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Abstract

In the pliable index coding (PICOD) problem, a server is to serve multiple clients, each of which

possesses a unique subset of the complete message set as side information and requests a new message

which it does not have. The goal of the server is to do this using as few transmissions as possible. This

work presents a hypergraph coloring approach to the scalar PICOD problem. A conflict-free coloring of

a hypergraph is known from literature as an assignment of colors to its vertices so that each hyperedge of

the graph contains one uniquely colored vertex. For a given PICOD problem represented by a hypergraph

consisting of messages as vertices and request-sets as hyperedges, we present achievable PICOD schemes

using conflict-free colorings of the PICOD hypergraph. Various graph theoretic parameters arising out

of such colorings (and some new coloring variants) then give a number of upper bounds on the optimal

PICOD length, which we study in this work.

Suppose the PICOD hypergraph has m vertices and n hyperedges, where every hyperedge overlaps

with at most Γ other hyperedges. We show easy to implement randomized algorithms for the following:

• For the single request case, we give a PICOD of length O(log2 Γ). This result improves over

known achievability results [1], [2] for some parameter ranges.

• For the t-request case, we give an MDS code of length max(O(log Γ logm), O(t logm)). Further

if the hyperedges (request sets) are sufficiently large, we give a PICOD of the same length as

above, which is not based on MDS construction. In general, this gives an improvement over the

results of [2]. Our codes are of near-optimal length (up to a multiplicative factor of log t).
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I. INTRODUCTION

The Index Coding problem introduced by Birk and Kol in [3] consists of a system with a

server containing m messages and n receivers connected by a broadcast channel. Each receiver

has a subset of the messages at the server as side-information and demands a particular new

message. The goal of the index coding problem is to design a transmission scheme at the server

which uses minimum number of transmissions to serve all receivers, also called the length of

the index code. The index coding problem is a canonical problem in information theory and has

been addressed by a variety of techniques, including graph theory [4], [5], linear programming

[6], interference alignment [7], etc.

A variant of the index coding problem, called pliable index coding (PICOD), was intro-

duced by Brahma and Fragouli in [1]. The pliable index coding problem relaxes the index

coding setup, such that each receiver requests any message which is not present in its side-

information (i.e., any message from its request-set). It was shown in [1] that finding the optimal

length of a PICOD problem is NP-hard in general. However the existence of a code with

length O(min{logm(1 + log+( n
logm

)),m, n}) was proved using a probabilistic argument (where

log+(x) = max{0, log(x)}). When m = nδ for some constant δ > 0, this means that O(log2 n)

is sufficient. Some algorithms for designing pliable index codes based on greedy and set-cover

techniques were also presented and compared in [1]. In [2], a polynomial-time algorithm was

presented for general PICOD problems which achieves a length O(log2 n). Thus, unlike the index

coding problem which has instances for which the required length can be Θ(n) (for instance,

the directed n-cycle problem [4]), much fewer transmissions are sufficient in general for PICOD

instances. For several special classes of PICOD problems, distinguished by the structure of the

side-information or request-sets of the receivers, achievability and converse results were presented

in [8], [9]. Converse techniques were further developed in [10], [11], using which the optimal

lengths of specific classes of PICOD problems were obtained. Other extensions of PICOD such

as vector pliable index codes [2], multiple requests [1], [2], secure pliable index codes [12] and

decentralized pliable index codes [13] have been studied recently. Pliable index coding has also

been proposed for efficient data exchange in real-world applications, such as in the data shuffling

phase of distributed computing [14].

In this work, we present a graph coloring approach to pliable index coding. A conflict-free

coloring of a hypergraph is an assignment of labels to its vertices so that each hyperedge of



the hypergraph contains at least one vertex which has a label distinct from others. Conflict-free

colorings were introduced by Even et al. in [15], motivated by a problem of frequency assignment

in wireless communications. Since then, it has been extensively studied in the context of general

hypergraphs, hypergraphs induced by neighborhoods in graphs, hypergraphs induced by simple

paths in a graph, hypergraphs that naturally arise in geometry, etc. See [16] for a survey on

conflict-free colorings.

Any PICOD problem can equivalently be represented using a hypergraph with the vertices rep-

resenting the messages, and the request-sets as hyperedges. We show that conflict-free colorings

(and its variants) of this hypergraph give rise to achievability schemes for PICOD.

Our specific contributions and organization of this paper are as follows.

• We briefly review the PICOD problem setup in Section II and conflict-free colorings in

Section III. In Section III-A, we show that the optimal length of a PICOD problem is at

most the conflict-free chromatic number of the hypergraph corresponding to the PICOD

problem (Lemma 3). The conflict-free chromatic number of a hypergraph is the smallest

number of colors required to conflict-free color the hypergraph.

• In Section III-B, we define the notion of conflict-free collection of colorings of hypergraphs.

We call the corresponding chromatic number the conflict-free covering number. This notion

gives a better upper bound than what is given by conflict-free coloring (Lemma 6). Using

conflict-free collections, we show in Section III-C that O(log2 Γ) transmissions suffice for

scalar PICOD schemes, where Γ refers to the maximum number of hyperedges any single

hyperedge overlaps with (Theorem 2). This result improves over known achievability results

[1], [2] for some parameter ranges. Our proof for Theorem 2 uses a probabilistic argument,

but this can be converted into a deterministic polynomial time algorithm using known

techniques (see the discussion towards the end of Section III-C).

• In Section IV, we define a parameter called local conflict-free chromatic number and show

a PICOD scheme whose length is upper bounded by this parameter (Theorem 3). As the

local conflict-free chromatic number can be smaller than the conflict-free chromatic number,

this improves the upper bound in Section III-A. Using conflict-free collection of colorings,

in Section IV-A, we also generalize the covering number of Section III-B to its local variant

and show the corresponding scheme (Theorem 4).

• In Section V, we study the t-request PICOD problem where each receiver wants t messages

from its request set. This corresponds to a conflict-free coloring of the hypergraph, where



each hyperedge sees t colors exactly once. The corresponding chromatic numer is called

the t-strong conflict-free chromatic number. Analogous to conflict-free covering number,

local conflict-free chromatic number and local conflict-free covering number, we define

“t-strong” variants of each of these parameters. We observe that each of these parameters

upper bound the length of an optimal t-request PICOD.

• Let H be the t-request PICOD hypergraph with m vertices and n hyperedges, where every

hyperedge overlaps with at most Γ other hyperedges. In Section V-A, we give a simple

randomized algorithm to construct an MDS code of length max(O(log Γ logm), O(t logm)).

In Section V-B, we give another randomized approach to construct a code of length

max(O(log Γ logm), O(t logm)), provided every request set (or hyperedge) is sufficiently

large. In general, this gives an improvement over the results of [2] where a PICOD of length

O(t log n+log2 n) was shown. In Section V-C, we show that the lengths of the codes yielded

by the above constructions are asymptotically tight up to a multiplicative factor of log t.

• In Section VI, we define a generalization of conflict-free coloring called k-fold conflict-free

coloring. This corresponds to the k-vector pliable index codes.

Notations: Let [n] , {1, . . . , n} for a positive integer n. For sets A,B we denote by A\B

the set of elements in A but not in B. We abuse notation to denote A\{b} as A\b. The set of

k-sized subsets of any set A is denoted by
(
A
k

)
. The span of a set of vectors U is denoted by

span(U). The dimension of a subspace W is denoted by dim(W ). Unless mentioned explicitly,

all logarithms in the paper are to the base e. The empty is denoted by ∅. A hypergraph H is a

pair of sets (V, E) where the set V is called the set of vertices of H (also denoted by V (H)) and

E is a collection of subsets of V called the set of hyperedges (sometimes referred to as simply

edges) of H (also denoted by E(H)). Given a collection of hypergraphs Hp : p ∈ [P ], we define

their union as H = ∪p∈[P ]Hp where V (H) = ∪p∈[P ]V (Hp), and E(H) = ∪p∈[P ]E(Hp).

