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Abstract—We study challenge codes for physically unclonable
functions (PUFs). Starting from the classical Hadamard challenge
code, we augment it by one vector. Numerical values suggest that
the optimal choice of this vector for maximizing the entropy is
to pick a vector the farthest away from the code formed by the
challenges and their binary complements.

This leads us to study the covering radius of Hadamard codes.
A notion of bent sequence that generalizes the classical notion
from Hadamard matrices of Sylvester type to general Hadamard
matrices is given. Lower bounds for Paley-type Hadamard
matrices are given.

I. INTRODUCTION

Relying on the inherent imperfection of the fabrication
process, physically unclonable functions (PUFs) [1] provide
a practical solution to identify and authenticate integrated
circuits. As a security primitive, PUFs provide more security
compared to stored keys. As an example, since the static
random values output of a PUF are re-generated at every boot,
tampering attacks are avoided.

There are many constructions of PUFs and among them,
the delay PUF formalizes several instances including Arbiter
PUF [8], Ring-oscillator PUF [21] and Loop-PUF [5], etc.
As in [17], [18], the delay PUF can be characterized by a
stochastic model, in which all delays follow an i.i.d. Gaussian
distribution. This model is validated experimentally, by Pel-
grom coefficients [16]. Therefore, we can focus on the unified
multivariate Gaussian model to characterize the properties of
delay PUFs.

A given PUF outputs statically random values as responses
to different challenges. The quality of randomness of the
responses, measured by entropy, is important to assess the
security of a PUF [3], [17]. The entropy depends on the choice
of the challenges and relates to the entropy of the generated
cryptographic key. Obviously, a large amount of entropy can be
extracted from the PUF with many challenges [20]. However,
it is still an open question how to maximize the entropy given
a fixed number of challenges.

Previous works: An initial work [17] studied the se-
quence of challenges which make the entropy increase in
a greedy fashion (where every new challenge added is the
one that maximizes the overall entropy compared to the
previous challenge code). For completeness, Fig. 1 reproduces
Figure 4(b) of [17], which has been obtained by Monte-Carlo
estimation using 100, 000 draws. This shows how entropy
increases with the code size, featuring different regimes.

Fig. 1: Evolution of entropy when the number of challenges in-
creases shown in Figure 4(b) of [17]. The entropy for M > 8
challenges is in fact slightly underestimated: For M = 32
challenges, the entropy reached in [17] is about 16 bits,
whereas for 10 million draws, we found it closer to 18.2 bits.
However, the identified challenges are the same in both cases.

Particularly interesting is the structure of the growing chal-
lenge codes: It is such that each region in Fig. 1 contains only
orthogonal added challenges (codewords). As a result, it was
conjectured in [17] that the greedy algorithm gives a challenge
code consisting in the union of several Hadamard codes.

Contributions: The present work shows that the challenge
codes which optimizes the entropy are governed by general
properties of the codes rather than by a greedy construction
(which is known to be suboptimal). In this paper, we propose
a new method to choose one optimal challenge vector on top
of a Hadamard code in order to maximize the entropy of the
PUF responses.

First of all, we present several invariant properties of entropy
under permutations on the challenge code. Next, we postulate
that the new vector added to a Hadamard code maximizes
the entropy when it minimizes the total deviation (maximum
absolute value of the inner products against challenge code-
words). Equivalently, this vector should reach the covering
radius of the complemented challenge code (C∪(−C) where C
is the challenge code). Numerical simulation by Monte-Carlo
estimation validates this theoretical postulate.

We find both lower and upper bounds on the covering
radius of complemented Hadamard codes. We derive optimal
vectors corresponding to the exact value of covering radius
when the length n of the challenge code is at most 32. We
then introduce the notion of bent sequence w.r.t. a general
Hadamard matrix, which generalizes the classical notion of
bent sequences for Sylvester-type Hadamard matrices. When
n is a perfect square, optimal vectors added to the challenge



code are such bent sequences. Exact calculations in length 16
confirm their existence. Estimates of the total deviation are
derived for the class of Paley Hadamard matrices.

