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Abstract— This paper presents a new approach for integrat-
ing semantic information for vision-based vehicle navigation.
Although vision-based vehicle navigation systems using pre-
mapped visual landmarks are capable of achieving submeter
level accuracy in large-scale urban environment, a typical error
source in this type of systems comes from the presence of
visual landmarks or features from temporal objects in the
environment, such as cars and pedestrians. We propose a gated
factor graph framework to use semantic information associated
with visual features to make decisions on outlier/ inlier com-
putation from three perspectives: the feature tracking process,
the geo-referenced map building process, and the navigation
system using pre-mapped landmarks. The class category that
the visual feature belongs to is extracted from a pre-trained
deep learning network trained for semantic segmentation. The
feasibility and generality of our approach is demonstrated by
our implementations on top of two vision-based navigation
systems. Experimental evaluations validate that the injection of
semantic information associated with visual landmarks using
our approach achieves substantial improvements in accuracy
on GPS-denied navigation solutions for large-scale urban sce-
narios.

I. INTRODUCTION

Vehicle navigation using a pre-built map of visual land-
marks has received lots of attention in recent years for future
driver assistance systems or autonomous driving applications
[1], which require sub-meter or centimeter level accuracy for
situations such as obstacle avoidance or predictive emergency
braking. The map of the environment is constructed and geo-
referenced beforehand, and is used for global positioning
during future navigation by matching new feature observa-
tions from on-board perception sensors to this map. Due to
the low cost and small size of camera sensors, this approach
is more appealing than traditional solutions using costly and
bulky sensors such as differential GPS or laser scanners [2].

Using visual information from permanent structures rather
than temporal objects ought to improve the mapping quality
and navigation accuracy for these vision-based navigation
systems. With new advances in deep learning, previously
hard computer vision problems such as object recognition
and scene classification can be solved with high accuracy.
The availability of these trained models is able to make the
use of vison-based navigation algorithms easier. For example,
Figure 1 shows the result of using an off-the-shelf video
segmentation tool to classify object categories from a street
scene. As can be seen from the figure, even pre-trained
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Fig. 1: Output of a pre-trained Semantic Segmentation Network [3] used on
one of our datasets. The figure above shows a use case for where semantic
information is useful in mapping. Features from the parked vehicles can
be considered to be temporal and should not be maintained in a long term
map.

networks achieve high accuracy and can help the navigation
problem.

A recent survey on Simultaneous Localization and Map-
ping (SLAM) [4] shows the frontiers that have been explored
in adding semantic information to the mapping process. They
discuss the use of semantic information in mapping, and
present arguments for both why semantic information aids
SLAM and vice versa. These works have used different
approaches to map the environment with different repre-
sentations for semantic information in the environment. For
instance, Choudhary et al [5] map indoor environments at
the level of objects. Other works map the environment at
the level of planes. These works highlight the importance
of semantic mapping, which allows humans to localize
themselves because they are able to associate geometric
features with semantic categories.

However, the map maintained in these systems only pre-
serves high-level objects/ planes or other semantic entities.
These techniques are typically used in the domain of mobile
robots that operate indoors. They are interested in main-
taining representations of objects or locations of obstacles
(such as walls) that the robot can maneuver, and are not
directly applicable to the autonomous vehicle navigation
problem we try to solve. In our application, it is important to
maintain both high-level semantic information and low-level
visual features associated with landmarks mapped in the en-
vironment. In addition, these works use complex algorithms
to perform image/video segmentation to derive semantic
information for the localization and mapping process. With
recent advances in deep learning, segmentation tasks can be
replaced with simpler and off the shelf tools.

In this paper, we present a simple and effective approach
for integrating semantic information extracted from a pre-
trained deep learning network for vehicle navigation. We
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propose a new framework which utilizes the semantic infor-
mation associated with each imaged feature to make a deci-
sion on whether to use this feature point in the system. This
feature selection mechanism based on semantic information
can be performed for both the feature tracking process in the
real-time navigation system and the map building process
beforehand. For example, as shown in Figure 1, imaged
features from the parked vehicles can be considered to be
temporal and should not be maintained in the map during
the map building process.