II. PLIABLE INDEX CODING PROBLEM

We briefly review the pliable index coding problem, introduced in [1]. Consider a communi-

cation setup defined as follows. There are m messages denoted by {xi : i ∈ [m]} where xi lies in

some finite alphabet A. These m messages are available at a server. Consider n receivers indexed

by [n]. Assume that there is a noise-free broadcast channel between the server and the receivers.

Each receiver r has some subset of messages available apriori, as side-information. The set of

indices of the symbols available at receiver r is denoted Sr, and those that are not available is



denoted Ir = [m] \ Sr. We call {xi : i ∈ Ir} as the request-set of receiver r. The demand at

receiver r is fulfilled if it receives any symbol in its request set from the server. The messages

indexed by [m], the receivers indexed by [n], and the request-sets I , {Ir : r ∈ [n]} together

define a (n,m,I)-pliable index coding problem (PICOD problem). We assume that |Ir| ≥ 1,∀r,

as any receiver with |Ir| = 0 can be removed from the problem description as it has all the

symbols. Consider a hypergraph H with vertex set V = [m] and edge set I = {Ir : r ∈ [n]}.

This hypergraph captures the PICOD problem.

A pliable index code (PIC) consists of a collection of (a) an encoding function at the server

which encodes the m messages to an `-length codeword, denoted by φ : Am → A` and (b)

decoding functions {ψr : r ∈ [n]} where ψr : A` ×A|Sr| → A denotes the decoding function at

receiver r such that

ψr (φ({xi : i ∈ [m]}), {xi : i ∈ Sr}) = xd, for some d ∈ Ir.

The quantity ` is called the length of the PIC. It is of interest to design pliable index codes of

small length.

In this work, we assume A = Fk for some finite field F and integer k ≥ 1. We refer to these

codes as k-vector PICs, while the k = 1 case is also called scalar PIC. We focus on linear PICs,

i.e., one in which the encoding and decoding functions are linear. In that case, the encoder φ

is represented by a ` ×mk matrix (denoted by G) such that φ({xi : i ∈ [m]}) = GxT , where

x = (x1,1, . . . , x1,k, . . . , xm,1, . . . , xm,k). For the PICOD problem given by hypergraph H, the

smallest ` for which there is a linear k-vector PIC (over some field F) is denoted by `∗k(H).

The following definition and lemma (which is proved in [2]) describe when G can lead to

correct decoding at the receivers.

Definition 1. For an (n,m,I)-PICOD problem, a matrix G with mk columns indexed as Gi,j :

i ∈ [m], j ∈ [k], is said to satisfy receiver r ∈ [n], if the following property (P) is satisfied by

G.

(P) There exists some d ∈ Ir such that dim(span({Gd,j : j ∈ [k]})) = k and

span({Gd,j : j ∈ [k]})
⋂

span ({Gi,j : ∀i ∈ Ir\d, j ∈ [k]}) = {0}.

Lemma 1 ([2] Lemmas 1 and 6). A matrix G with mk columns is the encoder of a PIC for an

(n,m,I)-PICOD problem if and only if the property (P) of Definition 1 is true for each receiver

r ∈ [n].



Lemma 2 below is useful to prove achievability results for PICOD problems in this work.

Lemma 2. For an (n,m,I)-PICOD problem, let {Gp : p ∈ [P ]} denote a collection of matrices,

where Gp is of size Lp × mk, such that for each r ∈ [n], there exists some matrix Gp which

satisfies receiver r. Then the matrix G =


G1

...

GP

 of size (
∑

p∈[P ] Lp) ×mk is the encoder of a

PIC for the given PICOD problem.

Proof: For each r ∈ [n], there exists some matrix Gp such that Property (P) holds for r (with

respect to some d ∈ Ir). By simple linear algebra, we see that the matrix G too must satisfy

property (P) for receiver r (with respect to d ∈ Ir), and hence satisfies r. Applying Lemma 1,

the proof is complete.

III. SCALAR PICS ARISING FROM CONFLICT-FREE COLORINGS

Firstly, we review the definition of conflict-free colorings of a hypergraph and discuss some

existing results. In Subsection III-A, we show that a conflict-free coloring of the hypergraph

H(V = [m], I) gives a scalar linear PIC scheme for the PICOD problem given by H, with

length equal to the number of colors. We then define in Subsection III-B the notion of a conflict-

free collection of colorings of H, and show that such a collection also leads to achievable PIC

schemes. This yields tighter upper bounds on `∗1(H), in general. In Subsection III-C, we show

that the PICOD problem H has a PIC scheme with length O(log2 Γ), where Γ is an edge-

overlap parameter associated with H. This upper bound gives an order-wise improvement over

the O(log2 n) bound shown in [2].

Let H = (V, E) be a hypergraph. Let C : V → [L] be a coloring of V , where L is a positive

integer. Consider a hyperedge E ∈ E . We say C is a conflict-free coloring for the hyperedge E

if there is a vertex v ∈ E such that C(v) 6= C(u), ∀u ∈ E \ {v}. That is, in such a coloring,

E contains a vertex whose color is distinct from that of every other vertex in E. We say C is a

conflict-free coloring of the hypergraph H if C is a conflict-free coloring for every E ∈ E . The

conflict-free chromatic number of H, denoted by χCF (H), is the minimum L such that there

is a conflict-free coloring C : V → [L] of H. The following theorem on conflict-free coloring

on hypergraphs is due to Pach and Tardos [17], which we shall use to obtain one of our main

results (Theorem 2 and Corollary 1) in Subsection III-C.



Theorem 1 (Theorem 1.2 in [17]). For any positive integers t and Γ, the conflict-free chromatic

number of any hypergraph in which each edge is of size at least 2t− 1 and each edge intersects

at most Γ others is O(tΓ1/t log Γ). There is a randomized polynomial time algorithm to find such

a coloring.

A. Relationship of PIC to Conflict-free Coloring

In this subsection, we show that a conflict-free coloring of the hypergraphH(V = [m], I) gives

a scalar PIC scheme for the PICOD problem given by H. To do this, we define the following

matrix associated with a conflict-free coloring of H.

Definition 2 (Indicator Matrix associated with a coloring). Let C : V → [L] denote a coloring

of H(V = [m], I), where C(i) denotes the color assigned to the vertex i ∈ [m]. Consider a

standard basis of the L-dimensional vector space over F, denoted by {e1, . . . , eL}. Now consider

the L×m matrix G (with columns indexed as {Gi : i ∈ [m]}) constructed as follows.

• For each i ∈ [m], column Gi of G is fixed to be eC(i).

We call G as the indicator matrix associated with the coloring C.

Using the indicator matrix associated with a conflict-free coloring of H, we shall prove our

first bound on `∗1(H).

Lemma 3. `∗1(H) ≤ χCF (H).

Proof: Let C : V → [L] denote a conflict-free coloring of H. We first show that there exists

an L-length scalar linear PIC for the problem defined by H. Let G denote the indicator matrix

associated with the coloring C as defined in Definition 2. We show that G satisfies Lemma 1

and hence is a valid encoder for a linear PIC.

In any conflict-free coloring of H, every edge Ir of H has a vertex d such that C(d) 6=

C(i),∀i ∈ Ir \ d. Then, clearly, eC(d) 6= eC(i)
, for any i ∈ Ir\d. This also means span({eC(d)

})∩

span({eC(i)
: i ∈ Ir\d}) = {0}, as the vectors {e1, . . . , eL} are basis vectors. Further, eC(d)

spans

a one dimensional space. Thus, G satisfies every receiver r and is a valid encoder by Lemma 1.

Note that the length of the code is exactly L. By definition of χCF (H), the proof is complete.



Example 1. Consider the PICOD problem represented by the hypergraph H with vertex set

V = {1, . . . , 8} and edge set

E = {{1, 2, 4, 6}, {1, 2, 3, 5}, {2, 3, 4, 7}, {1, 3, 4, 8},

{2, 5, 6, 7}, {1, 5, 6, 8}, {3, 5, 7, 8}, {4, 6, 7, 8}}.

