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Abstract—Vehicular communication networks are rapidly
emerging as vehicles become smarter. However, these networks
are increasingly susceptible to various attacks. The situation
is exacerbated by the rise in automated vehicles complicates,
emphasizing the need for security and authentication measures
to ensure safe and effective traffic management. In this paper,
we propose a novel hybrid physical layer security (PLS)-machine
learning (ML) authentication scheme by exploiting the position
of the transmitter vehicle as a device fingerprint. We use a time-
of-arrival (ToA) based localization mechanism where the ToA
is estimated at roadside units (RSUs), and the coordinates of
the transmitter vehicle are extracted at the base station (BS).
Furthermore, to track the mobility of the moving legitimate
vehicle, we use ML model trained on several system parameters.
We try two ML models for this purpose, i.e., support vector
regression and decision tree.

To evaluate our scheme, we conduct binary hypothesis testing
on the estimated positions with the help of the ground truths
provided by the ML model, which classifies the transmitter node
as legitimate or malicious. Moreover, we consider the probability
of false alarm and the probability of missed detection as per-
formance metrics resulting from the binary hypothesis testing,
and mean absolute error (MAE), mean square error (MSE),
and coefficient of determination R2 to further evaluate the ML
models. We also compare our scheme with a baseline scheme that
exploits angle of arrival at RSUs for authentication. We observe
that our proposed position-based mechanism outperforms the
baseline scheme significantly in terms of missed detections.

I. INTRODUCTION

Vehicular communication networks (VCNs) are a type of
communication system that enables wireless communication
among vehicles and vehicles to roadside infrastructure. VCNs
are designed to provide efficient and reliable communication
in order to improve road safety, traffic efficiency, and the
overall driving experience [1]. There are two main types of
VCNs: vehicle-to-vehicle (V2V) communication and vehicle-
to-infrastructure (V2I) communication. V2V communication
enables vehicles to communicate with each other and exchange
information such as location, speed, and direction. This type of
communication can be used to alert drivers to critical events
on the road, such as an upcoming intersection or a vehicle
stopped ahead [2]. V2I communication, on the other hand,
enables vehicles to communicate with roadside infrastructure,
such as traffic lights and sensors, in order to improve traffic
flow and reduce congestion [3].

As a relatively recent type of networks, VCNs are vul-
nerable to cyberattacks, which can compromise the safety

and privacy of drivers and passengers [4]. Therefore, security
in VCNs is crucial and needs to be ensured at the highest
level. Authentication is one of the four main properties of
security that need to be preserved in any secure system.
Authentication verifies the identities of entities in VCNs, such
as vehicles, infrastructure, and users before granting them
access to the network. This helps to prevent unauthorized
access and misuse of network resources. Authentication further
provides secure access control, protects against impersonation
attacks, safeguards sensitive data, and ensures trust in the
system. Generally, authentication schemes were mainly stud-
ied at the higher layer of protocol stacks where predefined
secrets (i.e., passwords, keys, signatures) are utilized for
this purpose. The secrets are encrypted and decrypted via
various cryptographic measures [5]. However, some instances
in the literature reported breaching cryptographic measures
through brute force attacks [6]. Therefore, alternative security
mechanisms are now being evaluated. One such (promising)
mechanism lies in the physical layer. Authentication at the
physical layer is known as physical layer authentication (PLA)
where the randomness in the characteristics of the physical
layer is exploited. This randomness is mainly incurred in
the wireless channel or hardware. There are a variety of
fingerprints/features exploited for PLA, including channel im-
pulse response, channel frequency response, received signal
strength indicator, transmission coefficient (S21), pathloss ,
I/Q imbalance, carrier offsets [7, 8].

A. Related Work

The authors in [9] use the angle of arrival of the transmitter
vehicle as a feature at the physical layer for authentication in
the V2X environment. This work assumes that the location
information of the transmitter node is available at the receiver
and therefore expects a ground truth. This assumption is not
realistic as there is no mechanism for ground truth tracking,
and the effect of mobility is not discussed.

Similarly, the authors in this paper [10] proposed using
physical layer characteristics for authentication and then using
the Kalman filter to refine the iterative and threshold model.
The iterative model estimates the priori and posteriori of the
current time based on the physical layer characteristics of
the previous time, serving as the basis for the authentication
process. The threshold model analyzes the mathematical char-
acteristics of the priori estimation and provides a calculation
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method for the authentication threshold. The authors also used
an extended Kalman filter and unscented Kalman filter for
nonlinear physical layer characteristics.