Outline: The remainder of this paper is organized as
follows. Section II introduces the delay PUF and challenge
codes. Section III shows that the entropy is invariant to
some permutations on challenge codes. Then Section IV is
devoted to extend one more challenge upon the Hadamard
code and Section V provides connections and numerics on
bent sequences. The experimental results are in Section VI.
Section VII concludes.

II. PRELIMINARIES

We first introduce several definitions:
Definition 1 (Delay PUF [17]): A challenge c is a vector of
n control bits c = (c1, c2, . . . , cn) ∈ {±1}n. Let ∆1, ∆2,
. . . , ∆n be i.i.d. zero-mean Gaussian variables characterizing
the technological dispersion in a PUF. The bit response to
challenge c is

Bc = sign(c1∆1 + c2∆2 + · · ·+ cn∆n) ∈ {±1}, (1)

Definition 2 (Challenge Code [17]): A challenge code C is a
set of M n-bit challenges that form a (n,M) binary code. We
shall identify C with the M × n matrix of ±1’s whose rows
are the challenges.
Definition 3 (Entropy of a PUF [17]): The M codewords
c and their complements −c are used to challenge the PUF
elements. The corresponding identifier is the M -bit vector

B = (Bc)c∈C (2)

and the entropy of the PUF responses is H = H(B).
Definition 4 (Hadamard Matrix): A Hadamard matrix of order
n is any real matrix H of order n with entries ±1 such that
HHT = nI.

For n > 2, the integer n must be a multiple of 4. Hadamard
conjectured in 1893 that Hadamard matrices exist for all
such n’s. There are many known constructions of Hadamard
matrices [22]. In this paper, we will need the Hadamard
matrix of Sylvester type defined for n = 2m, m > 0, by
Huv = (−1)<u.v>, for u, v ∈ Fm

2 and related to the first
order Reed-Muller code [13]. The construction of Paley type
depends on quadratic residues over finite fields and is recalled
in Section V-B.
Definition 5 (Hadamard Code): Let C be a binary code of
length n over the alphabet A = {±1} ⊂ Q. A Hadamard code
H is a code of length n over A with |H| = n codewords that
are pairwise orthogonal. Thus we can think of its codewords
as the rows of a Hadamard matrix H of order n. The set of
Hadamard codes of length n is denoted by Hn.
Definition 6 (Deviation): The deviation of an arbitrary vector
x ∈ An from code C is defined as

θ(C, x) = max
y∈C
|〈x, y〉| (3)

where 〈x, y〉 denote the standard inner product of x and y.
It can be easily seen that 〈x, y〉 = n − 2d(x, y) where d(, )

denotes Hamming distance. The total deviation of the code C
is then

θ(C) = min
x∈An

θ(C, x). (4)

We recall [17, Theorem 1] that the optimal choices for the
first M = n challenge codewords are given by a Hadamard
matrix C = H with entropy H = n bits.

III. IMPACT OF EQUIVALENT CODES ON ENTROPY

The entropy H depends on the joint distribution of Gaussian
variables ∆i or more precisely, on the joint probabilities of
signs of the Gaussian variables c1∆1 + c2∆2 + · · · + cn∆n

for all codewords c. As a result, we have the following
Lemma 1: The entropy H of a PUF with challenge code C is
fully determined by the Gram matrix cov(C) = CCt of inner
products {〈x, y〉}x,y∈C .

Proof: The zero-mean Gaussian vector C∆ where ∆ =
(∆1,∆2, . . . ,∆n)t ∼ N (0, I) is fully determined by its
correlation matrix CCt. Since B is vector of the signs of all
components of C∆, its distribution and, therefore, its entropy
H = H(B), is also fully determined by CCt.

Recall that an equivalent code is obtained from C by a serial
of operations consisting of:
• an arbitrary permutation of the coordinate positions,
• in any coordinate position, multiplication by any non-zero

scalars.
Here the code is defined over A = {±1}, and we have the
following
Lemma 2: Equivalent challenge codes give the same en-
tropy H .

