
Approximate Logic Synthesis: A Reinforcement
Learning-Based Technology Mapping Approach

Ghasem Pasandi, Shahin Nazarian, and Massoud Pedram
Department of Electrical and Computer Engineering

University of Southern California, Los Angeles, CA 90089.
{pasandi, shahin.nazarian, pedram}@usc.edu

Abstract—Approximate Logic Synthesis (ALS) is the process of
synthesizing and mapping a given Boolean network to a library of
logic cells so that the magnitude/rate of error between outputs of
the approximate and initial (exact) Boolean netlists is bounded
from above by a predetermined total error threshold. In this
paper, we present Q-ALS, a novel framework for ALS with
focus on the technology mapping phase. Q-ALS incorporates
reinforcement learning and utilizes Boolean difference calculus
to estimate the maximum error rate that each node of the
given network can tolerate such that the total error rate at non
of the outputs of the mapped netlist exceeds a predetermined
maximum error rate, and the worst case delay and the total area
are minimized. Maximum Hamming Distance (MHD) between
exact and approximate truth tables of cuts of each node is used
as the error metric. In Q-ALS, a Q-Learning agent is trained
with a sufficient number of iterations aiming to select the fittest
values of MHD for each node, and in a cut-based technology
mapping approach, the best supergates (in terms of delay and
area, bounded further by the fittest MHD) are selected towards
implementing each node. Experimental results show that having
set the required accuracy of 95% at the primary outputs, Q-ALS
reduces the total cost in terms of area and delay by up to 70%
and 36%, respectively, and also reduces the run-time by 2.21×
on average, when compared to the best state-of-the-art academic
ALS tools.

I. INTRODUCTION

Approximate computing is defined as a computing tech-
nique to generate results with possible inaccuracy. This hap-
pens by relaxing the exact equivalency requirements between
provided specifications and generated results. Approximate
computing has attracted tremendous attentions in many differ-
ent fields that can tolerate inaccuracy, such as video and image
processing [1], search engines [2], [3], machine learning [4]–
[8], and approximate hardware design [9]–[11] by providing
improvement in speed and saving in resources. For example,
Esmaeilzadeh et. al [12] accelerated neural networks using
approximate computing techniques by introducing a parrot
transformation and a neural processing unit.

Approximate computing can be done in different abstraction
levels and transformations, one of which is the logic synthesis.
Logic synthesis is the process which optimizes and maps
a given Boolean network into a netlist consisting of logic
gates. The process of exact mapping is present in a variety
of synthesis tools. However, in recent times as the demand
for energy and area deficiencies has been increasing, there
is a need for an alternative approach to meet this demand.
This can be achieved by identifying the digital systems which

can tolerate errors and arriving at a mapping process which
sacrifices accuracy to achieve improvements in area, energy, or
delay. This process of synthesis is called Approximate Logic
Synthesis (ALS).

There are several papers in the literature for ALS including
SALSA [13], SASIMI [14], selection based (Single-Selection
and Multi-Selection) algorithms [15] and many more (see
Section II), which present new algorithms and/or synthesis
tools for generating approximate netlists bounded by a pre-
determined error rate or error magnitude. These approaches
typically suffer from large run-time values. Furthermore, they
lack powerful machine learning engines to learn from previous
optimization process steps, to better optimize for power, area
or delay of the circuit. In this paper, we present Q-ALS, a
novel approach for ALS which is based on Reinforcement
Learning (RL) algorithms.

Q-ALS embeds a Q-learning agent, which is trained and uti-
lized for determining the maximum error that can be tolerated
by a node in a given network such that the total error rate at
non of the primary outputs of the network exceeds a predeter-
mined maximum error rate. The Hamming distance between
truth tables of exact and approximate implementations of a
node is used as the error metric. To estimate the total error rate
at primary outputs which is resulted from approximation in a
node, a probabilistic approach based on Boolean difference
calculus is utilized. Experimental results verify that Q-ALS
provides considerable QoR (Quality of Results) improvements
in terms of run-time, total area, and the worst case delay of
many tested benchmark circuits over other ALS frameworks.
Due to the high impact of technology mapping on the final
delay and area results, the focus of approximation in this
paper is on the technology mapping phase. To the best of
our knowledge, this paper is the first to address the problem
of approximate logic synthesis using RL algorithms.