Consider a coloring C which assigns color 1 to vertices {1, 2, 3, 4} and color 2 to vertices

{5, 6, 7, 8}. Note that this is a valid conflict-free coloring of H. The indicator matrix associated

with this coloring is given by

G =

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

 .
It can be checked that the above matrix satisfies the condition in Lemma 1 for the PICOD

problem defined by H.

B. Conflict-free coverings and PICOD

In the following discussion, we define a new parameter called the conflict-free covering

number, which in general improves upon the upper bound on the optimal length as given in

Lemma 3.

Definition 3 (Conflict-free collection, conflict-free covering number). Let H = (V, E) be a

hypergraph. Let C = {C1, . . . , CP} where each Cp : V → [Lp] be colorings of the hypergraph

H. We say C is a conflict-free collection of colorings of H, if the following condition holds: For

every E ∈ E , there is p ∈ [P ] such that E sees some color exactly once under the coloring Cp.

The quantity

αCF (H) , min
C

P∑
p=1

Lp,

representing the minimum sum
∑P

p=1 Lp over all possible collections C (over all P ) as defined

above, is called the conflict-free covering number of H.

In the following, we show that the parameter αCF (H) is sandwiched between functions of

χCF (H).

Lemma 4. Let H be a hypergraph with χCF (H) = χ and let r be the smallest integer such

that in any conflict-free coloring of H using χ colors, the vertices in any hyperedge are colored



with at most r colors. If r = 1, then χ = αCF (H) = 1 and if r ≥ 2, then log2(χ) ≤ αCF (H) ≤

min(χ, r
r+2

r!
loge(χ)).

Proof: If r = 1, it is easy to see that the lemma holds. So we assume r ≥ 2 throughout.

Consider a conflict-free collection of H with P colorings with αCF (H) total colors. Let

V = [m] be the set of vertices of H. Consider the αCF (H)×|V | matrix G =


G1

...

GP

 , where Gp

represents the indicator matrix of the pth coloring in the collection. Let {g1, . . . , gL} denote the

set of all distinct columns of G. Thus, we must have that αCF (H) ≥ log2(L). Now, consider a

coloring C of the vertices of H with elements of [L], where a vertex i ∈ V gets label ` ∈ [L]

if the ith column of G is g`. By construction of G, C is a conflict-free coloring of H and thus

L ≥ χ. Thus we see that αCF (H) ≥ log2(χ).

The upper bound αCF (H) ≤ χ follows as any conflict-free coloring of H also gives a conflict-

free collection containing only the same coloring. We now show the other upper bound. Let

C : V → [χ] be any coloring with χ colors so that vertices in any hyperedge are colored with at

most r colors. Firstly, for P = rr+1 loge χ
r!

, we show that there exists a P × χ matrix with entries

from [r] such that any r columns of this matrix contain at least one row with r distinct entries.

Using this matrix, we construct a conflict-free collection of colorings with rr+2

r!
loge(χ) colors,

which will complete the proof.

We now show the existence of this desired matrix. Let each entry of a random P × χ matrix

M be i.i.d and drawn uniformly at random from [r]. The probability that any particular r-subset

R ⊂ χ of columns contains r distinct colors in the row i is given by r!
rr
. Thus, the probability q

that at least one r-subset of columns of M does not contain distinct entries in any row, is given

by

q ≤
(
χ

r

)(
1− r!

rr

)P
(a)
< χre−P

r!
rr ≤ 1,

where (a) follows as
(
χ
r

)
< χr for r ≥ 2, and since 1 + x ≤ ex,∀x. This means that there is at

least one matrix M (say Mcf ) of size P × χ with entries from [r], such that each r-subset of

columns contains distinct entries in some row.

Now, using Mcf , we obtain a collection of P colorings of H in the following way. With

respect to the pth row of Mcf , we define a coloring Cp : V → [r] such that for each i ∈ V,

Cp(i) is equal to the entry in the jth column of Mcf , where j is the color assigned to the vertex



(a) (b) (c) (d)

Figure 1: Figure (a) shows the hypergraph K7 which is the complete graph on 7 vertices, {1, 2, 3, 4, 5, 6, 7}

containing all the 2-sized subsets as hyperedges. It requires 7 colors for a conflict-free coloring, thus χCF (K7) = 7.

The three figures (b), (c) and (d) depict a collection of 1-fold conflict-free colorings, each figure corresponding to

one coloring using 2 colors. Note that only those edges satisfied by the coloring are represented in (b), (c), and

(d). In (b), the two color classes are {1, 4, 5, 7} and {2, 3, 6}. In (c), they are {2, 4, 6, 7} and {1, 3, 5} and in (d)

they are {1, 2, 4} and {3, 5, 6, 7}. It can be checked that each edge of K7 is conflict-free in at least one of these

colorings. Thus αCF (H) ≤ 6 < χCF (H).

i in C. By the property of Mcf and the coloring C chosen, it can be verified that this collection

{Cp : p ∈ [P ]} will be a conflict-free collection of colorings of χ. The collection uses r colors

per coloring and thus totally there are rp colors being used.

Fig. 1 gives an example hypergraph for which αCF (H) < χCF (H). The following lemma

gives a class of hypergraphs for which the separation between parameters αCF (H) and χCF (H)

can be quite large. Fig. 1 gives an example hypergraph from this class and illustrates the

lemma. We observe, however, that the minimum of the two upper bounds as in Lemma 4 is still

(asymptotically) tight for this class of hypergraphs.

Lemma 5. There exist a hypergraph H with n hyperedges for which αCF (H) = Θ(log n) while

χCF (H) = Θ(
√
n).

Proof: Consider the 2-uniform hypergraph with m vertices and all the 2-sized subsets of

[m] as hyperedges. Thus n =
(
m
2

)
. It is easy to see that any conflict-free coloring of this graph

requires m = Θ(
√
n) colors.

Let us now turn our attention to αCF (H). Consider a conflict-free collection of P colorings

Cp : p ∈ [P ], for some integer P , each with number of colors Lp, such that
∑

p∈P Lp = αCF (H).

For each p ∈ [P ], let Gp be the indicator matrix associated with the coloring Cp. Consider the



(αCF (H) × m) binary matrix G =


G1

...

GP

. By the construction in Lemma 6, this is a valid

encoder for a PIC of H. Since every 2-sized subset of [m] is a hyperedge in H, no two columns

of G are thus identical. Thus, αCF (H) ≥ log2m. In order to prove an upper bound for αCF (H),

let P := dlog2me. Given any assignment of distinct P -bit binary vectors to the elements of [m],

one can construct a conflict-free collection of P colorings of H given as Cp : [m] → {c0
p, c

1
p}

for p ∈ [P ], where Cp(j) = c0
p (or = c1

p) if the p-th bit in the binary vector associated with j is

0 (respectively, 1). Thus, αCF (H) ≤ 2dlog2me.

C. An upper bound on `∗1(H) via αCF (H)

In the remainder of this section, we prove a main result of this work, which is a new upper

bound (Theorem 2 and Corollary 1) on αCF (H) (and thus on the optimal linear scalar PIC length)

based on a readily computable parameter associated with the hypergraph H. Towards that end,

we first show that the optimal length of PIC for H is bounded by αCF (H), thus improving the

bound in Lemma 3.

Lemma 6. `∗1(H) ≤ αCF (H).

Proof: Let C = {Cp : p ∈ [P ]} be a conflict-free collection of colorings of H(V = [m], I),

where Cp : V → [Lp]. We first show a PIC for H with length
∑

p∈[P ] Lp. The proof then follows

by definition of αCF (H).

Let Gp : p ∈ [P ] denote the indicator matrices as defined in Definition 2 associated with the

colorings Cp : p ∈ [P ] respectively. By definition of the conflict-free collection, for each Ir ∈ I

we have by arguments similar to the proof of Lemma 3, that there is some Gp which satisfies

receiver r. Then, by Lemma 2, the matrix G =


G1

...