Our framework is designed to be applied to any vision-
based SLAM systems for vehicle navigation. To demonstrate
the feasibility and generality of our approach, we apply our
framework on two state-of-the-art visual-based navigation
systems [6], [7]. The popular ORB-SLAM2 system [7]
uses only cameras as the input sensor, and cannot build
geo-referenced maps beforehand. Without the use of pre-
built maps, we show our approach improves its navigation
accuracy by polishing its feature tracking process.

We also utilize the system from [6], which efficiently
fuses pre-mapped visual landmarks as individual point mea-
surements to achieve sub-meter overall global navigation
accuracy in large-scale urban environments. This system
constructs the visual map beforehand by using a monocu-
lar camera, IMU, and high-precision differential GPS. Our
approach improves both the mapping quality and the tracking
process in this system, and achieves approximately 20%
improvement in accuracy for its GPS-denied navigation
solution.

The rest of the paper is organized as follows. In Section
II, we present the related work for vehicle navigation both
with and without semantic information. In Section III, we
introduce a new gated factor graph framework, which incor-
porates semantic information in the factor graph formulation
for vision-based vehicle navigation systems. We present how
our framework is used for improving the feature tracking
process, constructing the landmark database during the pre-
mapping process, and achieving high-precision navigation
performance using pre-mapped landmarks. In Section IV,
we present our experimental setup and our experimental
results on top of two state-of-the-art vision-based navigation
systems. Finally the conclusions and future work is presented
in Section V.

II. RELATED WORK

Traditional solution to achieve high-level accuracy for
vehicle navigation is to fuse high precision differential GPS
with high-end inertial measurement units (IMUs), which
is prohibitively expensive for commercial purpose. Non-
differential GPS can be cheap, but rarely reach satisfactory
accuracy due to signal obstructions or multipath effects.

Many methods for visual SLAM [7]–[11] which solve the
joint problem of state estimation and map building simulta-
neously in unknown environments, have been proposed for
vehicle navigation applications. Visual inertial navigation has
also been extensively studied [12], [13] for using feature

tracks and IMU measurement to solve the navigation prob-
lem. However, without absolute measurements, none of these
methods maintain overall sub-meter global accuracy within
large-scale urban environments.

There are a few methods which incorporate semantic in-
formation into SLAM systems for vehicle navigation. For ex-
ample, Reddy et al [14] use a multi-layer conditional random
field (CRF) framework to perform motion segmentation and
object class labeling. It improves localization performance
by only mapping stationary objects in the environment and
excluding dynamic objects from the scene. The semantic
motion segmentation is computed from the disparity and
computed optical flow between inputs. Another method [15]
proposes to use CRF and factor graph to jointly model the
environment and recover the pose of the navigation platform.
They also use labels and visual SLAM to densely reconstruct
the 3D environment.

Using a pre-optimized visual map is able to achieve high-
level accuracy for vehicle navigation, by matching new fea-
ture observations to mapped landmarks. There are a number
of methods [6], [16] that propose to use cameras to con-
struct a geo-referenced map of visual landmarks beforehand.
Each optimized visual landmark in the map consists its
absolute 3D coordinate, with its 2D locations and visual
descriptors from 2D images. This map of 2D-3D visual
landmarks then provides absolute measurements for future
vehicle navigation. However, none of these works utilize
semantic information to improve the mapping quality or the
navigation accuracy.

Recently, Alcantarilla et al [17] present a way to incorpo-
rate semantic information to improve the mapping quality.
They use a deconvolution network to classify changes be-
tween two query images taken from the same pose in the
world. They present a dataset with annotation for changes
in images taken from the same pose at different times.
They train a deconvolutional network on this data, and show
that a network can be learnt effectively to detect changes
in street view images. There are also approaches based on
information theory to reduce the number of landmarks in the
visual codebook, such as [18]. They use information theoretic
heuristics to remove landmarks that are adding little value.

The closest work to our presented framework is the
episodic localization approach proposed by Biswas et al [19]
using a varying graphical network. They propose a method
that distinguishes temporal and permanent objects based on
the reprojection error of the feature. This allows them to
classify the features into long and short term features in the
map. They also modify the cost function at every timestep
with the current estimate of the feature being long/ short
term to improve navigation accuracy. Temporary maps [20]
is another approach that is proposed to keep track of newly
appearing objects in the environment or objects that have not
been previously mapped to improve navigation accuracy. All
these works focus on indoor navigation, and are not directly
applicable to autonomous vehicle navigation applications.

