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ABSTRACT
Fetal electrocardiogram (fECG) monitoring is a technique for ob-
taining important information about the condition of the fetus dur-
ing pregnancy and labour by measuring electrical signals gener-
ated by the fetal heart as measured from multi-channel potential
recordings on the mother body surface. It is shown in this pa-
per that the fetal ECG can be reconstructed by means of higher
order statistical tools exploiting ECG non-stationarity associated
with post-denoising with wavelets. The method is illustrated on
real fetal ECG data.

1. INTRODUCTION

1.1. fECG recording

One interesting and difficult problem in biomedical engineering is
the fetal electrocardiogram (fECG) extraction [18, 7]. The tech-
nique was evaluated for the diagnosis of twins, fetal position [11],
fetal life [16], congenital heart disease, and asphyxia. Despite this
renewed promise, the difficulty of recording abdominal fECG and
its questionable yield limite the clinical utility and it was used pri-
marily for research purposes. With this technique, one can obtain
fECG signals during pregnancy in a noninvasive manner, but with
a weak signal-to-noise (SNR) ratio. In fact, electrodes on the ma-
ternal surface pick up the maternal ECG and, at a lower voltage,
the fECG. Electrodes are also sensitive to other signals, especially
electromyographic ones. Therefore, the signal observed on each
electrode is a complex signal associated to a superimposition of
many sources.

Although volume conduction theory presumes that the whole
body is a heterogeneous conductor, the potentials created by the
fetal heart are thought to be transmitted to the maternal surface
mainly through the umbilical vessel-placenta pathway. Because of
the above noted pecularity of fetal signal transmissions, the record-
ing of the fECG through maternal leads to a waveform that is not
affected by changing electrode location. Although the fECG wave
configuration does not change when the position of the recording
electrodes is changed on the surface of the mother’s abdomen, the
amplitude of the electrical signal may change. The idealised ECG
is illustrated in Figure 1.
The shape of the fetal ECG reflects the complex electrical sig-
nal - routinely called PQRST waves - conducting within the my-
ocardium (muscular wall of the heart) [21]. The main limitations
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Figure 1: Decomposition of the ECG waveform.

of noninvasive fECG recording are the low amplitude signal com-
ing from the fetal heart, the high background noise created by the
maternal ECG complex, the skin potentials, electromyograms (i.e.
of womb and diaphragm) and the 50 Hz interference. Three main
characteristics should be obtained from fECG extraction for be-
ing useful in early diagnosis of cardiopathologies: fetal heart rate
(FHR) [17], amplitudes of different waves, the duration of waves,
segments and intervals. Scalp fECG allows for detection of the en-
tire ECG complex, including P, QRS and T waves, but are inva-
sive. On the contrary, with external (noninvasive) fECG recording,
classical signal processing methods generally detect the R waves,
but, due to the low SNR ratio, the fetal P and T waves remains
hidden.

1.2. State of the art of noninvasive fECG

The problem was already tackled more than 50 years ago by means
of now conventional adaptative noise cancelling techniques. Mar-
vell et al. [12] studied the fECG during normal labour using com-
puter signal averaging using cross-correlation and Fast Fourier-
Transform (FFT). Abboud [1] shows that averaged fECG does
not detect fetal arrhythmias or real time events and does not of-
fer the tool to record in real time abdominal fECG. Blind source
separation (BSS) methods [8] provide a more general framework
and makes it possible to revisit such applications while expecting
higher performances. Typical results are reported in De Lathauwer
et al. [10], in Bacharakis et al. [2], Zarzoso [22] and in Cardoso
[4]: despite signals with higher frequency than the mother heart-
beats are identified to correspond to the fetal ECG, PQRST waves
cannot be easily extracted. Various other reported investigations
involve such cardiac signals [9, 4], combined with other types of



physiological measurements, especially brain neural activity [20].
In this paper, we propose to apply recent blind separation methods
for fECG extraction, (i) exploiting nonstationarity of fECG, and
(ii) implementing post-denoising with wavelets, in order to try to
recover the complete PQRST complex of fECG. The paper is or-
ganizes as follows. Section 2 present a theoretical sketch of BSS.
Section 3 explains the basic idea of wavelet denoising. Section 4
reports the experimental results on real fECG recordings. Main
results and further investigations are finally discussed in the con-
clusion.