Proof: First consider a permutation P on coordinates.
Each element cov(C)ij is obtained by scalar product of ith and
jth codewords x and y. Assume P(x), P(y) be the permuted
codewords, then cov(C)′ij = 〈P(x),P(y)〉 = 〈x, y〉 = cov(C)ij
for any i and j. Hence cov(C) and entropy are invariant.

Second consider multiplication by a non-zero scalar, which
can only be ±1, in any coordinate position. Then trivially inner
products are unchanged, so that cov(C) and entropy are again
invariant.
Lemma 3: Permuting the order of codewords gives the same
entropy H .
Notice that this amounts to applying any permutation on rows
and columns of cov(C), which leaves entropy invariant.

Proof: Permuting the order of codewords of C corre-
sponds to a permutation of the components of B, which does
not change H = H(B).
Lemma 4: Replacing any codewords with their binary com-
plements gives the same entropy H .

Proof: Replacing one codeword c ∈ C by −c corresponds
to replacing Bc by −Bc in the binary vector B, which does
not change its entropy H = H(B).

IV. EXTENDING ONE MORE CHALLENGE AND BOUNDS

As proven in [17, Theorem 1], the optimal choices for the
first M = n challenge codewords are given by a Hadamard
matrix. At the next (n + 1)th step, instead of the greedy



(exhaustive) search, we propose a constructive approach for
choosing the M = n + 1 codewords based on the smallest
total deviation θ(C).

Basically, we postulate that the Hamming distance between
(n + 1)th codeword and C plays a role in entropy H , which
connects to the deviation. The main conjecture is as follows.
Conjecture 1: For (n+ 1)th codeword, minimizing the devia-
tion gives the maximal entropy H .

A. Deviation Bounds and Bent Sequences

Proposition 1 (Upper Bound): If C is a code of length n
over A, then its total deviation is bounded above as θ(C) ≤ n.

Proof: By the Cauchy-Schwarz inequality, |〈x, y〉|2 ≤
‖x‖2‖y‖2 = n2.
An improved upper bound for Hadamard codes will be given
in Corollary 1.
Theorem 1 (Lower Bound and Bent Sequence): If H is a
Hadamard code of length n, its total deviation is bounded
below as θ(H) ≥

√
n. Equality occurs if and only if |〈x, h〉| =√

n for all h ∈ H. In that case, n is a perfect square, and
the vector x achieving θ(H) =

√
n is called a bent sequence

w.r.t. the code H.
Proof: The codewords h ∈ H form an orthogonal basis of

Rn and the decomposition of any x ∈ An onto this orthogonal
basis writes

x =
∑
h∈H

〈x, h〉
‖h‖2

h (5)

where ‖x‖2 = ‖h‖2 = n. Therefore,

n = ‖x‖2 =
∑
h∈H

|〈x, h〉|2

n
≤ θ(H)2 (6)

with equality if and only if |〈x, h〉| =
√
n for all h ∈ H,

which can occur only if n = |〈x, h〉|2 is a perfect square.
If n = 2m, and H is a Hadamard matrix of Sylvester

type [13] then an x that is a bent sequence w.r.t. H induces a
bent Boolean function X by X(u) = xu for all u ∈ Fm

2 .

B. Properties of Bent Sequences

In general, bent sequences are not balanced, in the sense
that their Hamming weight is not equal to half their length.
Proposition 2: If H is a Hadamard code of length n that
contains the all-one vector, then its attached bent sequences
have Hamming weight n±

√
n

2 .
Proof: Assume h is the all-one vector, and x is a bent

sequence. Then 〈x, h〉 = ±
√
n =

∑n
i=1 xi = n− 2wH(x).