The rest of the paper is organized as follows: Section II
summarizes some of the previous works on ALS. Section
III provides a quick background on Q-learning and cut-based
technology mapping, which will be used in the rest of the pa-
per. Section IV presents our Q-ALS framework. Experimental
results on many benchmark circuits and conclusions appear in
Sections V and VI, respectively.

II. RELATED WORK

Miao et al. [16] formulated the ALS problem unconstrained
by error rate as a Boolean relations (BR) minimization prob-
lem, further refined by a heuristic approach to satisfy the

ar
X

iv
:1

90
2.

00
47

8v
1

 [
cs

.A
R

]
 1

 F
eb

 2
01

9

error frequency constraints. Shin and Gupta [17] developed
a method to reduce the literal count by exploiting the error
tolerance rate during the circuit design. Miao et al. [18]
presented a method to reduce the gate count of a given
circuit by using the external don’t care (EXDC) sets that
maximally approach the Boolean relation with compliance to
the constrained error magnitude. A novel ALS framework was
presented in [19] that performs statistical testing to certify the
area optimized circuits with high confidence under the given
error constraint. This is done by continuously monitoring the
quality of the generated design. In [13], the existing synthesis
tools such as SIS [20] and Synopsys Design Compiler [21] are
utilized to perform area reduction by using approximate don’t
cares (ADCs) adhering to the given quality bounds. An ALS
tool called SASIMI is presented in [14], which works with
multiple error metrics such as error rate and error magnitude.
SASIMI aims for area and power reduction by substituting
the signal pairs which accept the same values with high
probability. Wu and Qian [15] addressed the ALS problem
for multi-level circuits by reducing the size of nodes in the
given Boolean network with the help of approximating their
factored-forms. They presented two algorithms namely Single-
Selection and Multi-Selection with similar area savings but
better run-time for the latter one.

There have been a few recent publications on the utilization
of machine learning algorithms in Electronic Design Automa-
tion (EDA). In [22], deep reinforcement learning advances are
employed in logic optimization. More specifically, the logic
optimization problem is formulated as a deterministic Markov
decision process, and a generic algorithm is presented to solve
it. In [23], several classical Computer-Aided Design (CAD)
algorithms are presented, which can benefit from advances in
machine learning. The process of finding the error constraint of
each node for large networks leads to diminished performance.
The framework which we present in this paper tackles the
performance degradation problem by utilizing RL algorithms
to find the maximum tolerable error rate at each node. RL,
which is shown to resolve such issues [24], will lead to a
superior performance in terms of speed, area, and accuracy.

III. BACKGROUND

A. Q-Learning
Q-learning is an RL algorithm that involves an agent, a set

of states, and a set of actions. In Q-learning, at each time t
and state st, an action at is taken, a reward rt is observed,
and the agent enters a new state st+1. Q-learning algorithm
can be modeled as a function that assigns a real number to
each pairs of state-actions: Q : S × A → R, and it can be
expressed by a Q-matrix. The Q-matrix is updated using the
following equation:

Q(st, at)← (1− α)×Q(st−1, at−1)+

α×
(
rt + γ ×max

a
Q(st+1, a)

)
(1)

where hyper-parameters α and γ are learning rate and
discount factor, respectively. max

a
Q(st+1, a) is an estimation

for optimal future reward, and rt+γ×max
a

Q(st+1, a) is the
learned value. Before the learning process starts, the Q-matrix
is initialized into random values.

B. Cut-Based Technology Mapping
In state-of-the-art technology mappers [25]–[28], k-

feasible cuts [29] are computed for each node in the given
Boolean network, and subsequently, truth table of each cut is
calculated. A truth table expresses the function of a cut based
on its inputs. After computing truth tables, in a topological
ordering traversal starting from level 1 nodes, the best cut
for each node and the best supergate [28] implementing
this cut is computed. A supergate is a small combinational
single output network built from original gates in the given
library. After visiting all nodes, the best mapping solution
(best cover) for the whole network is constructed by traversing
the network back and using the computed best cuts and best
implementation of those cuts.