GP

 is a valid encoder of a k-vector PIC to

the given PICOD problem of length
∑

p∈[P ] Lp.

The following observation is also needed to show our new upper bound.

Observation 1. Let H = H1 ∪H2. Then, αCF (H) ≤ αCF (H1) + αCF (H2).



We are now ready to prove the main result in this section, which is a new upper bound on

the optimal length of scalar PIC schemes.

Theorem 2. Let H = (V, E) be a hypergraph where every hyperedge intersects with at most Γ

other hyperedges, for any Γ > e, the base of the natural logarithm. Then, αCF (H) = O(log2 Γ).

Proof: Let κ := 2 log(Γ) − 1. Let G = (V, EG) be a hypergraph defined on the vertex set

V with EG = {E ∈ E : |E| ≥ κ}. From Theorem 1 and Lemma 4 (αCF (G) ≤ χCF (G)), we

know that αCF (G) = O(log2 Γ). Let P := dlog κe. For 0 ≤ i ≤ P , let Hi = (V, Ei), where

Ei = {E ∈ E : ki
2
≤ |E| < ki} and ki = κ

2i
. Clearly, H = G ∪ H0 ∪ H1 ∪ · · · ∪ HP . We

shall use the following claim whose proof uses the Lovász Local Lemma [18] and is relegated

to Appendix B.

Claim 1. αCF (Hi) ≤ 2(d5ki log Γe).

Using Claim 1, we have

P∑
i=0

αCF (Hi) ≤ 2
P∑
i=0

d5ki log Γe ≤ 10 log Γ
P∑
i=0

ki + 2P + 2

≤ 10 log Γ
∑
i≥0

κ

2i
+ 2P + 2

≤ 20κ log Γ + 2P + 2 = O(log2 Γ). (1)

Now using Observation 1, we have that αCF (H) ≤ αCF (G) +
P∑
i=0

αCF (Hi). Using (1) now, the

proof is complete.

Using Theorem 2 in conjunction with Lemma 6, we have the following achievability result for

the PICOD problem. The achievability of lengths m,n are trivial consequences of the problem

setup.

Corollary 1. For any (n,m,I)-PICOD problem, let Γ = maxr∈[n] |{r′ ∈ [n]\r : Ir ∩ Ir′ 6= ∅}|.

Then there exists a binary linear scalar PIC for the given problem with length O(min{log2 Γ,m}).

Thus `∗1(H) = O(min{log2 Γ,m}).

Comparison with known achievability results: The original work of Brahma and Fragouli [1]

showed the existence of an achievable scheme with length O(min{logm(1+log+( n
logm

)),m, n})

(where log+(x) = max{0, log(x)}). For m = nδ for some δ > 0, this means the existence of a



PIC with length O(log2 n) is guaranteed. Our result, Theorem 2, gives an upper bound based on

the parameter Γ of the hypergraph. Given the set of vertices V and edges E of a hypergraph, the

parameter Γ can be determined in O(|V ||E|2) time by a simple algorithm which runs through each

edge computing its intersection with all other edges. Further the parameter Γ ≤ |E|− 1 = n− 1

always, but it could be much smaller in general, as suggested by the below example.

Example 2. Consider the hypergraph H = (V, E), where V = [m], E = {{i, i + 1, i + 2} : i ∈

[m−2]} for m ≥ 3. Since every hyperedge overlaps with at most 3 other edges, we have Γ = 3.

The result from [1] suggests the existence of a code of length O(log2m), where by Theorem 2,

we have a code of constant length (as m grows).

In [2] an achievable scheme was presented for a PICOD problem with n receivers with length

O(log2 n). The algorithm in [2] had running time polynomial in the problem parameters m,n.

Our result also yields a polynomial time algorithm. However, the algorithm does not follow

immediately from the proof. The main difficulty in getting a deterministic algorithm is the

presence of the Local Lemma in the proof. Derandomization of the Local Lemma to provide

an constructive algorithm has been studied [19], [20]. Applying Theorem 1.1 (1) in [20], we

get a conflict-free coloring of a hypergraph using O(tΓ
1+ε
t log Γ) colors, where t and Γ are as

defined in Theorem 1 and ε > 0 is a constant. This suffices to get a deterministic polynomial

time coloring algorithm for the hypergraph G in the proof of Theorem 2 using O(log2 Γ) colors.

In a similar way, one can get polynomial time algorithms for constructing conflict-free collection

of colorings for hypergraphs Hi in the proof such that the total number of colors used across

all the colorings in such a collection is O(ki log Γ).

Remark 1. Similar to Remark 3 and Remark 4, we can use Theorem 9 to obtain easy-to-

implement randomized polynomial time algorithm for constructing scalar PICODs of length

O(log2 Γ).

IV. ‘LOCAL’ CONFLICT-FREE CHROMATIC NUMBER AND PLIABLE INDEX CODING

In this section, we define the local conflict-free chromatic number. This results in a refined

upper bound for `∗1(H) which can be smaller than αCF (H).



Definition 4 (Local Conflict-Free Chromatic Number). Given a hypergraph H(V, E), the local

conflict-free chromatic number of H is given by

∆(H) = min
C:C is a CF
coloring of H

max
E∈E
|{C(v) : v ∈ E}|︸ ︷︷ ︸

∆C(H)

.

For convenience, we define ∆C(H) = maxE∈E |{C(v) : v ∈ E}|, where C is a conflict-free

coloring of H. Therefore, ∆(H) = minC ∆C(H), where the minimum is over all such colorings

C of H.

We have the following observation.

Observation 2. ∆(H) ≤ χCF (H).

The following lemma shows that the gaps between ∆(H), αCF (H), and χCF (H), can be quite

large.

Lemma 7. There exists a hypergraph H with n hyperedges for which ∆(H) = 2, while

αCF (H) = Θ(log n) and χCF (H) = Θ(
√
n).

Proof: Consider the 2-uniform hypergraph with m vertices and all the 2-sized subsets of

[m] as hyperedges. We have already shown the values of the parameters αCF (H) and χCF (H) in

Lemma 5. Since every hyperedge is of size 2, ∆(H) ≤ 2. To see that ∆(H) = 2, we first observe

that in any conflict-free coloring (which uses m colors), at least m− 1 colors are present in any

essential color set. Thus, for m ≥ 3 there exists at least one hyperedge containing 2 essential

colors. Hence ∆(H) = 2.

We now show that there is a scalar PIC of length ∆(H) for the PICOD problem given by

H([m], I), provided we are operating over a sufficiently large finite field. For K,N being positive

integers such that K ≤ N , let a linear code of dimension K and length N be referred to as

an [N,K] code. Recall that in the K × N generator matrix of a maximum distance separable

(MDS) [N,K] code, any K columns are linearly independent. Below we define the MDS matrix

associated with a given coloring C of the graph H([m], I).

Definition 5 (MDS matrix associated with a CF coloring of H). Let C be a conflict-free coloring

of H([m], I) that uses colors from [D]. Let ∆C = maxE∈E |{C(v) : v ∈ E}|. Let G′ denote the

∆C ×D generator matrix of a [D,∆C ] MDS code. We index the columns of G′ by the set [D],



and denote the column indexed by d ∈ [D] as G′d. Consider the ∆C ×m matrix G defined as

follows (the columns of G are indexed as Gi : i ∈ [m]): For i ∈ [m], we set Gi = G′C(i).

We refer to G as the MDS matrix associated with the coloring C.

Note that such a matrix defined above always exists when the field size is not smaller than

D. Using the matrix defined above, we show in the below theorem the achievability of length

∆(H).

Theorem 3. `∗1(H) ≤ ∆(H).

Proof: Refer Appendix C.

Example 3. We give an example of the code construction involved in proof of Theorem 3.