In contrast to previous works, our approach improves both
the tracking process and the mapping quality by selecting



visual landmarks based on semantic categories associated
with the extracted features. Our framework is also easy to
be formulated, and can be applied in any vision-based nav-
igation systems. We show that our approach uses semantic
information to improve vehicle navigation performance, both
with and without the use of pre-mapped visual landmarks.

Note the main interest of this work is the overall global
navigation accuracy including places where only few or no
valid visual landmarks are available due to scene occlusion
or appearance change. Thus, we evaluate our GPS-denied
navigation accuracy against ground truths provided by fusing
high-precision differential GPS with IMUs, which is different
from calculating the localization error as the relative distance
to the visual map [21].

III. APPROACH

This section describes our approach to incorporate se-
mantic information for vision-based vehicle navigation. Note
our approach is generic to any vision-based SLAM systems
for vehicle navigation. However, for implementation and
demonstration purposes, our approach is built on top of two
state-of-the-art vision-based navigation systems [6], [7].

Our approach improves the system performance in three
ways: the feature tracking process, the map building process,
and the navigation accuracy using pre-mapped landmarks.
The ORB-SLAM2 system [7] has been proposed for vehicle
navigation applications without the use of GPS or geo-
referenced visual maps. For this system, our approach utilizes
the semantic information to improve its feature tracking
process during navigation.

The tightly-coupled visual-inertial navigation system in [6]
efficiently utilizes pre-mapped visual landmarks to achieve
sub-meter overall global accuracy in large-scale urban en-
vironments, using only IMU and a monocular camera. It
also builds a high-quality, fully-optimized map of visual
landmarks beforehand using IMU, GPS, and one monocular
camera. Our approach incorporates semantic information in
this system for both the map building process and GPS-
denied navigation using pre-mapped visual landmarks.

A. Semantic Segmentation

The semantic segmentation for the input sequence is
processed using the SegNet encoder decoder network [3].
The encoder decoder network comprises of 4 layers for
both encoder and decoder, 7x7 convolutional layers and
64 features per layer. The SegNet architecture is used to
generate the per-pixel label for the input sequences. There are
total 12 different semantic class labels: Sky, Building, Pole,
Road Marking, Road, Pavement, Tree, Sign Symbol, Fence,
Vehicle, Pedestrian, and Bike. The SegNet architecture is
used here because of available trained models for urban
segmentation tasks and the ease of use. Note our framework
is designed to incorporated semantic information from any
available methods, so this pre-trained network can be re-
placed by any method that can generate a dense segmentation
labels on video frames.

TABLE I: The table below shows the configuration that was used to generate
a low rank approximation of the SegNet architecture.

# of Kernels Original Low Rank
conv1_1 64 8
conv1_2 64 32
conv2_2 128 32
conv3_1 256 32
conv3_2 256 64
conv3_3 256 64
conv4_1 512 64
conv4_2 512 64
conv4_3 512 128
conv5_1 512 128
conv5_2 512 128
conv5_3 512 128

conv5_3_D 512 128
conv5_2_D 512 128
conv5_1_D 512 128
conv4_3_D 512 128
conv4_2_D 512 64
conv4_1_D 512 64
conv3_3_D 256 64
conv3_2_D 256 64
conv3_1_D 256 32
conv2_2_D 128 32

1) Gray-Scale Conversion: Note the navigation system
we used from [6] focuses on visual feature extraction,
tracking, and matching on gray-scale video frames, not
color images. Therefore, all the video data from [6] used
for experiments is grayscale. For the purpose of evaluating
the SegNet encoder decoder network [3], we fine-tuned the
network on the CamVid dataset [22] for about 50 epochs with
the images in the training sequence converted to grayscale.