IV. OUR PROPOSED FRAMEWORK FOR ALS: Q-ALS
Fig. 1 illustrates Q-ALS, our proposed framework for ALS.

In our Q-ALS, the cut-based technology mapping approach
and the Q-learning algorithm are used to find the best approx-
imate mapping solution for a given Boolean network. Given a
maximum error rate at outputs of the given network, a Q-agent
is trained using many training networks to learn the maximum
error rate that each node can tolerate in order to maximize
the delay and area savings. Hamming distance between truth
tables of exact and approximate implementations is used as
a metric for error rate, and to estimate the propagated error
rate to outputs of the network resulted from approximation in
a node, a Boolean difference calculus is used, which will be
explained later in more details.

For a given training network N , all nodes are visited in a
topological ordering traversal and the exact and approximate
mapping solutions (matches) to implement the best cut of each
node are computed. Approximate matches are computed in
two ways: (i) by simply dropping some gates from the exact
match (ii) by examining other supergates in the supergate
library that can implement function of the cut subject to a
given maximum error rate. These approximate supergates are
more cost efficient than the exact ones in terms of a desired
metric such as delay, area, or power consumption. Similarly
to the work in [30], Q-ALS utilizes a prioritized cost function
with delay having the highest priority while area is used as a
tie breaker.

Fig. 2 shows an example network to demonstrate our
method for finding approximate matches in a cut-based tech-
nology mapping approach. Fig. 3a shows an exact implemen-
tation for the function of cut C shown in Fig. 2. C is a cut
among 4-feasible cuts of node n13. The function of this node
based on inputs of the shown cut is n13=e · n11· (n8+n9).
An approximate implementation with Hamming distance of
six between the exact and approximate truth tables is shown
in Fig. 3b. By dropping any of the shown inverters from the
shown exact implementation, another approximate implemen-
tation with the same delay, one unit less area, and Hamming
distance of two compared to the exact expression can be found.

A. Action Space
In Q-ALS, states and actions are defined as follows: nodes

are considered as states, therefore, there are as many states

Environment

Training Networks

Q-agent

Action at

Reward rt

State st

Boolean

Difference

Calculus

?

??????????

??????????

??????????
Q =

Maximum

Error

(a)

Output

Netlist

Input

Netlist

Logic Synthesis

Engine

f

1 0 0

0 0 1

0 1 0

a b c

0

1

1

1000110000

0110001101

0101000011

Q =

(b)

Fig. 1: Our Q-learning based ALS (Q-ALS) framework. (a) The Q-agent of Q-ALS is trained using the provided training networks and given
the maximum error rate at primary outputs. (b) At the test time, this Q-agent helps synthesis tool to select the best approximate matches for
implementing different nodes.

C

n8

n13

n9

e

n11

10 12

13

Fig. 2: An example network to demonstrate our method for finding
approximate matches in a cut-based technology mapping approach.
Function of node n13 based on inputs of the shown cut is: n13=e·n11·
(n8+n9).

as the total node count in And-Inverter Graph (AIG) [31]
representation of the given network. Given the current state
as node n, the set of actions that can be taken are selecting a
match for n among different exact and approximate solutions
for implementing k-feasible cuts of this node. A set of actions
which do not generate a valid mapping solution for network N
are not desirable. For example, a set of actions is considered
invalid, if those actions result in generating a mapping solution
for the network N such that the error rate at a primary output
of this network exceeds the given maximum error rate.

aoi21

nand2inv1inv1

n8 n9 e n11

n13

(a)

nand2

nand2

n8 n9 e n11

n13

nand2

(b)

Fig. 3: Two implementations for function of cut C the shown in Fig.
2. (a) an exact implementation with area of 7.00 units and delay of
2.60 units (b) an approximate implementation with area of 6.00 units,
delay of 2.00 units, and error rate of 37.5%.