In [11], the authors proposed a novel authentication ap-
proach, referred to as Hopper-Blum based physical layer (HB-
PL) authentication scheme, which incorporates an advanced
physical layer key generation technique with the Hopper-
Blum (HB) authentication scheme. In this scheme, information
gathered from the shared channel is utilized as secret keys
for the HB scheme, while the mismatched bits are applied as
induced noise for solving the learning parity with noise (LPN)
problem. The primary objective of the proposed technique is
to offer a solution for the bit reconciliation process while
ensuring that no information is exposed on a public channel.

The work [12] provides a PLA scheme that utilizes Gaussian
process (GP) path loss prediction and channel state infor-
mation (CSI) to track changes in channel characteristics and
predict the next path loss (PL) of the signal from a transmitter
for authentication. The scheme maps historical CSI attributes
to PL features of the transmitter’s signal to predict the next PL,
which is then used to cross-verify the transmitter’s reported
location information [13].

More recently, the authors in [14] proposed a cross-layer
authentication scheme for vehicular communication that uses
short-term reciprocal features of the wireless channel to re-
authenticate the corresponding terminal. By utilizing the re-
ciprocal features of the wireless channel, the scheme aims to
reduce the overall complexity and computation and commu-
nication overheads required for authentication.

B. Contribution

In this work, we systematically adopt a novel approach
exploiting the position of the transmitter node as a fea-
ture/fingerprint for authentication in V2I communication. Al-
though position/location is very recently reported for PLA
in underwater acoustic communication networks [15], the
scheme is limited to stationary nodes scenario. In this work,
we assume a dynamic vehicular environment where vehicles
are not stationary but moving at a certain speed. The main
contributions of this work can be summarized as follows:
● We estimate the position of the transmitter nodes by using

Time-of-Arrival (ToA) based localization method, where
ToAs are estimated at the corresponding RSUs using the
maximum likelihood approach and the coordinates are
extracted at BS using the least square approach.

● We construct a test statistic on the extracted coordi-
nates/estimated position for a binary hypothesis test to
decide the legitimacy of the transmitter vehicle. To deal
with the challenge of the mobility of the vehicle in
hypothesis testing, we propose a machine-learning model
to track the mobility of the legitimate node and predict
the next position of the vehicle.

C. Organization

The rest of this paper is structured as follows: In Section
II, we describe our system model. Section III presents the

proposed physical layer authentication (PLA) scheme includ-
ing position estimation, hypothesis testing, and the machine
learning model. Section IV presents the evaluation results of
our proposed technique. Lastly, Section V concludes the paper
with a few final remarks and suggestions for future research
directions.

II. SYSTEM MODEL

We assume the uplink transmission in a 2D V2I environment
where vehicles are communicating with the RSUs to inform
the central system (i.e., BS) about its parameters (speed,
engine transmissions, fuel level, etc.) for congestion control
or traffic management. We further assume that RSUs are
deployed at fixed locations on both sides of the road and are
connected to the BS as illustrated in Fig. 1. We assume two

Fig. 1: An Illustration of our System Model

kinds of vehicles: legitimate vehicles and malicious vehicles.
We assume a time-slotted communication system with no
collision domain, i.e., only one transmitter node transmits at
a given time slot. We assume that the malicious transmitter
vehicle is smart enough and transmits in idle slots with the
same transmit power as the legitimate vehicle so that she
remains hidden in the network. All the RSUs are assumed to
be connected with BS via an error-free secured communication
link. We assume the malicious vehicle attacks on the vehicles
to RSUs links. Such attacks are often known as impersonation
attacks.

III. PROPOSED AUTHENTICATION SCHEME

The proposed physical layer authentication scheme consists
of three main components as depicted in Fig. 2. We discuss
the functionality of each component in detail in the following
subsections.

A. Position Estimation

The estimation of the position of the transmitter vehicle is
accomplished in two stages: distance estimation and coordi-
nates extraction.
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Fig. 2: Proposed Methodology

1) Distance Estimation: The distances at RSUs are esti-
mated from the ToAs. Let t̂j be the estimated ToA at j-th
RSU, which can be expressed as:

t̂j = argmax
tj

log fy(y∣tj) = argmax
tj

L(y ∣ tj), (1)

where L(y ∣ tj) is the log-likelihood function of the condi-
tional random event y ∣ tj with y being the received symbols
vector. According to the framework in [16], t̂j ∼ N(ti, σ2

t ),
where σ2

t =
σ2ψj

4P
is the CRB or variance of the estimator with

noise power σ2, pathloss ψj and transmit power P . Next, we
use the famous distance equation, i.e., r̂j = ct̂j , to estimate the
distance between the transmitter vehicle and j-th RSU, where
c = 3 × 108m/s is the speed of the RF-carrier. The estimated
distance is distributed as r̂j ∼ N(rj , σ2

r), where rj = ctj is the
actual distance and σ2

r =
c2σ2ψj

4P
is the variance of the distance

estimator.

