ1, . . . , λOi

can
be chosen based on a suitable system criterion.

We assume x(t) =
∑∞
k=−∞ xkp(t− k/Rs), where xk ∈ C

are the data symbols, p(t) is the pulse shape, and Rs is the
baud rate. For the block-wise processing, the estimated symbol
vector x̂ is obtained by passing z (see Fig. 2) through a digital
matched filter (MF) followed by a phase-offset rotation. The
mean squared error ‖x − x̂‖2 is then used as a criterion to
be minimized. Assuming that ‖x‖2 is constant for all x, this
is equivalent to maximizing the effective signal-to-noise ratio
(SNR) ‖x‖2/‖x− x̂‖2.

V. LEARNED DIGITAL BACKPROPAGATION

In [17], we have proposed to use deep learning for the
joint filter optimization. The resulting method is referred to
as learned DBP (LDBP). For LDBP, the computation graph
of the SSFM is modified by interpreting all matrices Aδ as
tunable parameters corresponding to the filters h(1), . . . ,h(M),
similar to the weight matrices in a deep NN. The nonlinearities
are changed to σ(i) : Cn → Cn which act element-wise using
σ(i)(x) = xe−γi|x|

2

, where γi ∈ R is a tunable parameter.
The computation graph including the MF and phase-offset

rotation is implemented in TensorFlow. All parameters θ =
{h(1), . . . ,h(M), γ1, . . . , γM} are optimized by using many
pairs (y,x) of input and desired–output examples and adjust-
ing the parameters such that the loss ‖x− x̂‖2 decreases. For
this, we use the built-in Adam optimizer with a mini-batch size



of 30 and a fixed learning rate. To find a good starting point for
the filter coefficients, we employ the LS method described in
Sec. IV-B. While it is possible to use random starting points,
we observe that a better final solution can be obtained with
pre-optimized coefficients.

VI. RESULTS AND DISCUSSION

We revisit the parameters in [5], using a different LP filter
and transmit signals. Extensions to wavelength division mul-
tiplexing (WDM) systems and higher baud rates are discussed
below. The optical link consists of 25 spans of 80 km fiber and
an amplifier is inserted after each span to compensate for the
signal attenuation. All parameters are summarized in Fig. 4.1

Forward propagation is simulated with 6 samples/symbol using
the SSFM with 50 steps per span (StPS).

LDBP is based on 1 StPS, alternating between 5-tap and 3-
tap filters in the linear steps. The effective SNR after training
is shown in Fig. 4 by the green line (triangles). As a reference,
we show the performance of linear equalization (red) and DBP
with 1 StPS using frequency-domain filtering (blue). The linear
equalizer uses LS-optimal coefficients with constrained out-of-
band gain (LS-CO) [22]. LDBP achieves a peak SNR of 21.9
dB using 13 · 4+12 · 2+1 = 77 total taps. After increasing the
filter lengths to 7 and 5 (127 total taps), one obtains essentially
the same peak SNR as frequency-domain filtering.

A. Comparison to Other Truncation Methods

The performance of FDS (circles) and LS-CO (squares) is
shown in Fig. 4 as a comparison. The same filter is used in
each step and the length is chosen such that the peak SNR
is around 22 dB. For this, 15-tap filters are required for FDS
(351 total taps) and 9-tap filters for LS-CO (201 total taps).
This is roughly 5 and 3 times more than required for LDBP.

In [5], 70-tap filters based on FDS are required for similar
accuracy. This is likely due to the higher oversampling factor
used (3 samples/symbol). While a higher oversampling factor
may increase the maximum SNR achievable via DBP, it can
also adversely affect the performance if truncation errors are
taken into account. In general, it is difficult to predict how
truncation errors affect the SNR in a nonlinear system.

B. Complexity Compared to Linear Equalization

We use multiplications as a surrogate for complexity and
assume that the exponential function is implemented with a
look-up table, similar to [5]. For the nonlinear steps, one needs
to square each sample (2 real multiplications), multiply by γi,
and compute the phase rotation (4 real multiplications). This
gives 25 · 7 = 175 real multiplications per sample. For the
linear steps, one has to account for 13 filters with 5 taps and
12 filters with 3 taps. All filters have symmetric coefficients
and can be implemented using a folded structure with h0-
normalization as shown in Fig. 5. This gives 39 · 4 = 156 real
multiplications per sample. In comparison, the fractionally-
spaced linear equalizer in [5] requires 188 real multiplications
per data symbol operating at 3/2 samples/symbol. Thus,

1A Butterworth LP filter and QPSK modulation are assumed in [5].