2) Computation Improvement: Note SegNet is not de-
signed for real-time navigation applications. To fulfill the
computation requirements for navigation systems, we im-
prove the efficiency of the SegNet model while still main-
taining its accuracy by converting the model into a low
rank approximation of itself. The conversion is based on the
method proposed by [23]. The configuration chosen for this
approximation is shown in Table I. The segmentation time,
which is the forward pass performance time of the SegNet
model, is therefore improved from 160 ms to 89 ms (almost
2x performance) to process one image on a single Nvidia
K40 GPU. Similar accuracy is maintained by fine-tuning
this low-rank approximation for approximately 4 epochs. For
comparison, we show the performance of the final low-rank
approximation using the same test sequences of the CamVid
dataset against the original pre-trained SegNet model. This
comparison is shown in Table II.

B. Gated Factor graph

We proposed a new gated factor graph framework (Figure
2), which is inspired by the work of [24], to incorporate
semantic information on top of vision-based SLAM systems
for vehicle navigation applications.

Factor graphs [25] are graphical models that are well
suited to modeling complex estimation problems, such as
SLAM. A factor graph is a bipartite graph model comprising
two node types: factors fi ∈ F and state variables θj ∈ Θ.



TABLE II: The table below shows the accuracy comparison between the original pre-trained SegNet model and its low-rank approximation.
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Fig. 2: The figure shows a portion of our gated factor graph. The black dots
represent the factors across navigation states x and landmark states l. The
dotted lines represent the gated approach and c is the condition variable.

As shown in Figure 2, there are two kinds of state vari-
able nodes in our factor graph formulation for vision-based
SLAM systems: The navigation state nodes X includes the
platform information (such as pose and velocity) at all given
time steps, while the landmark states L encodes the estimated
3D position of external visual landmarks. Sensor measure-
ments zk ∈ Z are formulated into factor representations,
depending on how a measurement affects the appropriate
state variables. For example, a GPS position measurement
only involves a navigation state x at a single time. A camera
feature observation can involve both a navigation state x and
a state of unknown 3D landmark position l. Estimating both
navigation states and landmark positions simultaneously is
very popular in SLAM problem formulation, which is also
known as bundle adjustment [26] in computer vision.

The inference process of such a factor graph can be viewed
as minimizing the non-linear cost function as follows.

K∑
k=1

||hk(Θjk)− z̃k||2Σ (1)

where h(Θ) is measurement function and and || · ||2Σ is the
Mahalanobis distance with covariance Σ. There are many
efficient solutions to solve this inference process for SLAM
systems using the factor graph representation. One popular
solution is iSAM2 [27], which uses a Bayes tree data struc-
ture to keep all past information and only updates variables
influenced by each new measurement. For the details on
the factor graph representation and its inference process for
SLAM systems, we refer to [28].

Our new gated factor graph framework extends the factor
graph representation by modeling the semantic constraint as a
gated factor (the dashed lines in Figure 2) in the factor graph

for the inference process. As shown in Figure 2, a landmark
state lt is only added to the graph to participate the inference
process if the condition variable c is true. Otherwise this
landmark is not used during the inference process in the
vision-based SLAM system.

The value on the condition variable c associated with a
landmark state is assigned based on the modes of semantic
class labels from all observations (2D visual features) on
camera images for the same 3D visual landmark (Section III-
A). Note our SegNet architecture generates semantic class
label for each pixel on the image and there are total 12
different semantic class labels. However, the same landmark
may have different class labels generated by SegNet for
its observations across different video frames. Therefore
we accumulate the labels among 12 classes for all imaged
features correspondent to the same landmark, and decide the
Boolean value of the condition variable c for this landmark
based on the final counts among all 12 classes. If the
landmark is classified as a “valid” semantic class based on
the final counts, the condition variable c becomes true.

The selection of valid semantic classes for gated factors is
different across three perspectives for the navigation system:
the feature tracking process, the geo-referenced map build-
ing process, and the navigation system using pre-mapped
landmarks. We describe how we define the “valid” semantic
classes for each situation in the following subsections.

C. Visual Feature Tracking

Our framework is able to directly improve real-time
navigation performance by enhancing the feature tracking
process inside visual SLAM systems (such as [7]–[11]). To
validate the influence of our approach in pure feature tracking
process, we apply our framework on top of the popular ORB-
SLAM2 system [7], which cannot incorporate GPS or pre-
built geo-referenced maps for navigation.