2) Coordinates Extraction: Assuming pj = [xj yj]
T

is

the position vector of the j-th RSU, and that p = [x y]T is the
unknown position vector or coordinates of the transmitter vehi-
cle, the distance rj between the two nodes as per the definition
of Euclidean distance is rj =

√
(x − xj)2 + (y − yj)2. As ToA

is susceptible to measurement error, the estimated measure-
ment based on multiplying v and tj is denoted as r̂j = rj +nj .
By squaring both sides, we get r̂2j = (rj+nj)2 = r2j+2njrj+n2j ,
which can be expressed as:

r̂2j = (x − xj)2 + (y − yj)2 + 2nj
√
(x − xj)2 + (y − yj)2 + n2j .

(2)

The equation set obtained from the Eq. 2 can be expressed in
a matrix-vector format for every instance of ”js” as:

Aθ + n = b̂, (3)

where all the vectors and matrices are given below:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2x1 −2y1 1
. . .
. . .
−2xL −2yL 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, b̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r̂21 − x21 − y21
.
.

r̂2L − x2L − y2L

⎤⎥⎥⎥⎥⎥⎥⎥⎦

θ =
⎡⎢⎢⎢⎢⎢⎣

x
y

x2 + y2

⎤⎥⎥⎥⎥⎥⎦
,

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r21 − x21 − y21
.
.

r2L − x2L − y2L

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2n1
√
(x − x1)2 + (y − y1)2 + n21

.

.

2nL
√
(x − xL)2 + (y − yL)2 + n2L

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Eq. 3 is a linear least square problem, where b̂ is the noisy
observation vector. The solution for θ that minimizes the least
square sum ∥Aθ − b̂∥22 that can be obtained as:

ATAθ̂ =AT b̂, Ô⇒ θ̂ = (ATA)−1AT b̂. (4)

The solution can be represented via Pseudo-Inverse as:

θ̂ =A†b̂. (5)

The position estimate can be obtained from the first and second
entries of θ̂ as: p̂ = [[θ̂]1 [θ̂]2]

T
. where [θ̂]1 = x̂, and

[θ̂]2 = ŷ. To determine the distribution of p̂, lets define Â†

as A† with dimensions of 2∗L. Then the extracted estimated
coordinates p̂ can be written based on eq. 5 with an addition
of the uncertainty as:

p̂ = Â†b + Â†n (6)

B. Hypothesis Testing

At this stage, we need to classify the estimated position
at the BS into a legitimate vehicle and a malicious vehicle.
Assuming xA represents the vector of actual coordinates for a
legitimate node and xE represents the vector for a malicious
node, we define H0 as the null hypothesis, indicating that
the transmitter is the legitimate node, and H1 as the alternate
hypothesis, suggesting that the transmitter is the malicious
node. Then test statistics can be defined as:

TS = ∥ (p̂ − p̂A) ∥2. (7)

where p̂A is the ground truth provided by ML model.The
binary hypothesis test can be defined as
⎧⎪⎪⎨⎪⎪⎩

H0(no impersonation) ∶ TS = ∥ (p̂ − p̂A) ∥2 < ϵth
H1(impersonation) ∶ TS = ∥ (p̂ − p̂A) ∥2 > ϵth

, (8)

where ϵth is a predetermined threshold. The binary hypothesis
testing could also be defined as follows:

TS ≷H0

H1
ϵth. (9)

C. ML Models for Mobility Tracking

Mobility is a major challenge in VCNs. Typically, in PLA,
one needs to get the ground truth information of the legitimate
node in advance. In this work, to track the mobility pattern
of the legitimate vehicle or get information about the ground
truth of the legitimate vehicle, we employ the ML model(s).