Consider the 2-uniform hypergraph H of V = {1, . . . , 10} with all the
(

10
2

)
hyperedges, and

let C be a conflict-free coloring of H. Any such coloring requires at least 10 colors, and there

exists an edge with 2 colors. Thus we have ∆(H) = 2. We define the encoder matrix as G as

the encoder matrix of a [10, 2] MDS code. It is easy to check that this satisfies all the receivers.

A. Local conflict-free covering number and PICOD

In this subsection we define a local version of the covering number arising due to conflict-

free collections of H and relate it to an achievable scheme for the PICOD problem. OCTOBER

2022: This quantity is likely to be the strictly the tightest upper bound for `∗1(H) presented in

this work, provided the question in red on the next page is answered.

In the below definition, we will make use of the notion of “Conflict-free collection of color-

ings”, defined in Definition 3.

Definition 6 (Local Conflict-Free Covering Number). Given a hypergraph H(V, E), the local

conflict-free covering number of H is given by

λ(H) = min
C:C is a CF

collection of H

λC(H)︷ ︸︸ ︷∑
Cp∈C

(
max
E∈E
|{Cp(v) : v ∈ E}|

)
︸ ︷︷ ︸

∆Cp (H)

.



For convenience, we define λC(H) =
∑

Cp∈C ∆Cp(H), where C is a conflict-free collection of

colorings of H. Therefore, λ(H) = minC λC(H), where the minimum is over all such collections

C of H.

We now show that there is a achievable PICOD scheme for the PICOD hypergraph H([m], I)

with length λ(H).

Theorem 4. `∗1(H) ≤ λ(H).

Proof: Let C = {C1, . . . , CP} be a conflict-free collection of colorings of H([m], I). For

convenience, we use ∆(p) to denote ∆Cp(H). We want to show a valid PIC encoder matrix for

H of size
∑

p∈[P ] ∆(p). Invoking the definition of λ(H), the proof is complete.

Let the MDS matrix of size ∆(p) × m associated with the coloring Cp be denoted by Gp.

Consider the
∑

p∈[P ] ∆(p)×m matrix

G =


G1

...

GP

 .
We now show that the matrix G is a valid encoder of a PIC for H. By definition of C, for any

edge Ir ∈ I, there is some coloring Cp in which there exists some v ∈ Ir such that v is colored

by Cp and Cp(v) ∩ Cp(i) = ∅, ∀i ∈ Ir \ {v}. By arguments similar to the proof of Theorem 3,

we have that Gp satisfies receiver r. As r is arbitrary, by Lemma 2, G satisfies all receivers and

is a valid PIC.

Also, the following observation is clearly true by definition, and because any conflict-free

coloring C of H generates a conflict-free collection of H containing only C.

Observation 3. λ(H) ≤ min(α(H),∆(H)).

V. THE t-REQUESTS CASE

In the previous sections, we considered the PICOD setting with each receiver demanding one

of the m messages. In the present section, we generalize our results to the scenario where each

receiver r has to be sent any min(|Ir|, t)-sized subset of messages indexed by its request set Ir.

We shall call PICOD schemes which satisfy the above t-requests scenario as t-request pliable

index codes, or t-request PICs. In the rest of the section, we shall denote the smallest length of



any t-request PIC for the PICOD problem defined by hypergraph H as `∗(t)(H). It was shown in

[2] that, for any PICOD problem with n receivers, a t-request PIC with length O(t log n+log2 n)

exists, and can be designed in polynomial time (in number of receivers n and the messages m).

The notion of strong conflict-free coloring of hypergraphs was introduced by Horev et al.

in [21] as a conflict-free coloring in which any edge of the hypergraph ‘sees’ more than one

distinct color. Formally, a t-strong conflict-free coloring of hypergraph H = (V, E) with L labels

(or colors) is an assignment C : V → [L] such that the following holds.

• For any edge E ∈ E , there exist min(t, |E|) vertices in E which get distinct labels, i.e.,

there exists VE ⊆ E such that (a) |VE| = min(t, |E|), (b) |{C(v) : v ∈ VE}| = |VE|, and

(c) {C(v) : v ∈ VE} ∩ {C(v′) : v′ ∈ E \ VE} = ∅.

The minimum L such that a t-strong conflict-free coloring exists for H is then called the t-

strong conflict-free chromatic number of H, which we denote by χ(t)(H). The notion of a

t-strong conflict-free collection of colorings and the t-strong conflict-free covering number of H

(denoted by α(t)(H)) are defined as in Definition 3, with the only difference being that we want

the colorings Cp : p ∈ [P ] to be t-strong conflict-free colorings for the subgraphs Hp : p ∈ [P ],

respectively. Similarly, we can define the t-strong local conflict-free chromatic number as follows.

∆(t)(H) , min{∆C(H) : C is a t-strong conflict-free coloring for H},

where ∆C(H) is as in Definition 4. Finally, the t-strong local conflict-free covering number

λ(t)(H) can be defined as

λ(t)(H) , min{λC(H) : C is a t-strong conflict-free collection of H},

where λC(H) is as in Definition 6. The following results capture the utility of t-strong conflict-

free colorings to the t-request PICOD problems.

Lemma 8. Let C be t-strong conflict-free coloring for a PICOD hypergraph H that uses L

colors. Then there exists a t-request PIC of length L for H over every field. Further, there is

a t-request PIC for H of length ∆C(H) over any field F with |F| ≥ L where ∆C(H) is as in

Definition 4.

Proof: The proof for the first part follows that of Lemma 3, while the proof for the second

part follows that of Theorem 3 via MDS matrices defined in Definition 5.

WHERE EXACTLY ARE WE REQUIRING THAT F with |F| ≥ L. It does not seem to be

mentioned in the MDS section, i.e., Def 5 or in the discussion above it.



Lemma 9. Let C = {Cp : p ∈ [P ]} be a t-strong conflict-free collection for a PICOD hypergraph

H, that uses Lp : p ∈ [P ] colors for the colorings Cp : p ∈ [P ] respectively. Then there is a

t-request PIC of length
∑

p∈[P ] Lp for H over every field. Further, there is a t-request PIC of

length λC(H) for H over every field F such that |F| ≥
∑

p∈[P ] Lp, where λC(H) is as defined in

Definition 6.

Proof: The first part follows by arguments similar to Lemma 6, while the second part uses

arguments as in Theorem 4.

We then have the following theorem which summarizes the extensions of our results to the

t-request PICOD scenario.

Theorem 5. For the PICOD problem defined by H, we have,

`∗(t)(H) ≤ λ(t)(H) ≤ min(∆(t)(H), α(t)(H)) ≤ χ(t)(H).

Proof. The claim that λ(t)(H) is an upper bound for `∗(t)(H) follows from Lemma 9. The

proofs for the claim λ(t)(H) ≤ min(∆(t)(H), α(t)(H)) follows similar to Observation 3. The last

inequality follow by definition of the quantities involved.

A. Upper Bound for λ(t)(H)

Before we prove bounds on the t-strong conflict-free chromatic numbers, we prove a parti-

tioning lemma.

Lemma 10. Let H = (V, E) be a hypergraph with |V | = m and |E| = n. It is given that

every hyperedge in H intersects at most Γ other hyperedges. Let ` be a positive integer such

that ` ≥ log(6(Γ + 1)). Then, there exist V1, . . . , Vr ⊆ V and E1 ] E2 ] · · · ] Er ] E ′ = E with

r < log2m such that

(i) ∀i ∈ [r], (E ∈ Ei) =⇒ (6` < |E ∩ Vi| ≤ 36`), and

(ii) (E ∈ E ′) =⇒ (|E| ≤ 12`).

Proof. Let E ′ = {E ∈ E : |E| ≤ 12`}. Let r be the largest integer so that 12` < m
2r−1 . Thus,

r < log2m. For each i ∈ [r], let mi = m
2i

and let Ei = {E ∈ E \ E ′ : mi < |E| ≤ mi−1}.