2. MATHEMATICAL SKETCH

Linear instantaneous BSS model assumes the existence of n source
signals {si, (t), 1 ≤ i ≤ n}, statistically independent and zero-
mean and the observation of as many mixtures {xi(t), 1 ≤ i ≤
n}, formed by linear combinations of the unknown sources, i.e.
xi(t) =

Pn

j=1 aijsj(t), for each i = 1, . . . , n. This is compactly
represented by the mixing equation

x(t) = As(t), (1)

where the matrix A(n×n) collects the mixing coeficients, s(t) =

(s1(t), . . . , sn(t))T is a column vector collecting the source sig-
nals, x(t) collects the n observed signals. T denotes the transpose
operator. The aim of BSS consists in retrieving the source vec-
tor s(t) using only the observed data with the sole assumption
of independence of the source signals. It can be reformulated as
the computation of a n × n separating matrix B whose output
y(t) = Bx(t) is an estimate of the source signals s(t). Inde-
pendence is much more than decorrelation. Performing a principal
component analysis (PCA), i.e. decorrelating the outputs, is not
sufficient for separating the sources (see [5]). In this paper, two
BSS methods and wavelet denoising are briefly expounded and
used on real ECG data and their performances are evaluated in
terms of visual inspection.

2.1. Stationary signal assumption

For practical reasons, BSS algorithm are often separated in 2 parts
[5]. One consists in sphering or whitening the data such that they
become uncorrelated. The remaining part is then the estimation of
a rotation and many algorithms have already been proposed for
this purpose. One approach for estimating ICA consists in us-
ing higher-order cumulant tensors which are generalizations of
the covariance matrix. We can use fourth-order cumulant ten-
sors to cancel the fourth-order cumulants. Joint approximative di-
agonalization of eigenmatrices (JADE) refers to one principle of
solving this kind of approximative higher-order decorrelation [4].
The eigenvectors give more or less directly the mixing matrix for
whitened data. JADE code can be downloaded on Cardoso web
page (http://enst.fr/c̃ardoso).

2.2. Nonstationary (NS) signal assumption

Most of the approaches to BSS are implicitely based on a model
where the sequence si(t) is i.i.d., i.e. nothing is assumed concern-
ing temporal evolution. We here examine the separation of fECG
signals in the nonstationary case, i.e. falling the second ’i’ in i.i.d.
The idea is the following: a single covariance matrix does not give

enough constraints to determine A, but a collection of several co-
variances matrix estimated over different time periods does deter-
mine A, provided the source distributions have changed enough
over the whole observation period. The only assumption is that
si(t) and si(t

′), t 6= t′, have different distributions. Details on the
theoretical fundations can be found in [13, 15]
In this approach, the objective function is derived by minimizing
of the mutual information [15] between the vectors [(Bx)i(1),
. . . , (Bx)i(N)]T , 1 ≤ i ≤ n. Rather trying to estimate the
actual mutual information, we shall consider the Gaussian mu-
tual information defined as the ordinary mutual information with
respect to some Gaussian random vectors with the same covari-
ances structure as the random vector of interest. Denoting by C(t)
the covariance matrix of x(t), the normalized Gaussian mutual
information equals 1

T

PN

t=1 off[BC(t)BT ]. The quantity off(A)
of any positive matrix A is a measure of deviation from diago-
nality D(A) = {A|diag(A)}. The separation algorithm consists
in minimizing 1

T

PN

t=1 off[BC(t)BT ] with respect to B. Since
C(t) varies slowly with t, one approximates the above criterion by
1
L

PL

`=1 off[BC( `N
L

)BT ], which computation cost is lower. In
[15], C(t) is unknown, but estimated by a nonparametric kernel
estimator, i.e.

Ĉ(t) =

PN

τ=1 φ( t−τ
M

)x(τ )xT (τ )
PN

τ=1 φ( t−τ
M

)
. (2)

where M is a window width parameter and φ(·) a positive kernel
function [15]. In the following, the algorithm will be referred as
NS-joint diagonalisation algorithm.

Block-on-line Algorithm

The Gaussian mutual information approach can be easily turned
into a block-on-line algorithm. The matrices Ĉ(t) can now be eas-
ily evaluated at any time point as a local average. The data stream
is subdivided into data blocks of length T , for which the sample
covariance matrix Ĉ(t) is computed as in Eq. (2). The separating
matrix B(t) is performed by jointly approximately diagonalizing
the matrices Ĉ(t), Ĉ(t − m), . . . , Ĉ(t + m(1 − L)) [15].

3. WAVELETS FOR FECG DENOISING

3.1. Wavelet transform

The wavelet transform (WT) [6]is a time-scale representation tech-
nique, which describes a signal by using the correlation with trans-
lation and dilatation of a function called “mother wavelet”. Wavelet
shape can be selected to match the shapes of components em-
bedded in the signal to be analyzed. Such wavelets are excellent
templates to separate those components and events from the ana-
lyzed signal waveform. The discrete wavelet transform (DWT) is a
batch method, which analyses a finite-length time-domain signal at
different frequency bands with different resolutions by successive
decomposition into coarse approximation and detail information.
Approximations represent the slowly changing features of the sig-
nal and conversely details represent the rapidly changing features
of the signal.