To estimate the maximum error rate at primary outputs
injected by approximate implementation of a node, we used
the probabilistic error propagation approach presented in [32].
This approach is based on Boolean difference calculus; it takes
as input the Boolean function of a gate, error probabilities at its
inputs, and the error probability of the gate itself, and produces
the error probability at the output of this gate. We store
propagated maximum error rate resulted from approximation
in fanin cone of a node into data structure of this node. Next,
for each choice of approximate implementation of a node and
by using the said error propagation approach, we estimate the
error rate at primary outputs of the network.

The Q-agent in Q-ALS learns the maximum error rate a
single node can tolerate such that the saving in delay and
then area is maximized. If the error rate on a single node
is more than this value, it is estimated that it will violate
the requirement of maximum error rate at primary outputs.
Since the error metric that is employed in Q-ALS is Hamming
distance, therefore, the Q-agent in Q-ALS basically learns

the Maximum Hamming Distance (MHD) between exact and
approximate truth tables of each node in the network.

B. Reward Function
A reward is assigned to each action based on the saving

it offers for delay and area compared to the exact mapping
solution. If an approximate match does not improve on the
best delay or area of exact implementation, a reward of 0 is
assigned to it. On the other hand, if it increases delay and/or
area, a negative reward is assigned to it. The goal is to generate
a valid approximate mapping solution for N which maximizes
the total reward.

Fig. 4 illustrates the Q-matrix for a network with six nodes
and up to four valid exact and approximate mapping solutions
for a single node. This network is for implementing the
following function: F = a ⊕ b ⊕ c. One dimension of the
corresponding box in this figure represents the nodes of the
network, and the other dimension shows the MHD per node.
Using the trained Q-agent, the following set of best MHDs
are obtained for this network: {2, 2, 2, 3, 0, 3}. This shows
that for example the MHD between truth tables of exact and
approximate solutions for node 1 is two. Therefore, a mapping
solution with Hamming distance of zero, one, or two can be
selected for implementing this node. MHD of zero corresponds
to the exact mapping solution.

C. Training
The training process starts with assigning a random integer

number between 0 and 32 to MHD of each node. The
maximum value of 32 comes from the fact that up to 5-
cuts are computed for each node (32=25). These values are
used to start the technology mapping process. If the generated
mapping solution based on these MHD values is not valid, then
the corresponding entry in the Q-matrix will be reduced. On
the other hand, if the assigned MHDs for each node generate
a network whose error rate is below the given maximum error
rate, then the corresponding positions in the Q-matrix will
be increased as long as it does not exceed the maximum

Optimal set of Maximum Hamming
Distance: {2, 2, 2, 3, 0, 3}

Fig. 4: A Q-matrix describing optimal set of Maximum Hamming
Distance (MHD) for a network with six nodes. This network corre-
sponds to implementing the following function: F = a⊕ b⊕ c. Note
that ⊕ is an XOR operation.

Algorithm 1: Q-ALS model training using Q-learning
Input: Set of training networks: Ntrain = {N1, N2, ..., Nn},

Maximum error rate: ERmax

Output: Coefficients to get Maximum Hamming Distance
(MHD) for a test network.

1 Initialize:
2 Number of Episodes: NE

3 Learning rate: α
4 Discount factor: γ
5 Q-matrix
6 for each Ni in Ntrain do
7 Get number of nodes in Ni

8 Assign random values for MHD of each node in Ni.
9 for each epoch in NE do

10 Nnew = Map Ni using the assigned values for MHD.
11 if mapping is successful then
12 ERtmp=Find the maximum error rate at the

outputs of Nnew.
13 if ERtmp < ERmax and CostNnew < CostNi

then
14 Update Q matrix with positive reward.
15 Update CostNi .

16 else
17 Update Q-matrix with negative reward

18 else
19 Update Q-matrix with negative reward

20 Coefficients = Perform non-linear regression on Q-matrix
21 return Coefficients

value of 32. In following iterations, only a valid set of values
which improves on the previous best delay and area values
will update the Q-matrix. This process will continue for NE

times for a particular network and will be repeated for other
training networks.