Definition 7 (Dual sequence): If x is a bent sequence w.r.t.
a Hadamard matrix H of order n, then 〈x, h〉 = ±

√
n for all

h ∈ H so that the sequence

y =
xHT

√
n
∈ An. (7)

We call y the dual sequence of x. If y = x, we say that x is
a self-dual bent sequence.
Proposition 3: If x is a bent sequence w.r.t. to a Hadamard
matrix H of order n, then its dual sequence y is bent w.r.t.
HT , and the dual sequence of y is x.

Proof: By assumption HHT = HTH = nI, implying
yH =

√
n · x ∈ An, which shows both assertions.

When H is the Sylvester matrix, we recover the standard
notion and properties of the dual bent function introduced by
Dillon under the name “Fourier transform” [7].

We now generalize the notion of direct product of bent
functions. Recall that the Kronecker product of two vectors
u and v of length n and m is the vector u ⊗ v of length
nm defined by (u ⊗ v)(i,j) = uivj . Similarly, the Kronecker
product of two matrices U and V of respective orders n and
m is the matrix U ⊗ V of order nm defined by

(U ⊗ V )(i,j)(k,l) = UijVkl. (8)

It is well-known and easy to check that the Kronecker product
of Hadamard matrices is a Hadamard matrix [12].
Proposition 4: If u and v are bent sequences w.r.t. the
Hadamard matrices U and V then u ⊗ v is a bent sequence
w.r.t. the Hadamard matrix U ⊗ V .

Proof: Let n and m be the respective orders of U and V .
The result follows then because

√
n
√
m =

√
nm.

V. CONNECTIONS

A. Covering Radius

Recall that the covering radius of a code C is

r(C) = max
x∈An

min
y∈C

dH(x, y). (9)

Theorem 2: Let H be a Hadamard code of length n. If C =
H ∪ (−H), then θ(H) = n− 2r(C).

Proof: Note first that for x ∈ An and y ∈ H we have
|〈x, y〉| = ±〈x, y〉 = 〈x,±y〉. Hence for fixed x ∈ An, we
have: max{|〈x, y〉| | y ∈ H} = max{〈x, y〉 | y ∈ H ∪ −H}.
Since 〈x, y〉 = n− 2dH(x, y), the result follows by definition
of the covering radius.
Corollary 1: For n ≥ 8 we have r(C) ≥ n/4 so θ(H) ≤ n

2 .
Proof: The covering radius of any code is bounded below

by its packing radius (a.k.a. error-correction capacity). If the
code is not perfect then this bound can be augmented by one.
Hence for the Hadamard code C, of minimum distance n

2 , the
packing radius is

r(C) ≥
⌊n/2− 1

2

⌋
=
⌊n

4
− 1

2

⌋
=
n

4
− 1. (10)

The result follows since the parameters of perfect binary codes
(linear or not) are those of the Hamming codes and of the
Golay code [13].

B. Hadamard Matrices of Paley Type

Let q be an odd prime power. Let χ be the quadratic
character (Legendre symbol), defined on Fq by the relation

χ(x) =


0, for x = 0,

1, for x = �,

−1 for x 6= �

(11)

where � denotes an arbitrary quadratic residue of Fq .



The Jacobsthal matrix Q is then defined as Qxy = χ(y−x),
where x, y ∈ Fq . Next, we define a conference matrix as

C =

(
0 j
±jT Q

)
, (12)

where j is the all-one row vector of length q.
If q ≡ 3 (mod 4) (resp. q ≡ 1 (mod 4)) we choose the

sign so that C is antisymmetric (resp. symmetric). With these

notations Iq+1 + C (resp.
(
Iq+1 + C −Iq+1 + C
−Iq+1 + C −Iq+1 − C

)
), is a

Hadamard matrix of order q+1 (resp. 2(q+1)) [12, Chap. 18].
We need the Weil estimate for character sums

|
∑
t∈Fq

χ(f(t))| ≤ 2
√
q (13)

for f any cubic polynomial with three distinct roots [10, Th.
11.23]. Assume first that q ≡ 3 (mod 4). Label the rows and
columns of C by ∞ ∪ Fq . Consider the vector defined by
X∞ = X0 = 1, and Xt = χ(f(t)), where f is an arbitrary
quadratic such that (t − 1)f(t) has three distinct roots. By
definition