For each of the tracked features identified on the current
video frame from [7], our gated factor graph framework
(Figure 2) makes inlier/outlier decision based on the modes
of semantic class labels from all 2D imaged positions tracked
on past frames of the same tracked feature. Visual features
identified as non-static (such as Pedestrian, Vehicle, Bike)
or far-away classes (such as Sky) are rejected, and will
not contribute to the navigation solution in visual SLAM
systems.

D. Geo-Referenced Map Building

For high-precision vision-based vehicle navigation sys-
tems (such as [6], [16]), our framework improves both the



mapping quality beforehand and the localization process
using pre-mapped visual landmarks. For demonstration, we
implemented our framework on top of the visual-inertial
navigation system from [6]. This system builds a high-
quality, fully-optimized map of visual landmarks beforehand
using IMU, GPS, and one monocular camera. Our gated
factor graph for this geo-referenced mapping process is
shown in Figure 3. Note there are GPS measurements (green
factors in Figure 3) used in the mapping process.

We integrated our semantic segmentation module which
classifies imaged regions on input video frames (as shown
in Figure 1) into this system [6]. This system uses a landmark
matching module to construct the keyframe database, which
is used to match features across images to the key frame
database. It also has a visual odometry module which gener-
ates the features to track across sequential video frames, and
passes these features to both the landmark matching module
and the inference engine. Our semantic segmentation module
receives information about the tracked landmarks from the
landmark matching module, and generates the values for the
c for the associated landmark constraints to the inference
engine, as shown in Figure 3. Note only the 2D-3D visual
landmarks from selected semantic classes are preserved in
our map. The map of all 2D-3D semantic visual landmarks
is then generated and optimized.

The semantic class label of the landmark is computed by
using the mode of the labels from all tracked 2D imaged
features of the same 3D landmark. The value of the semantic
categories is determined empirically. The classes for visual
landmarks that were found to be most useful for mapping
were Pole, Road Marking, Pavement, Sign Symbol, Tree,
Building, Fence. The semantic class labels that were rejected
for landmark selection were Sky, Pedestrian, Vehicle, Bike,
Road. This makes sense since the rejected classes of land-
marks are associated with non-static or far away objects. The
road often does not add much value visually since most of
the extracted features from the road are typically associated
with shadows, which change over time.

E. High-Precision GPS-Denied Navigation

After the landmark database generated from the pipeline in
Figure 3, GPS-denied navigation problem reduces to estimate
only the pose at the current time in the system from [6]. The
pre-built database is used by the landmark matching module
to match features tracked from the visual odometry module
on new perceived video frames, and provides absolute 2D-
3D corrections through pre-mapped visual landmarks in the
inference engine. Note the tracked features are also passed
from visual odometry module to our semantic segmentation
module. This allows our semantic segmentation module to
generate the condition variable civalues for all the constraints
associated with the tracked features during GPS-denied nav-
igation, as shown in Figure 4. Only visual features from
selected semantic classes are used in the inference engine.

Our framework with the GPS-denied navigation system
from [6] is visualized in Figure 5. The pictures on the
left show the current image and the segmentation from our

Fig. 3: The figure above shows a section of our constructed factor graph for
the pre-mapping process in the system from [6]. Factors are formed using
measurements from GPS, IMU, and feature tracks. Note factors formed from
different kinds of sensor measurements are shown as different colors. The
black bubbles represent the state denoted x and the green bubbles represent
a prior. The blue dots represent measurements and the blue bubbles represent
l states. The dotted lines represent our gated approach and c is the condition
variable.

Fig. 4: The figure above shows a section of our constructed factor graph
for the GPS-denied navigation system from [6] using pre-mapped semantic
visual landmarks. Factors are formed using measurements from IMU, feature
tracks, and pre-mapped visual landmark observations. Note factors formed
from different kinds of sensor measurements are shown as different colors.
The black bubbles represent the state denoted x and the green, orange and
purple bubbles represent a prior. The blue dots represent measurements and
the blue bubbles represent l states. The dotted lines represent the gated
approach and c is the condition variable.

semantic segmentation module for that image. The estimated
trajectory generated from our system is visualized in green,
and the red trajectory shows the ground truth for this
sequence.

IV. EXPERIMENTAL EVALUATION

We validated our framework on top of two vision-based
vehicle navigation systems [6], [7], as described in Section
III. Based on the different characteristics of these two sys-
tems, we conducted our experiments on various data sets to
demonstrate that our approach is able to utilize the semantic
information to improve the quality of the navigation solution
from different perspectives.