The training process is shown in Algorithm 1. Inputs of this
algorithm are training networks and the maximum tolerable
error rate at the outputs, ERmax. Values for hyper-parameters
including number of episodes NE , the learning rate α, and the
discount factor γ are initialized inside this algorithm. Number
of episodes is the number of times the training process is
executed for a particular network. The Q-matrix generated
during the training process will be a 2D matrix where X-
axis denotes the nodes in the network and Y -axis denotes the
number of options of Hamming distance for the corresponding
node. For example, for a network with six nodes, the Q-matrix
will have six entries in the X-axis, and a default of 32 entries
for the Y -axis.

At the end of the training, we will have a Q-matrix with a
certain number of entries in the X-axis, which is equal to the
maximum node count among training networks. Now, suppose
that the node count in a test network is more than this value,
then we cannot use this Q-matrix to test this network. To
solve this issue, a non-linear regression is performed to fit
a polynomial curve to the data in Q-matrix. Using this fitted
curve, MHD values for nodes of any valid test network can
be calculated.

Algorithm 2: Generating a mapped netlist for a given test
network in Q-ALS

Input: Test network: NTest, Coefficients generated from
training: Lcoeff

Output: An approximate mapped network: Nopt

1 LHD <= Compute MHDs for nodes in NTest using
Lcoeff .

2 Nopt <= Generate approximate mapping netlist for
NTest using LHD.

3 return Nopt

D. Testing
The conclusion of training process returns coefficients of a

polynomial function which will be used to predict the MHD
values of a node in the given test network. These predicted
MHDs will be used in the logic synthesis engine of Q-ALS
to find the best approximate mapping solutions for individual
nodes of the test network. The testing pseudo-code is shown
in Algorithm 2.

V. EXPERIMENTAL RESULTS

We implemented Q-ALS as an extension to ABC [26]. We
first trained our model on the ISCAS 89 [33] and EPFL [34]
benchmark circuits and computed entries of the Q-matrix.
The maximum error rate at primary outputs used in the
experimental results presented in this section is 5%, which is
the same as two other state-of-the-art ALS frameworks (i.e.,
SASIMI and Single/Multi-Selection) compared in this section.
The generic standard cell library, mcnc.genlib, consisting of
25 gates is used in technology mapping. Test circuits are
chosen from different benchmark suites including ISCAS 85
[35], MCNC [36], and ITC 99 [37]. The functionality of
circuits widely varies from simple arithmetic circuits of EPFL
benchmark suite to complex industry-level circuits of ITC 99
benchmark suite. All experiments were conducted on a virtual
machine running Linux with 1GB RAM and a 2.4 GHz laptop
as the host machine. Tables I−III contain list experimental
results for different circuits. The complexity of circuits in
terms of number of gates, exact area, and exact delay is also
shown.

In Table I, the 3rd and 4th columns represent exact values
of area and delay, respectively. These values are obtained by
ABC for benchmark circuits in the first column. The second
column represents the number of gates in the corresponding
benchmark circuit. Columns five and six represent the area
and delay of approximated circuits generated by Q-ALS.
Columns seven and eight list area and delay ratios. Area ratio
is calculated by dividing the area of an approximate circuit
by the area of the corresponding exact circuit. Similarly, the
delay ratio is calculated.

Table I shows the area and delay comparison of approx-
imated circuits with their exact counterparts in the MCNC
benchmark suite. The MCNC benchmark suite contains dif-
ferent types of circuits such as Finite State Machine (FSM)
circuits, multi-level combinational circuits, multi-level sequen-
tial circuits, and two-level circuits. Experimenting on these
circuits, we get up to 70% area reduction and up to 36%

delay reduction using our Q-ALS. The average area and delay
reduction as compared to the baseline values (exact solutions)
are 30% and 9%, respectively.

Apart from academic benchmark circuits, we also experi-
mented on industry-level benchmarks from ITC 99 benchmark
suite [37]. Table II shows experimental results for this bench-
mark suite together with a short description for functionality
of each circuit. On average for 17 ITC 99 benchmark circuits,
Q-ALS provides 23% reduction in area and 10% reduction in
delay compared to the exact solution (baseline). This shows
that our proposed methodology is quite effective in area and
delay reduction for industrial-level circuits as well.