Generally, mobility models generate mobility traces by con-
tinuously predicting the next locations of the nodes. Such a
location prediction process is basically a regression problem.
Hence, in this work, we use support vector regression (SVR)
and decision tree (DT) as ML model(s). To train our models,
we use eight input features: link quality (LQ), three TOAs
and their three differences at the corresponding RSUs, and
the current position of the vehicle to train our model. Our ML
model(s) structure is shown in Fig. 3. Note that we do not
need extra efforts or estimation mechanisms to acquire these
features as they are already available to BS. SVR is based
on support vector machines (SVMs), which use a distinctive
method for handling anticipated values that involves establish-
ing a tolerance margin and predicts continuous output values
differently than prior regression techniques. In this work, the
trained SVR is used to forecast the output values for the x-
and y-coordinates. Due to its decreased sensitivity to outliers
and capacity to handle datasets with high-dimensional features,
SVR is considered superior to other regression techniques. On
the other hand, the decision tree (DT) regression approach
divides the input data into smaller subgroups according to the
values of the input features in order to forecast the outcome
variable. DT can make precise, comprehensible forecasts.

Fig. 3: Model Structure

IV. SIMULATION

A. Setup

To evaluate the performance of our authentication scheme,
we use MATLAB. Unless stated otherwise, the simulation
parameters are listed in TABLE I. We consider a long linear
road of size 3000m × 20m. We deploy RSUs at both sides
of the road at fixed positions, i.e., we separate any two
RSUs at each roadside by 300m. We assume RSUs are in
LoS and with a distance from the transmitter vehicle of less
than 400m. Furthermore, we consider both vehicles moving
at a certain speed. We assume that the malicious vehicle
is smart enough and exactly following the legitimate node
in speed and direction so that she can enhance the chances
of missed detection. We also implement a scheme from the
literature as a baseline scheme [9] that uses the angle of arrival
for authentication. It is implemented in MATLAB with the
assumption that the actual ground truths of a moving legitimate

vehicle are already available at BS. This assumption is taken
because there is no explicit mechanism provided in [9] to track
or acquire the ground truths for a moving legitimate vehicle.

Parameter(s) Value
Road Dimensions (Length and Width) 3000 m and 20 m

Legitimate node position [1,10]
Malicious node position [0,10]

Speed of the vehicle 1m/s
Frequency 18 × 108Hz

path loss exponent 2
Transmission power 100mW

Noise power P
LQ

TABLE I: Monte Carlo Simulation Parameters

1) Dataset: We generated a dataset for input features size
of 9 × 3.15 ∗ 105 and output labels of size 2 × 3.15 ∗ 105.
We randomly deploy 100 RSUs in a 2D region of size 5km×
5Km, define the starting position of the legitimate vehicle at
a random position, and select the closest RSUs in LoS, which
are under a predefined range, i.e., 400m. Next, we vary the
LQ in the unit step from 0dB to 20 dB, and for each LQ, We
vary the speed of the legitimate vehicle from 0 − 33mps (0-
120kmph) randomly according to a uniform distribution. We
then record the ToA for the selected three RSUs along with
their differences (i.e., ToA in the previous slot subtracted from
ToA in the current slot) and the extracted coordinate in k-th
slot.

2) ML Models Configurations: We use sequential minimal
optimization (SMO) as a solver with loss function as MSE,
given in Eq. 13 for SVR and least-square solver for DT.
Note that these are default solvers used by MATLAB. We
randomly divided the whole dataset into 0.7 and 0.3 segments
for training and testing, respectively.

B. Performance Evaluation Metrics
1) Analytical Model: The performance metrics for the an-

alytical model we adopt in this paper (i.e., hypothesis testing)
are two error probabilities: the probability of false alarm Pfa
and the probability of missed detection Pmd. The probability
of false alarm is defined as the probability of incorrectly
classifying a legitimate node as malicious during the binary
hypothesis test, which can be expressed as:

Pfa = P[TS ∣ H0 ≥ ϵth] = ∫
∞

ϵth
fTS∣H0

(ts ∣ h0)dts∣h0
(10)

The probability of missed detection is the probability of
incorrectly classifying a malicious node as legitimate during
the binary hypothesis test, which can be expressed as:

Pmd = P[TS ∣ H1 ≤ ϵth] = ∫
ϵth

0
fTS∣H1

(ts ∣ h1)dts∣h1
(11)

Note that the probability density functions (fTS∣H0
(ts ∣ h0)

and fTS∣H1
(ts ∣ h1)) are very challenging to find. We believe

this requires dedicated long efforts to find out the nature of
the conditional events (TS ∣ H0 and TS ∣ H1) and thus their
density functions due to unknown uncertainty in the ground
truths provided by the ML model and inherent uncertainty in
the test statistics. Therefore, we compute these probabilities
empirically in the simulations.