Consider an i ∈ [r]. Below we explain how we construct Vi. Independently and uniformly

at random select a vertex v ∈ V into Vi with probability 12`
mi

. Let X i
E be a random variable

that denotes |E ∩ Vi|, for a hyperedge E ∈ Ei. Let µiE := E[X i
E]. Then, µiE = 12|E|`

mi
. Since



mi < |E| ≤ mi−1, we have 12` < µiE ≤ 24`. Applying the Chernoff bound given in Theorem

10 with δ = 1/2, we get Pr[|X i
E − µiE| ≥ 1

2
µiE] ≤ 2e−

µiE
12 <2e−

12`
12 ≤ 2e− log(6(Γ+1)) = 1

3(Γ+1)
.

Let AiE denote the bad event that |X i
E − µiE| ≥

µiE
2

. We have shown that Pr[AiE] ≤ 1
3(Γ+1)

.

Since e · 1
3(Γ+1)

· (Γ + 1) ≤ 1, from Lemma 13 we get Pr[∧E∈Ei(¬AiE)] > 0. Hence, there exists

a Vi such that ∀E ∈ Ei, |X i
E − µiE| < 1

2
µiE . Since 12` < µiE ≤ 24`, this implies that there is a

Vi such that ∀E ∈ Ei, 6` < |E ∩ Vi| ≤ 36`.

Using Theorem 9, we obtain the below algorithm for constructing the partitions.
Partition(V, Ei, `)

Input: (i) A set V , (ii) Ei = {E ⊆ V : mi ≤ |E| ≤ mi−1}, where mi = m/2i and every set

in Ei overlaps with at most Γ other sets in Ei, and (iii) a positive integer ` > log(6(Γ + 1)).

Output: A set Vi ⊆ V such that every set E ∈ Ei satisfies the condition 6` < |E∩Vi| ≤ 36`.

Algorithm:

• Each vertex v ∈ V is independently and uniformly chosen to be in Vi with probability
12`
mi

.

• While ∃E ∈ Ei that does not satisfy the output condition

– Choose an arbitrary E ∈ Ei that does not satisfy the output condition

– Resample each vertex v ∈ E. That is, for each v ∈ E, independently and uniformly

decide to include it in Vi with probability 12`
mi

.

• Output Vi.

Remark 2. We can apply Theorem 9 by considering the sampling of the vertices as the random

variables, and the events AiE as the bad events. So we need at most |Ei|/Γ ≤ n/Γ resamplings

in expectation. Prior to each resampling, we would also need to test if all E ∈ Ei satisfies

the output condition for the current choice of Vi. This takes O(mn) time. So overall the time

required is at most O(mn2/Γ) in expectation.

Theorem 6. Let H = (V, E) be a hypergraph with |V | = m and |E| = n. It is given that every

hyperedge in H intersects at most Γ other hyperedges. Then, for any positive integer t,

λ(t)(H) = max(O(log Γ logm), O(t logm)).

Proof. Let ` = max(log(6(Γ + 1)), t). Then, from Lemma 10, we have V1, . . . , Vr ⊆ V and

E1]· · ·]Er]E ′ = E with r < log2m such that (i) ∀i ∈ [r], (E ∈ Ei) =⇒ (6` < |E∩Vi| ≤ 36`),



and (ii) (E ∈ E ′) =⇒ (|E| ≤ 12`). For each i ∈ [r], we define hypergraphs Hi = (V, Ei).

We define a local t-strong conflict-free coloring ci for Hi using |Vi|+ 1 colors in which all the

vertices in Vi get a distinct color from the first |Vi| colors and all the vertices in V \ Vi get the

(|Vi|+ 1)th color. In such a coloring, each hyperedge E ∈ Ei sees at least 6`+ 1 colors exactly

once and at most 36`+ 1 colors in total. Finally, we define a local t-strong conflict-free coloring

c′ for H′ using |V | colors that gives a distinct color to every vertex in V . In this coloring, every

hyperedge E ∈ E ′ sees |E| (which is ≤ 12`) colors, each color exactly once. This completes

the proof of the theorem.

Remark 3. By Remark 2, we have a randomized algorithm for the partitioning in Lemma 10

that runs in expected time is at most O(mn2/Γ). Thus we have an algorithmic version of the

above construction that runs in expected time at most O(mn2 logm/Γ).

B. Upper Bound for α(t)(H)

Theorem 7. Let H = (V, E) be a hypergraph with |V | = m and |E| = n. It is given that every

hyperedge in H intersects at most Γ other hyperedges. Let t1, t be two positive integers with

t1 = max(log(6(Γ + 1)), t). It is given that ∀E ∈ E , |E| > 12t1. Then,

α(t)(H) = max(O(log Γ logm), O(t logm)).

Proof. Applying Lemma 10 with ` = t1, we get V1, . . . , Vr ⊆ V and E1 ] · · · ] Er = E with

r < log2m such that ∀i ∈ [r], (E ∈ Ei) =⇒ (6t1 < |E ∩ Vi| ≤ 36t1). Note that E ′ = ∅ as

every hyperedge in H is of size greater than 12t1.

Consider an i ∈ [r]. We describe a t-strong conflict-free coloring for the hyperedges in Ei.

For each vertex in Vi, assign a color that is chosen independently and uniformly at random from

a set of 19e2t1 colors. All the vertices in V \ Vi are assigned the same color, a color different

from the 19e2t1 colors used to color the vertices in Vi. For each E ∈ Ei, let ziE , |E ∩ Vi|. We

have 6t1 < ziE ≤ 36t1. Let Bi
E be the bad event that E ∩ Vi is colored with ≤ d z

i
E+t

2
e ≤ ziE+t+1

2

colors, where the last inequality holds since ziE and t are integers. Note that if Bi
E does not

occur, then E ∩ Vi has some t colors that appear exactly once. Now we estimate the probability

of Bi
E .



Pr[Bi
E] ≤

(
19e2t1

(ziE + t+ 1)/2

)(
(ziE + t+ 1)/2

19e2t1

)ziE
≤

(
e · 19e2t1

(ziE + t+ 1)/2

)(ziE+t+1)/2(
(ziE + t+ 1)/2

19e2t1

)ziE
(since

(
n

k

)
≤
(en
k

)k
)

= et+1

(
ziE + t+ 1

38et1

)(ziE−t−1)/2

≤ et1+1

(
36t1 + t1 + 1

38et1

)(6t1+1−t1−1)/2

(since t ≤ t1, and 6t1 < ziE ≤ 36t1)

≤ et1+1

(
1

e

)5t1/2

≤ e

e1.5t1
≤ e

e1.5 log(6(Γ+1))

<
1

4(Γ + 1)
.

Since e · 1
4(Γ+1)

· (Γ + 1) ≤ 1, by Lemma 13, we get Pr[∧E∈Ei(¬Bi
E)] > 0. That is, ∀E ∈ Ei,

there is a t-strong conflict free coloring of E ∩ Vi with 19e2t1 colors. This completes the proof

of the theorem.

t-Strong-CF-Covering(H = (V, E), t)

Input: (i) A hypergraph H = (V, E), with |V | = m and |E| = n. Every hyperedge E ∈ E

intersects with at most Γ other hyperedges E ′ ∈ E . (ii) A positive integer t. Set t1 =

max(log(6(Γ + 1)), t). Every E ∈ E satisfies |E| > 12t1.

Output: A conflict-free collection of colorings C = {c1, c2, . . . , cr} of H, where each ci :

V → {0} ∪ [19e2t1] and r < log2m.

Algorithm:

• For i = 1 to log2m− 1

– Ei = {E ∈ E : mi < |E| ≤ mi−1}, where mi = m/2i.

– Vi = Partition(V, Ei, t1).

– For every v ∈ V \ Vi, ci(v) = 0.

– For each vertex v ∈ Vi, let ci(v) be a color chosen independently and uniformly at

random from [19e2t1].

– While ∃E ∈ Ei such that E ∩ Vi contains ≤ d z
i
E+t

2
e distinct colors

∗ Choose an arbitrary E ∈ Ei such that E ∩ Vi contains ≤ d z
i
E+t

2
e distinct colors.