We experimented on benchmark circuits of ISCAS 85
benchmark suite to compare the results of our proposed
framework (Q-ALS) with state-of-the-art approximate logic
synthesis tool: SASIMI [14] and Single/Multi-Selection ap-
proaches [15]. The reason behind choosing ISCAS 85 for this
comparison is availability of experimental results in both of
these papers for these benchmarks. Table III shows the area
comparison between SASIMI, Single/Multi-Selection, and our
Q-ALS for ISCAS 85 benchmark circuits. We observed that
the average area reduction by SASIMI compared with the
exact values is 13.9% and for Single and Multi-Selection are
15.6%, and 15.5%, respectively. The average area reduction by
Q-ALS is 31.6% which clearly outperforms other counterparts.

Fig. 5 shows the comparison of run-times of Q-ALS with
SASIMI and Single/Multi-Selection. We observed that on
average, run-time of Q-ALS as compared to SASIMI, Single-
Selection, and Multi-Selection is 15.94×, 8.46×, and 2.21×
less, respectively. This is because the inference time of the
Q-learning algorithm is very low. The time required to train
our model using Q-learning algorithm is around five hours.
However, once the model is trained, it can generate the
approximated mapping solutions for any given circuit in a
small amount of time. In other words, it is trained once, but
is used for generating approximate mapping solutions many
times. For this reason, the training time is not considered in
Fig. 5. Please note that SASIMI and Single/Multi-Selection
algorithms are implemented in SIS [20], while Q-ALS is

0

5

10

15

c7552 c1908 c5315 c2670 alu4 c3540 c880

Q-ALS Multi-Selection Single-Selection SASIMI

Fig. 5: Run-time (in second) comparison among SASIMI,
Single/Multi-Selection, and our Q-ALS for approximate logic syn-
thesis. For better exhibition purposes, data for Single-Selection and
SASIMI are scaled down by 5 and 2 times, respectively.

TABLE I: Experimental results for MCNC benchmark suite.

Circuit Node Count Exact Area Exact Delay Approx. Area Approx. Delay Area Ratio Delay Ratio

rd53 45 107 6.5 54 5.9 0.50 0.91

rd73 115 291 10.5 169 9.7 0.58 0.92

rd84 198 419 10.4 299 9.5 0.71 0.91

9sym 165 418 11.5 360 11.7 0.86 1.02

parity 15 75 7.6 24 4.9 0.32 0.64

my adder 149 361 36.4 161 26 0.45 0.71

z4ml 38 89 5.2 49 5.2 0.55 1.00

pm1 39 87 4.9 84 5.1 0.97 1.04

c8 122 281 6.9 176 6.4 0.63 0.93

x4 339 760 7.5 760 7.9 1.00 1.05

count 123 273 13.8 171 12 0.63 0.87

pcler8 59 150 7.7 126 7.2 0.84 0.94

sct 68 151 5.5 137 5.7 0.91 1.04

apex7 187 409 12.3 368 10 0.90 0.81

TABLE II: Experimental results for ITC 99 benchmark suite.

Circuit Function Node Count Exact Area Exact Delay Approx. Area Approx. Delay Area Ratio Delay Ratio

b01 FSM comparing serial flows 34 86 4.7 56 5.7 0.65 1.21

b02 FSM that recognizes BCS numbers 19 40 5 19 2.9 0.48 0.58

b04 Compute min and max 392 1018 18.6 808 14.8 0.79 0.80

b06 Interrupt handler 34 86 4.1 45 4.3 0.52 1.05

b07 Count points on a straight line 274 671 18.4 559 16.5 0.83 0.90

b08 Find inclusions in sequences of numbers 137 308 12.2 259 10.1 0.84 0.83

b09 Serial to serial converter 118 323 8.3 233 8.6 0.72 1.04

b10 Voting system 142 342 9 276 8.9 0.81 0.99

b11 Scramble string with variable cipher 441 1119 20.1 828 13.7 0.74 0.68

b12 1-player game (guess a sequence) 843 1993 11.8 1642 12.1 0.82 1.03

b13 Interface to meteo sensors 223 517 8.7 372 7.9 0.72 0.91

b14 Viper processor (subset) 4233 10688 44.9 9361 40.4 0.88 0.90

b17 Three copies of 80386 processor (subset) 18446 47667 69.5 41419 60.5 0.87 0.87

b18 Two copies of b14 and two of b17 57978 145896 105.5 136755 105.5 0.94 1.00

b20 A copy and a modified version of b14 8805 21598 53.1 17303 45.6 0.80 0.86

b21 Two copies of b14 9141 22705 52.9 19060 44.8 0.84 0.85

b22 A copy and two modified versions of b14 13561 33260 53.3 26573 46.5 0.80 0.87

implemented in ABC, which is much faster than SIS. To
remove this bias, we normalized run-time of SASIMI and
Single/Multi Selection approaches by a factor obtained from
data published in [28], [38].