2) ML Model: Mean squared error (MSE), mean absolute
error (MAE), and coefficient of determination R2 are used as
performance metrics to evaluate the performance of both SVR
and DT models.

MAE measures how far apart the expected and actual values
are. The MAE can be expressed as:

MAE = 1

2n

n

∑
i=1

∥piA − p̂iA∥1, (12)

where piA and p̂iA stand for the i−th observation’s actual value
and predicted value, respectively, while n indicates the total
number of observations and ∥.∥1 denotes l1 norm operation.

MSE represents the difference between real and anticipated
values, which can be mathematically defined as:

MSE = 1

2n

n

∑
i=1

∥piA − p̂iA∥22, (13)

where ∥.∥2 denotes l2 norm operation Finally, the coefficient
of determination R2 expresses how much of the variation in
the dependent variable can be predicted from the independent
variables. An R2 value close to 1 indicates better performance,
whereas an R2 value significantly close to 0 indicates worse
performance. The following defines the equation for R2:

R2 = 1 − SSres

SStot
(14)

where SStot is the total sum of squares and SSres is the sum
of squared residuals.

C. Results

1) Error behavior against link quality (LQ): In this section
we evaluate the performance of both error probabilities against
LQ. We define LQ as the ratio of transmit power and noise
power. Typically, to measure the LQ, a ratio of received power
and noise power is taken but in our case due to multiple
receivers (RSUs) a common variable is the ratio of transmit
power and noise power among them, therefore, we redefine LQ
as per our system model. We sweep the LQ parameter from the
0 dB to 20 dB range in Figures 4, 5, and keep 1m separation
between legitimate and malicious vehicles. We observe as the
LQ enhances both errors decrease for our proposed scheme.On
the other hand, if the design parameters of test statics, i.e.,
ϵth increases then a decrease in the probability of false alarm
but an increase in the missed detection can be observed. We
also investigate the impact of the velocity of the transmitter
vehicles on the error probabilities. We notice that the increase
in velocity has a positive impact (i.e., decreases in error)
on the probability of missed detection but a slight negative
impact on the probability of false alarm. We also observe that
the baseline scheme provides a very low false alarm for the
same set of parameters but collapses on the probability of the
missed detection which is an important or critical probability.
The collapse (increase in error with the increase in LQ) of a
fingerprint occurs when the fingerprints of both nodes are too
close and the proposed scheme is unable to differentiate them.
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2) Receiver Operating Characteristic (ROC) curve: ROC
curves provide a comprehensive overview of our model, which
allows us to evaluate the performance of our authentication
scheme w.r.t. both errors. It shows the relationship between
the detection rate (true positive) and the false alarm rate (false
positive). ROC is generated by varying the threshold ϵth over
a long range and then for every single value of ϵth, both errors
are recorded in arrays, and then plotted against each other. In
Fig. 6, we observe that the LQ has a positive impact on the
detection rate (Pd = 1− Pmd), the increase in LQ enhances the
detection rate enhances. One can also see the impact of the
speed of vehicles on the detection rate. Overall, speed has a
negative impact on the performance of the proposed scheme.

3) ML Models Performance Results: We present the per-
formance of the above-mentioned two ML models in TALBE
II based on the test dataset of size 9 × 105 generated as per
the considered mobility pattern. Note that root MSE (RMSE)

Model RMSE MSE MAE R2

DT 0.40837 0.166765 0.227203 0.498604
SVR 0.27982 0.078298 0.169555 0.764588

TABLE II: Comparison between DT and SVR based on RMSE
MSE, MAE, and R2
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is the square root of MSE. Overall, SVR model’s predictions
appear to have better performance than DT model. As a result,
it is more suitable for this study based on RMSE, MSE, MAE,
and R2 measurements.

V. CONCLUSION

In this paper, we developed a novel hybrid physical layer
authentication scheme with ML for V2I communication that
uses the location of the transmitter as a fingerprint. We
consider a dynamic environment for transmitter vehicles where
nodes are mobile. The proposed authentication scheme is
tested against various parameters of the system, i.e. speed of
the vehicles, link quality, and controlled parameter threshold.
The performance is also compared with a baseline scheme that
exploits the angle of arrival as a device fingerprint. We showed
that position is a strong candidate feature for PLA, where one
can achieve high detection rates even at with low link quality.

This work can be extended by studying our proposed
scheme with more realistic and non-linear mobility models,
and trying more ML models for better accuracy. Similarly, this
work can be extended by incorporating multiple legitimate and
malicious vehicles, which is novel in the context of PLA in
VCNs.
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