A. Feature Tracking for Navigation without Pre-Built Maps

To demonstrate the improvement in feature tracking using
our method, we modified the ORB-SLAM2 system [7] (Sec-
tion III-C) which uses stereo camera input on the publicly
available sequences (sequences 00 - 10) from the KITTI



Fig. 5: The figure above shows the visualization of the system. The image on
the top left is the current frame, and the bottom left is the segmentation for
that image. On the right, the trajectory visualized in green is the estimated
trajectory generated by our system and the red trajectory shows the ground
truth for this sequence.

localization benchmark [29] without the use of pre-built
maps. We keep the same configuration for all sequences, and
use the same configuration for both the baseline performance
and the results generated by combining our method with
[7]. The parameters chosen for this configuration were 2000
features, 1.2 scale factor, and 8 levels in the scale pyramid.
The initial FAST threshold is 12, and the minimum FAST
threshold is 7.

Note among these 11 KITTI sequences, there are 6 open-
loop sequences which cannot leverage the simultaneous on-
the-fly mapping capability from [7] to correct drift when
closing the loops during navigation. For these open-loop
sequences, the navigation accuracy is purely decided by
the visual feature tracking quality. As shown in Table III,
our approach reduces approximately 0.1% drift rate over
9.195 km distance by removing wrong tracked features for
these open-loop sequences. It also improves accuracy for
sequences with loop-closure optimization.

Figure 6 shows the qualitative improvement in one of
the KITTI open-loop sequences (sequence 09). For this
sequence, there are moving vehicles in both directions during
driving. Our method avoids the use of tracked features on
moving vehicles in ORB-SLAM2 system, and shows clear
improvement over the standard ORB-SLAM2 performance .
For this sequence, the final error in location without semantic
selection is 12.6363 meters whereas the final location error is
3.9253 meters with out method. The total trajectory distance
for this sequence is 1.71 km.

B. Landmark Matching Using Semantic Selection

To demonstrate our framework for high-precision vehicle
navigation applications using pre-built maps, we applied our
framework on top of the system from [6]. We collected data
across seasons within same large-scale urban environments
which include a variety of buildings, highway driving, and
lighting variations. The vehicle we used for experiments
incorporates a 100Hz MEMS Microstrain GX4 IMU and
one 20Hz front-facing monocular Point Grey camera. High-
precision differential GPS, which is also installed on the
vehicle, was used both for geo-referenced map construction

Fig. 6: The qualitative improvement (visualized in color) on KITTI sequence
09, using our approach on top of ORB-SLAM2 system. The x and y axes
are in meters.

and for ground truth generation (fused with IMU) to evaluate
our GPS-denied navigation system. All three sensors are
calibrated and triggered through hardware synchronization.
Note for testing this system, we are not aware of any publicly
available vehicle data that provides raw IMU and differential
GPS measurements with forward-facing camera inputs across
season changes at the same place.

The total driving distance is 5.6 km and the total driving
time is around 10 minutes for each of the test sequences.
Representative images from the test sequences can be seen
in Figure 7. Three sequences are used for our experiments,
and they are collected by driving in a clockwise loop along
the same path around the campus. The database for all
experiments is constructed from one data sequence collected
in the morning on a partly cloudy day in winter.

In this experiment, we evaluate the camera re-sectioning
error and the improvement that can be only gained by using
semantic selection for the pre-mapped visual landmarks. The
results of this experiment are shown in Table IV. As can be
seen from Table IV, the overall accuracy in the 3D error is
reduced by approximately 30 cm in all sequences and the
standard deviation is compressed in all the sequences which
shows the improved robustness of the system across seasonal
variations using our approach for semantic selection.

Note the camera resection error is computed using all
the matched 2D-3D landmarks from the same single key
frame stored in the database. All landmarks with different
3D estimated uncertainty are treated equally to compute the
camera resection error. There are also outliers in landmark
matching results, which increase the error.