VI. CONCLUSION

In this paper, we present Q-ALS, a reinforcement learning
based approximate logic synthesis framework. Q-ALS benefits
from strong capabilities of Q-learning algorithm to learn the
maximum error rate each node in the AIG form of the
given network can tolerate in order to achieve a maximum
saving in delay and area while bounding to a predetermined
error rate at the primary outputs. Thanks to this capability,
Q-ALS is able to provide up to 70% area reduction and
36% delay reduction for academic benchmarks, and up to

52% area reduction and 30% delay reduction for industrial-
level benchmarks. Furthermore, Q-ALS reduces run-time by
an average of 15.94× and 2.21× over SASIMI and Multi-
Selection, two academic state-of-the-art ALS tools.

REFERENCES

[1] J. Huang, B. Wang, W. Wang, and P. Sen, “A surface approximation
method for image and video correspondences,” IEEE Transactions on
Image Processing, vol. 24, no. 12, pp. 5100–5113, 2015.

[2] G. Ranjan, A. Tongaonkar, and R. Torres, “Approximate matching
of persistent lexicon using search-engines for classifying mobile app
traffic,” in Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[3] K.-H. Yang, C.-C. Pan, and T.-L. Lee, “Approximate search engine op-
timization for directory service,” in Parallel and Distributed Processing
Symposium, 2003. Proceedings. International. IEEE, 2003, pp. 8–pp.

[4] A. J. Smola and B. Schölkopf, “Sparse greedy matrix approximation for
machine learning,” 2000.

TABLE III: Experimental results for ISCAS 85 benchmark suite.

SASIMI [14] Single-Selection [15] Multi-Selection [15] Q-ALS

Circuit Exact Area Approx. Area Area ratio Approx. Area Area ratio Approx. Area Area ratio Approx. Area Area ratio

c880 646 579 0.896 577 0.893 577 0.893 558 0.864

c1908 846 516 0.610 503 0.595 506 0.598 520 0.615

c2670 1298 940 0.724 859 0.662 874 0.673 866 0.667

c3540 1916 1868 0.975 1851 0.966 1849 0.965 1812 0.945

c5315 3060 3002 0.981 2993 0.978 3002 0.981 1901 0.621

c7552 3952 3746 0.948 3715 0.940 3719 0.941 2451 0.620

alu4 2740 2444 0.892 2406 0.878 2381 0.869 1260 0.460

[5] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[6] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” arXiv
preprint arXiv:1401.4082, 2014.

[7] J. Li, Z. Yuan, Z. Li, A. Ren, C. Ding, J. Draper, S. Nazarian, Q. Qiu,
B. Yuan, and Y. Wang, “Normalization and dropout for stochastic
computing-based deep convolutional neural networks,” Integration, the
VLSI Journal, 2017.

[8] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-efficient, low-latency
realization of neural networks through boolean logic minimization,” in
24th Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2019, pp. 1–6.

[9] S. Dutt, S. Nandi, and G. Trivedi, “A comparative survey of approxi-
mate adders,” in Radioelektronika (RADIOELEKTRONIKA), 2016 26th
International Conference. IEEE, 2016, pp. 61–65.

[10] M. Masadeh, O. Hasan, and S. Tahar, “Comparative study of approxi-
mate multipliers,” arXiv preprint arXiv:1803.06587, 2018.

[11] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of
power-efficient approximate multipliers for approximate artificial neural
networks,” in Proceedings of the 35th International Conference on
Computer-Aided Design. ACM, 2016, p. 81.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-
celeration for general-purpose approximate programs,” in 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE Computer Society, 2012, pp. 449–460.