∗ Recolor each vertex v ∈ E. That is, for each v ∈ E, independently and uniformly



assign ci(v) from [19e2t1].

• Output C = {c1, c2, . . . , cr}.

Remark 4. For each i, we have a randomized algorithm for the partitioning in Lemma 10 that

runs in expected time at most O(mn2/Γ) (see Remark 2).

We can again apply Theorem 9 by considering the coloring of the vertices as the random

variables, and the events Bi
E as the bad events. So we need at most |Ei|/Γ ≤ n/Γ recolorings

in expectation. Prior to each recoloring, we would also need to test if any of the Bi
E’s occur for

the current coloring. This takes O(mn) time. So overall the time required is at most O(mn2/Γ)

in expectation.

Since i ranges from 1 to log2m−1, the total running time is O(mn2 logm/Γ) in expectation.

C. A t-request instance that requires Ω(t logm/ log t) length PICOD

For a PICOD hypergraph H = (V, E) with |V | = m and |E| = n, Theorem 6 combined

with Theorem 5 gives us a t-request PIC of length max(O(log Γ logm), O(t logm)). However,

this PIC is based on an MDS code and is defined over a large field. Theorem 7 combined with

Theorem 5 gives us a t-request PIC of length max(O(log Γ logm), O(t logm)). This is not based

on an MDS code. Hence the field can be of a smaller size. But the code yielded by Theorem

7 works only when all the hyperedges (request sets) are sufficiently large. In this section, we

demonstrate a t-request instance that requires Ω(t logm) length PICOD.

Consider the following hypergraph H = (V, E) where V = [m] and E = E1 ] E2 ] . . . ]

Er, where r = b(logm/ log(12t))c − 1. We have E1 = {{1, 2, . . . ,m}}, and for 2 ≤ i ≤ r,

we have, Ei =
{
{1, 2, . . . , m

(12t)i−1}, { m
(12t)i−1 + 1, . . . , 2m

(12t)i−1}, . . . , {(m− m
(12t)i−1 + 1, . . . ,m}

}
.

Notice that (12t)r+1 ≤ m ≤ (12t)r+2, by our choice of r.

The total number of hyperedges is given by

E = 1 + (12t) + . . .+ (12t)r−1 =
(12t)r−1 − 1

12t− 1
<

m

11t
.

Hence we also have the overlapping parameter Γ ≤ |E| < m/(11t).

Let t be an integer such that t > logm. Since Γ < m/(11t), we have the following:

log(6Γ + 1) < log(6m/(11t) + 1) < logm < t.



That is max(log(6Γ + 1), t) = t. Since the hyperedges in Er are of size m/(12t)r−1 > 12t,

we satisfy all the conditions of Theorem 7.

We use the following result from [22]. We can see that the hypergraph H constructed above

satisfies the conditions in the theorem below. Using the below theorem, we get that `∗(t)(H) ≥

tr = t (b(logm/ log(12t))c − 1) = Ω(t logm/ log t). The implies that the length of the PIC

schemes given by Theorems 6 and 7 are asymptotically tight up to a multiplicative factor of

log t.

Theorem 8. Consider a PICOD hypergraph H = (V, E) corresponding to the t-requests case.

Suppose there exists a collection of subsets of E , given by {Ei ⊆ E : i ∈ [r]}, such that the

following condition holds for each i ≤ r− 1: For each E ∈ Ei, and for any subset T ⊆ E with

|T | = t, there exists an edge E ′ ∈ Ei+1, such that T ∩ E ′ = ∅.

Then, `∗(t)(H) ≥ tr.

VI. EXTENSION TO k-VECTOR PIC

In this section, we briefly show that the idea of using conflict-free colorings for constructing

scalar PICs extend naturally to k-vector PICs as well. Towards this end, we define the notion of

k-fold conflict-free coloring of a hypergraph, which generalizes the definition of a conflict-free

coloring. To the best of our knowledge this generalized notion is not available in literature.

Definition 7. A k-fold coloring of a hypergraph H = (V, E) is an assignment of k-sized subsets

of [L] to the vertices V , given by C : V →
(

[L]
k

)
. A k-fold coloring is conflict-free for edge

E ∈ E if there exists some v ∈ E such that C(v)∩C(v′) = ∅, for each v′ ∈ E\v. A coloring C

is a k-fold conflict-free coloring for H if C is a k-fold conflict-free coloring for each edge in E .

We define the k-fold conflict-free chromatic number of H as the smallest L such that a k-fold

conflict-free coloring of H exists as defined above, and denote it by χk,CF (H).

Observe that χ1,CF (H) = χCF (H). Fig. 2 gives an example of 1-fold and 2-fold conflict-free

coloring. Clearly, χk,CF (H) ≤ kχCF (H) as we can always obtain a k-fold conflict-free coloring

from a 1-fold conflict-free coloring by expanding each color into k unique colors. However we

show an example here for which this inequality is strict.

Example 4. Consider the hypergraphH given by vertex set V = {a, . . . , e} and E = {{a, b}, {b, c},

{c, d}, {d, e}, {e, a}} . Consider any 1-fold coloring of this graph. It is easy to see that two



(a) (b) (c)

Figure 2: Figure (a) shows a hypergraph H with 6 vertices and edge set E = {{1, 2, 3}, {1, 5}, {2, 4}, {4, 5, 6}}.

Figure (b) represents a 1-fold conflict-free coloring with 4 colors, with the color classes {1}, {2, 3}, {5}, {4, 6}.

Figure (c) shows a 2-fold conflict-free coloring using the colors {R,G,B,C}.

colors are not sufficient to give a 1-fold conflict-free coloring. It is also easy to find a conflict-

free coloring with 3 colors, for instance, give color 1 to vertices {a, c}, color 2 to {b, d} and

color 3 to vertex e. Thus χ1,CF (H) = 3.

Similarly, we can show that there cannot be a 2-fold conflict-free coloring with 4 colors. Now

consider the following 2-fold coloring with 5 colors denoted by {1, . . . , 5}. Let set {1, 2} be

assigned to vertex a, {3, 4} to b, {5, 1} to c, {2, 3} to d and {4, 5} to e. It is easy to check that

this is a 2-fold conflict-free coloring. Thus χ2,CF (H) = 5 < 6 = 2(χ1,CF (H)).

We now define the indicator matrix of k-fold coloring of H, which leads to a k-vector PIC

achievability scheme for H.

Definition 8. Let C : V →
(

[L]
k

)
denote a k-fold coloring of H(V, I). Let C(i) = {Ci,1, . . . , Ci,k}

denote the subset assigned to the vertex i ∈ V = [m]. Consider a standard basis of the L-

dimensional vector space over F, denoted by {e1, . . . , eL}. Now consider the L×mk matrix G

(with columns indexed as {Gi,j : i ∈ [m], j ∈ [k]}) constructed as follows.

• For each i ∈ [m], j ∈ [k], column Gi,j of G is fixed to be eCi,j .

We call G as the indicator matrix associated with the coloring C.

Using Definition 8, the following achievability result naturally follows.

Lemma 11. `∗k(H) ≤ χk,CF (H).

Proof: Let G denote the indicator matrix associated with a k-fold conflict-free coloring C

as defined in Definition 8. Let C(i) = {Ci,1, . . . , Ci,k} be the set assigned to vertex i.

Since C is conflict-free, any edge Ir of H has a vertex d such that C(d)∩C(i) = ∅,∀i ∈ Ir\d.



Then, we have {eCd,j : j ∈ [k]} ∩ {eCi,j : j ∈ [k]} = ∅, for any i ∈ Ir\d. This also means

span({eCd,j : j ∈ [k]}) ∩ span({eCi,j : i ∈ Ir\d, j ∈ [k]}) = {0}, since the vectors involved are

basis vectors. Further, as |{Cd,j : j ∈ [k]}| = k, hence dim(span({eCd,j : j ∈ [k]})) = k. Thus,

G satisfies receiver r by Lemma 1. As r is arbitrary, G is a valid encoder for H. By definition

of χk,CF (H), the proof is complete.