3.2. Wavelet de-noising

The wavelet de-noising approach is based on the assumption that
random errors in a signal are present over all the coefficients while



deterministic changes get captured in a small number of relatively
large coefficients. As a result, a nonlinear thresholding (shrink-
ing) function in the wavelet domain will tend to keep a few larger
coefficients representing the underlying signal, while the noise co-
efficients will tend to reduce to zero. Practically, the wavelet de-
noising method consists in applying the discrete wavelet transform
to the original noisy data, thresholding the detail coefficients, and
then inverse transforming the thresholded coefficients to obtain
the time-domain de-noised data [14]. It should be noted that the
performance of the wavelet de-noising depends to the choice of
the thresholding rule, the type of wavelet, the maximum depth of
wavelet decoposition and the initial SNR.
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Figure 2: Five channels mother abdominal recording.

4. APPLICATION TO REAL FECG DATA

The fetal ECG (fECG) obtained from maternal abdomen normally
has low amplitude and poor SNR, hence fetal heart rate can hardly
be detected. The signal processing algorithms need to: (i) remove
the maternal ECG (mECG) complexes, (ii) reduce the effect of
motion artifact (mother breathing, uterine contraction, diaphragm,
50 Hz) and (iii) enhance the fetal PQRST complexes.
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Figure 3: Estimated (separated) noisy source estimates with JADE

algorithm.

The experimental data displayed Fig. 2 consist of a 5 channels

experiment from a pregnant patient at the 28th week. Channels 1 to
5 show mother abdominal recorded potentials and contain weak fe-
tal contributions. The horizontal axis displays the time in seconds.
The vertical axis displays the amplitude values (in mV ). The sam-
pling frequency is 1 KHz, the number of samples N = 10000,
hence the duration of the signal is 10s. Even though the fetal
ECG is much weaker than the maternal one, it is detectable. The
source estimated with JADE algorithm are displayed in Fig. 3, and
those estimated with the NS-joint diagonalization algorithm are
displayed in Fig. 4. Channel 1 contains the noisy mECG signal
while poor fECG is present in the signal on channel 5.
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Figure 4: Estimated (separated) noisy source estimates with NS-
joint diagonalization algorithm.

Baseline drift due to the mother breathing, electrode contacts
or fetus movements make inspection of fECG difficult. The WT
can be applied as a tool to obtain a good approximation of the
fECG baseline (see also [19]). To this end, the wavelet decomposition-
reconstruction is performed with biorthogonal wavelets and only
the approximation component between scales 1 and 7 (in the wavelet
decomposition) is retained as signal carrying useful information
(the 7-th scale component being the baseline estimation). Fig.
5 plots the fECG signal obtained after wavelet baseline removal
stage. As the pattern of interest of fECG is the PQRST complex,
removing the baseline provides a poor SNR and only wave R ap-
pears.
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Figure 5: fECG obtained after wavelet baseline removal stage.

An improvement can be obtained by adding a processing step
consisting in (i) R-wave detection by determining the location of
the relative maxima, (ii) PQRST amplification (duration of the
PQRST interval was considered about 36,5 ms [7].

After PQRST amplification, a wavelet de-noising (for can-
celling the noise) is applied to fECG signal with the following pa-



rameters: biorthogonal wavelet type, decomposition level ` = 6,
and the data-adaptive threshold selection rule SureShrink of
MATLAB wavelet toolbox. Denoising is applied by blocs, each of
4096 samples. Fig. 6 plots the fECG signal obtained after wavelet
baseline removal, PQRST amplification and wavelet de-noising
stages. The set of processing is very efficient and the complete
fetal PQRST complexes appear clearly (for visualisation reasons,
only 3 PQRST complexes are shown).
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Figure 6: fECG obained after baseline removal, PQRST amplifi-
cation and wavelet de-noising stages.

5. CONCLUSIONS

In this paper, we apply BSS to fECG extraction. We show that
(i) exploiting the ECG non stationarity can improve source sepa-
ration, (ii) wavelets seems a well-suited and promising method for
extracting the fetal PQRST complexes. Further investigations will
include (i) a quantitative comparison of performance of BSS algo-
rithms and focus in particular on wavelet denoising for improving
PQRST complex extraction, (ii) a qualitative evaluation (by physi-
cians) of the fetal PQRST extracted by this method, especially in
pathological cases.
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