13

14

15

16

17

18

19

20

21

22

23

24

25

−10 −8 −6 −4 −2 0 2 4
transmit power P [dBm]

ef
fe

ct
iv

e
SN

R
(a

fte
r

M
F)

[d
B

]

lD

lD
lD

lD lD lD
lD

lD

*
*

* *

×

× ×
×

uT
uT uT uT

uT
rS

rS
rS rS rS

rS
bC

bC
bC bC bC bC

bC

enhanced SSFM, 4 steps
(logarithmic perturbation)

lin
ear

syste
m

(γ
=
0)

linear equalization LS-CO (75 taps)

LDBP
(77 taps)

FDS
(351 taps)

LS-CO
(201 taps)

DBP, 1 step per span
(frequency-domain) LDBP (127 taps)

LDBP (77 taps)
only linear steps

Fig. 4. Results for 25 × 80 km single-mode fiber (β2 = −21.668 ps2/km,
γ = 1.3 1/W/km, α = 0.2 dB/km), 5 dB amplifier noise figure, Gaussian
root-raised cosine pulses (0.1 roll-off), Rs = 10.7Gbaud, 2 samples/symbol
(1/T = 21.4GHz), 15 GHz brick-wall low-pass filter, n = 2048. FDS:
frequency-domain sampling, LS-CO: least-squares-optimal constrained out-
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LDBP requires 3.5 times more multiplications per symbol. For
the same oversampling factor as LDBP, the linear equalizer
has 75 taps (cf. (2) with ∆f = 1.2 · 10.7 GHz). This leads to
38 · 4 = 152 real multiplications with a folded implementation.
Thus, LDBP requires around 2 times more operations. If
the linear equalizer is implemented in the frequency domain,
the number of real multiplication is reduced to n(4 log2 n +
4)/(n − 75) ≈ 50 per sample (see, e.g., [11, Sec. 4]), which
increases the estimated complexity overhead factor to 6.

C. Comparison to Few-Step Approaches

The enhanced SSFM (ESSFM) modifies the nonlinear step
based on a logarithmic perturbation [11]. As a result, the sam-
pled intensity waveform {|yk|2}k∈Z is filtered before applying
the nonlinear phase shift. This gives the same functional form
as previous approaches (e.g., [6], [8]), albeit with potentially
different performance due to different choices or heuristics for
the filter coefficients used in the modified nonlinear steps.

Excluding the overhead due to overlap-and-save techniques,
one ESSFM step requires 4 log2 n+ 11 +Nc real multiplica-
tions per sample, where 2Nc + 1 is the filter length in the
modified nonlinear steps [11, Sec. 4, single pol.]. We perform
4 ESSFM steps with Nc = 20, which gives roughly the same
number of multiplications as LDBP. The filter coefficients are
optimized from data as suggested in [11]. The performance
is shown by the grey line (diamonds) in Fig. 4. The ESSFM
achieves a smaller peak SNR by around 3 dB than LDBP.
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D. Deep Learning Interpretation

The performance of only the linear steps in LDBP after
training reverts approximately to that of the linear equalizer,
as shown by the dotted green line (crosses) in Fig. 4. This leads
to an intuitive interpretation of the task that is accomplished
by deep learning. In particular, the optimized filter coefficients
represent an approximate factorization of the overall linear in-
verse fiber response. At first, this may seem trivial because the
linear matrix operator eLA can be factored as eδA · . . . · eδA
with L = δM for arbitrary M to represent shorter propagation
distances. However, the factorization task becomes nontrivial
if we also require the individual operators eδA to be “cheap”,
i.e., implementable using short filters.

Remark 3. We also experimented with factoring the z-
transform polynomial of the 75-tap linear equalizer into a
cascade of 3-tap filters. However, this gives no control over
the individual filter responses, other than the choice of how to
distribute the overall gain factor. Moreover, it is not obvious
how to achieve a good ordering of sub-filters in the SSFM.

E. Wavelength Division Multiplexing and Higher Baud Rates

In a WDM system, the performance improvements of ideal
single-channel (or few-channel) DBP are limited due to nonlin-
ear interference from neighboring channels. This implies that
it may be desirable to sacrifice some accuracy (i.e., target a
lower effective SNR), and further simplify the design of LDBP,
e.g., by pruning additional filter taps. A relaxed accuracy
requirement also leaves some margin for practical impairments
such as noise caused by filter coefficient quantization [12].

The memory introduced by chromatic dispersion increases
quadratically with the considered bandwidth and linearly with
the transmission distance, see (2). For longer links and/or
higher baud rates, this seems to favor frequency-domain equal-
ization (e.g., a DFT-based linear equalizer) over time-domain
equalization in terms of complexity. On the other hand, the
Kerr effect and its compensation are naturally described in
the time domain. One possible approach to achieve a good
performance–complexity trade-off is through digital sub-band
processing. This entails a potential performance loss (due to
possibly uncompensated sub-band interference), but it also
reduces the effective system memory per sub-band. A closer
investigation of this trade-off for LDBP is the subject of
ongoing research.

VII. CONCLUSION

We have considered the problem of reducing the complexity
of DBP to facilitate a real-time DSP implementation. Our
approach, called learned DBP (LDBP), is based on a multi-
layer computation graph generated by the SSFM with many
steps. Computational efficiency is achieved by using, in each
step, very short and symmetric FIR filters that are jointly
optimized with deep learning. Numerical results show that for
a single-channel transmission scenario, LDBP can achieve a
favorable performance–complexity trade-off compared to other
filter design methods and perturbation-based “few-step” DBP.
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