[13] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
Proceedings of the 49th Annual Design Automation Conference. ACM,
2012, pp. 796–801.

[14] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality config-
urable circuits,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2013, pp. 1367–1372.

[15] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in Proceedings of the 53rd
Annual Design Automation Conference. ACM, 2016, p. 128.

[16] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis
under general error magnitude and frequency constraints,” in Proceed-
ings of the International Conference on Computer-Aided Design. IEEE
Press, 2013, pp. 779–786.

[17] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Proceedings of the Conference on Design, Automation
and Test in Europe. European Design and Automation Association,
2010, pp. 957–960.

[18] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in Computer-Aided
Design (ICCAD), 2014 IEEE/ACM International Conference on. IEEE,
2014, pp. 504–510.

[19] G. Liu and Z. Zhang, “Statistically certified approximate logic syn-
thesis,” in Computer-Aided Design (ICCAD), 2017 IEEE/ACM Inter-
national Conference on. IEEE, 2017, pp. 344–351.

[20] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” 1992.

[21] Synopsys, “Design compiler user guide,” Inc., see http://www. synopsys.
com, 2001.

[22] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Süsstrunk,
and G. De Micheli, “Deep learning for logic optimization algorithms,”

in Circuits and Systems (ISCAS), 2018 IEEE International Symposium
on. IEEE, 2018, pp. 1–4.

[23] P. A. Beerel and M. Pedram, “Opportunities for machine learning in
electronic design automation,” in Circuits and Systems (ISCAS), 2018
IEEE International Symposium on. IEEE, 2018, pp. 1–5.

[24] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in ACM
SIGARCH Computer Architecture News, vol. 36, no. 3. IEEE Computer
Society, 2008, pp. 39–50.

[25] G. Pasandi and M. Pedram, “PBMap: A path balancing technology
mapping algorithm for single flux quantum logic circuits,” IEEE Trans-
actions on Applied Superconductivity, vol. 29, no. 4, pp. 1–14, 2019.

[26] U. Berkeley, “ABC: A system for sequential synthesis and verification,”
Berkeley Logic Synthesis and Verification Group, 2011.

[27] G. Pasandi, A. Shafaei, and M. Pedram, “SFQmap: A technology
mapping tool for single flux quantum logic circuits,” in Circuits and
Systems (ISCAS), 2018 IEEE International Symposium on. IEEE, 2018,
pp. 1–5.

[28] A. Mishchenko, S. Chatterjee, R. Brayton, X. Wang, and T. Kam,
“Technology mapping with boolean matching, supergates and choices,”
2005.

[29] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based fpga designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 1, pp. 1–12, 1994.

[30] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proceedings of the 2007
IEEE/ACM international conference on Computer-aided design. IEEE
Press, 2007, pp. 354–361.

[31] A. Mishchenko, R. Jiang, S. Chatterjee, and R. Brayton, “Fraigs:
Functionally reduced and-inv graphs,” in International Conference on
Computer Aided Design, 2004.

[32] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic error
propagation in a logic circuit using the boolean difference calculus,”
in Advanced Techniques in Logic Synthesis, Optimizations and Applica-
tions. Springer, 2011, pp. 359–381.

[33] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Circuits and Systems, 1989., IEEE
International Symposium on, May 1989, pp. 1929–1934 vol.3.

[34] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combi-
national benchmark suite,” in Proceedings of the 24th International
Workshop on Logic & Synthesis (IWLS), no. EPFL-CONF-207551, 2015.

[35] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in Proceedings
of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[36] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[37] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks
and first atpg results,” IEEE Design & Test of computers, vol. 17, no. 3,
pp. 44–53, 2000.

[38] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proceedings
of the 43rd annual Design Automation Conference. ACM, 2006, pp.
532–535.

	I Introduction
	II Related Work
	III Background
	III-A Q-Learning
	III-B Cut-Based Technology Mapping

	IV Our Proposed Framework for ALS: Q-ALS
	IV-A Action Space
	IV-B Reward Function
	IV-C Training
	IV-D Testing

	V Experimental Results
	VI Conclusion
	References