The conflict-free collection can similarly be generalized from Definition 3.

Definition 9 (k-fold conflict-free collection, k-fold conflict-free covering number). Let H =

(V, E) be a hypergraph. Let C = {C1, . . . , CP} where each Cp : V →
(

[Lp]
k

)
is a k-fold

colorings of the hypergraph H. We say C is a conflict-free collection of k-fold colorings of H, if

there exists a collection of P subgraphs Hp : p ∈ [P ] such that H = ∪p∈[P ]Hp and the coloring

Cp (when restricted to vertices in Hp) is a k-fold conflict-free coloring for Hp.

The minimum value of the sum
∑P

p=1 Lp over all possible collections C (over all P ) as defined

above, is called the k-fold conflict-free covering number of H denoted by αk,CF (H).

Note that α1,CF (H) = αCF (H). The following definition helps us to define the notion of

k-fold conflict-free colorings.

Definition 10 (Local k-fold conflict-free chromatic number). Given a hypergraph H(V, E), the

local k-fold conflict-free chromatic number of H is given by

∆k(H) = min
C:C is a k-fold CF

coloring of H

max
E∈E
|
⋃
v∈E

C(v)|︸ ︷︷ ︸
∆k,C(H)

.

For convenience, we define ∆k,C(H) = maxE∈E |
⋃
v∈E C(v)|, where C is a k-fold conflict-free

coloring of H. Therefore, ∆k(H) = minC ∆k,C(H), where the minimum is over all such k-fold

colorings C of H.

Similarly, we can define the local k-fold conflict-free covering number of H, denoted by

λk(H), extending Definition 6.

Using similar arguments as in Section III, we get the following bounds.

Lemma 12. `∗k(H)
(a)

≤ λk(H)
(b)

≤ min(∆k(H), αk,CF (H))
(c)

≤ χk,CF (H). Further, βk(H) ≤ kβ1(H)

where βk refers to any of the parameters λk,∆k, αk,CF , χk,CF .



Proof: The proof for (a), (b), and (c) follow similar to the proofs of Theorem 4, Observations

3 and 2, and Lemma 4.

The proof for the second part follows by the observation that expanding each coloring in a

conflict-free coloring (or a collection) of H to k-unique colors results in a k-fold conflict-free

coloring (or, respectively, a collection) of H.

VII. DISCUSSION

We have presented a hypergraph coloring framework for the pliable index coding problem.

We provide easy-to-implement randomized algorithms for the PICOD problem and the t-request

PICOD problem. These algorithms can be derandomized using existing techniques. However,

such deterministic algorithms may be cumbersome to implement. It would be interesting to give

simpler deterministic polynomial-time algorithms for the same. Explicit algorithms for k-vector

pliable index coding which give non-trivial improvements over simple extensions of scalar index

codes would certainly be interesting. Finally more investigation is needed into the gaps between

the parameters presented in this work.
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APPENDIX A

TOOLS FROM PROBABILITY

Below we state the Local Lemma, due to Erdős and Lovasz, which is required in some of

our proofs.

Lemma 13 (The Local Lemma, [18]). Let A1, . . . , An be events in an arbitrary probability space.

Suppose that each event Ai is mutually independent of a set of all the other events Aj but at

most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If ep(d+ 1) ≤ 1, then Pr[∩ni=1Ai] > 0.

https://arxiv.org/abs/2208.10389
https://doi.org/10.1145/1667053.1667060


Moser and Tardos [23] demonstrated an algorithmic version of the Local Lemma. They showed

the following.

Theorem 9 (Algorithmic Local Lemma [23]). Let P be a finite set of mutually independent

random variables in a probability space. Let A1, . . . , An be events that are determined by these

variables. Suppose that each event Ai is mutually independent of a set of all the other events

Aj but at most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If

ep(d+ 1) ≤ 1,

then there exists an assignment of the random variables in P such that none of the events

Ai occur. Moreover, there is a randomized algorithm (described below) that finds such an

assignment, that uses at most n/d resampling steps in expectation.

Algorithmic Local Lemma

First, sample the random variables in P as per the distribution. If at least one of the events

Ai occur, choose an arbitrary Aj that occurs. Then resample the random variables in P that

determine Aj . Repeat this until none of the events Ai occur.

A version of the Chernoff bound is stated below.

Theorem 10 (Chernoff Bound, Corollary 4.6 in [24]). Let X1, . . . , Xn be independent Poisson

trials such that Pr[Xi] = pi. Let X =
∑n

i=1 Xi and µ = E[X]. For 0 < δ < 1,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

APPENDIX B

PROOF OF CLAIM 1

We wish to show αCF (Hi) ≤ 2(d5ki log Γe). Let qi = 1
ki

and ti = d5ki log Γe. We do ti rounds

of coloring of the vertex set V of Hi, using two new colors in each round. In any given round,

we color each vertex v ∈ V independently with probability qi with first color, and give it the

second color with the remaining probability, i.e., 1− qi.

The paper [23] states the result and algorithm in a general setting. To avoid clutter, we state a specific symmetric case which

suffices our requirements.



Consider a hyperedge E ∈ Ei. Let FE denote the ‘bad’ event that none of the ti colorings

of V is a conflict-free coloring for E. The probability that the coloring in a given round is a

conflict-free coloring for E is at least |E|qi(1− qi)|E|−1. Thus,

Pr[FE] ≤
(
1− |E|qi(1− qi)|E|−1

)ti
(a)

≤ 1

eti|E|qi(1−qi)|E|−1

(b)

≤ 1

e
ti
ki
2

1
ki

(1− 1
ki

)ki−1

(c)

≤ 1

e
ti
2ki

≤ 1

Γ2.5
(since ti ≥ 5ki log Γ),

where (a) holds by inequality 1 + x ≤ ex, (b) holds as qi = 1
ki

and ki
2
≤ |E| < ki, (c) holds

using the inequality (1+x)r ≥ 1+rx for x ≥ −1, r ∈ R\ (0, 1). Thus, for each hyperedge E in

Hi, the probability of the bad event FE is at most p := 1
Γ2.5 . Observe that each such event FE is

independent of all the other events, but at most d := Γ events corresponding to those hyperedges

intersecting with E. Since ep(d + 1) ≤ 1, by Local Lemma (Lemma 13), Pr[∩E∈EiFE] > 0.

This proves the lemma.

APPENDIX C

PROOF OF THEOREM 3

Let C be a conflict-free coloring of H, that uses colors from the set [D]. We now show that

the MDS matrix G associated with the coloring C (of size ∆C(H)×m as defined in Definition

5) satisfies the properties in Lemma 1, and hence is a valid PIC for H. Note that this code would

have length ∆C(H), which we denote by simply ∆C . By definition of ∆(H), our proof would

then be complete.

To see this, consider any Ir ∈ I. By definition of G and ∆C , we have that

|{Gi : i ∈ Ir}| ≤ ∆C . (2)

Now, by the definition of conflict-free coloring C, at least one vertex v ∈ Ir is such that

C(v) 6= C(v′),∀v′ ∈ Ir\v. Thus, by the definition of matrix G, we have the following.

We first note that the vector Gv appears exactly once in the collection {Gi : i ∈ Ir}. Since the

columns of G are taken from the generator matrix G′ of a [D,∆C ] MDS code, any ∆C distinct



columns of G are linearly independent. Further, Gv is linearly independent from the space

spanned by any collection of (∆C − 1) other columns of G′. By (2) and the above observation,

the columns in {Gi : i ∈ Ir\v} lie in the subspace spanned by the (∆C−1) columns of G′ apart

from {Gv}. Thus, we have that span({Gv}) ∩ span({Gi : i ∈ Ir\v}) = {0}. Thus G satisfies

receiver r by Definition 1. As r is arbitrary, by Lemma 1, G represents a valid PIC for H.
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