θ(P,X) = max
x∈Fq

∑
y∈Fq

|χ((y − x)f(y))|. (14)

If x equals either one of the zeros of f , then the character
sum reduces to

∑
t∈Fq

χ(h(t)) with h of degree one, which
is = 0 by [4, p. 9]. If not, by the Weil inequality, we see that
the deviation of the code P attached to the rows of the Paley
matrix and to the vector X is θ(P,X) ≤ 2

√
q entailing a total

deviation θ(P ) ≤ 2
√
q. Hence,

r(P ) ≥
n− 2

√
q

2
. (15)

If q ≡ 1 (mod 4), similarly, we obtain r(P ) ≥ n−4√q

2 .
We summarize this discussion in the following theorem.

Theorem 3: Let P be the code formed by the rows of a Paley
matrix of order n, and P = P ∪ −P. Then
• if q ≡ 3 (mod 4) then r(P) ≥ n−2√q

2 ;

• if q ≡ 1 (mod 4) then r(P) ≥ n−4√q

2 .

C. Numerics

The following examples were computed in Magma [23]. The
codes for n a power of 2 are linear, which allows us to use
Magma’s CoveringRadius command. The upper bounds
are bn−

√
n

2 c, coming from θ(C) ≥
√
n.

• for n = 8 we have r(C) = 2, θ(C) = 4.
• for n = 12, we have 3 ≤ r(C) ≤ 4. The lower bound is

by Corollary 1. In fact the upper bound must be met by
the arguments in [11, P. 120–121]. There are exactly 440
vectors at distance 4 from the code.

• for n = 16, we have in the Sylvester case r(C) =
6, θ(C) = 4. Thus any x at distance 6 is a classical bent
function. For the Hadamard matrix of index i in Magma
database we get

– for i = 2 the parameters r(C) = 5, θ(C) = 6. Thus
no bent sequence can exist.

– for i = 3 the parameters r(C) = 5, θ(C) = 6. Thus
no bent sequence can exist.

– for i = 4 the parameters r(C) = 6, θ(C) = 4. Thus
any of the 384 x’s at distance 6 is a bent sequence
in the sense of the preceding section.

– for i = 5 the parameters r(C) = 6, θ(C) = 4. Thus
any of the 128 x’s at distance 6 is a bent sequence
in the sense of the preceding section.

• for n = 20, we have 5 ≤ r(C) ≤ 7. The lower bound is
by Corollary 1. The upper bound is met with equality for
all three possible Hadamard matrices of size 20. There
are exactly 40128 vectors at distance 7 from the code.

• for n = 24, we have 8 ≤ r(C) ≤ 9. The lower bound
is by the supercode lemma [6], upon observing that the
linear span of C is the extended Golay code of minimum
distance 8. The upper bound is met with equality. There
are exactly 7040 vectors at distance 9 from the code.

• for n = 28, we have 7 ≤ r(C) ≤ 11. In fact, the upper
bound is met with equality for the first 20 (out of 487
in total) Hadamard matrices of size 28. In addition, there
are 2808 vectors at distance 11 from the code.

• for n = 32, we have 8 ≤ r(C) ≤ 13. The true value is
r(C) = 12 [2].

• for n = 36, we have 9 ≤ r(C) ≤ 15. If a bent sequence
exists it will not be a bent function in the classical sense.

VI. EXPERIMENTAL RESULTS

As shown in Lemma 1, the entropy of a delay PUF is
determined by the Gram matrix of its challenge code C. Let v
be an added challenge codeword to the Hadamard code, then
C has M = n+ 1 codewords and

cov(C) = CCt =

(
nI v
vt n

)
(16)

where I is the identity matrix of size n and v = Cvt is
the vector of the scalar products between all codewords in
the corresponding Hadamard code and v. With Lemma 4, we
deduce that by changing sign of one vector in the Hadamard
code does not change the entropy, and happens to only flip the
sign of corresponding coordinate of v in cov(C). Therefore,
relying on Lemma 2, 3 and 4, both the signs and orders
of values in v have no impact on entropy. Therefore, we
take v with its sorted absolute values to classify all possible
candidates for (n+ 1)th codeword.

In order to estimate the entropy, we utilize Monte-Carlo
simulation with 10,000,000 draws. The results are as follows
for n ∈ {8, 12, 16}.

A. Cases n = 8 and n = 12

Taking n = 8, there is only one Hadamard code C and
excluding these codewords in C ∪ −C gives 240 candidates
for the extended one. As expected, all 240 candidates1 are
classified into two classes according to two possibilities of v
as shown in Fig. 2. In particular, 112 candidates correspond
to θ(C) = 4.

1All candidates are indexed in lexicographical order in the sequel.



Fig. 2: Expanding one codeword when n = 8.

When n = 12, there is also only one Hadamard code [17].
All other 4072 candidates for 13th codeword are classified into
four cases with different v. The evaluation results are shown
in Fig. 3. Particularly, 440 candidates are with θ(C) = 4.

Fig. 3: Four classes of candidates when n = 12.

B. Case n = 16

We take the fifth Hadamard code in Magma database for
n = 16, which is of our interest for bent sequences. As shown
in Fig. 4, all 65504 candidates are classified into nine classes
and the corresponding values of v is shown as in Tab. I.

Fig. 4: Nine classes of candidates when n = 16.

As highlighted in Fig. 4, all 128 bent sequences with
deviations equal to 4 give the maximal entropy. Similarly,
there are 384 bent sequences giving the maximal entropy if
the fourth Hadamard code is used (see Section V-C).

C. Marginal entropy

We show in Fig. 2, 3 and 4 that the next codeword v
which maximizes the entropy is the one with θ(C, v) = θ(C).
Moreover, we show in Fig. 5 the marginal entropy, which is

TABLE I: Classifying codeword candidates with n = 16.

v (up to coordinate sign & sorting) θ(C, v) #Candidates

Class 1 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4] 4 128
Class 2 [0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 8] 8 3072

Class 3 [2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6] 6 14336

Class 4 [0 0 0 0 0 0 4 4 4 4 4 4 4 4 8 8] 8 22272

Class 5 [0 0 0 0 0 0 0 0 0 4 4 4 4 8 8 8] 8 3072

Class 6 [2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 10] 10 17920

Class 7 [0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8] 8 352

Class 8 [0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 12] 12 3840

Class 9 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 14] 14 512
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Fig. 5: Marginal entropy as n varies.

the increased entropy after extending challenge code with one
more codeword. Interestingly, the optimal sequences give the
similar marginal entropy when taking different n. Note that
taking 10,000,000 draws underestimates the entropy, which
results in the decrease in marginal entropy when n = 20.

VII. CONCLUSIONS

In this paper, we present the optimal choice of M = n+ 1
challenges to a delay PUF, which gives the maximal entropy
of responses. We highlight that the entropy of a delay PUF is
determined by the Gram matrix of its challenge code. Relying
on the Gram matrix, we show that the entropy is invariant
to several code properties. Therefore, we present a method to
classify all candidates for (n + 1)th challenge codeword into
a very limited number of classes, although the total number
of candidates is 2n − 2n, which is exponential in n.

Furthermore, we propose to use the (total) deviations as
a selection metric. Specifically, we show that these optimal
choices minimize the deviations to the total deviation on a
Hadamard code and form bent sequences when n is a perfect
square. The experimental results validate our findings that
these optimal choices all lead to the maximal entropy.

In this work, we have used the same well-established
PUF model as in [17], [18] where there is no dependency
between challenge-response pairs. Furthermore, we considered
a noiseless case where the response is not affected by internal
or external noise. The model is arguably ideal and taking both
noise and dependence of challenge-response pairs [19] into
account is a topic for future investigation.
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