C. Navigation Using Semantic Pre-Mapped Landmarks

In this evaluation, we measure 3 error metrics to show
the improvement by using our semantic selection module
for the entire visual inertial navigation solution. Note there
are some portions in the test sequence where there are few
or no pre-mapped landmarks available due to occlusion or
scene changes. However, the navigation system from [6]
continuously estimates 3D global pose by tightly fusing
IMU data, local tracked features from a monocular camera,
and global landmark points from associations between new



TABLE III: The table below shows our approach reduces the drift rate and mean final location error of the ORB-SLAM2 system for 6 open-loop sequences
(open-loop), 5 sequences with loop closures (closed-loop), and all 11 sequences (overall) respectively.

Location drift rate Mean Final Location Error
Location drift rate ORB-SLAM2 (%) ORSB-SLAM2+Ours (%) ORB-SLAM2 (m) ORB-SLAM2 + Ours

Open-Loop 1.6103 1.5234 24.6778 23.3461
Closed-Loop 0.5369 0.5292 13.7130 13.5164

Overall 0.9862 0.9453 19.6938 18.878

TABLE IV: The table below shows the improvement in the landmark matching module between using the semantic selection of the landmarks and traditional
landmark matching. The 3D mean/std error is from the camera re-sectioning error given the pre-mapped 3D locations from the database sequence.

3D Position Accuracy Without Semantic Selection (meter: mean/std deviation) With Semantic Selection (meter: mean/std deviation)
Winter, Partly Cloudy

Morning
1.871 / 5.745 1.457 / 3.756

Winter, Partly Cloudy
Noon

2.084 / 5.851 1.586 / 3.141

Spring, Sunny Morning 1.405 / 0.992 1.140 / 0.476

TABLE V: The table below shows the 3D RMS error, 3D Median error, 3D 90 percentile error in the visual-inertial navigation solution with/ without
semantic landmark selection.

3D RMS Error 3D Median Error 3D 90 percentile error
without

semantic (m)
with

semantic
selection (m)

without
semantic (m)

with
semantic

selection (m)

without
semantic (m)

with
semantic

selection (m)
Winter Partly
Cloudy Noon

0.5378 0.4207 0.3532 0.2856 0.7878 0.6109

Spring Sunny
Morning

1.1300 0.9640 0.7077 0.6227 1.8656 1.5476

Fig. 7: The figures above show representative images in the sequences. The figure on the far left shows an image where there are trees on both sides and
no dynamic objects in the scene. The middle images shows cars on both sides and is on the highway, the right image shows houses on both sides and
parked cars. These 3 types of environments are present in all the test sequences used in the experiments.

observed features and pre-mapped visual landmarks. It treats
each new observation of a pre-mapped visual landmark as a
single measurement instead of computing only one pose mea-
surement from all landmark observations (such as in Section
IV-B) at a given time. This way tightly incorporates geo-
referenced information into landmark measurements, and is
capable of propagating precise 3D global pose estimates for
longer periods in GPS-denied setting, which results lower
error than pure landmark matching error in Section IV-B.

The 3D RMS error from our GPS-denied navigation
solutions is computed across the whole test sequence and is
compared to the ground truth generated by the solution using
differential GPS and the IMU. We compare our solution
using semantic information to the solutions presented by [6].
The first metric is the 3D root mean square error for the
trajectory with and without the semantic selection module.

As can be seen in Table V, there is 21% improvement in
the 3D RMS error. Table V also shows the 3D median error
and the 90 percentile error. As can be seen, our approach
improves the 3D Median error of the navigation solution by
19.1% and improves the 3D 90 percentile error by 22%.

V. CONCLUSIONS

In this paper, we present our framework to improve
GPS-denied vehicle navigation accuracy in large-scale urban
environments, using semantic information associated with
visual landmarks. Our framework utilizes the semantic in-
formation to improve the quality of the navigation solution
from three perspectives: the feature tracking process, the geo-
referenced map building process, and the navigation system
using pre-mapped landmarks. In comparison to previous state
of the art techniques, we show an improvement of around



20% accuracy which is significant for the precise vehicle
navigation applications using pre-mapped visual landmarks.

Compared to other semantic localization and mapping ef-
forts, we present a simple and yet effective approach to both
construct landmark databases and to perform localization.
This could be further augmented by incorporating cues from
other types of information and is not limited to semantic
segmentation. We are also not dependent on using a single
technique for segmentation and this can be replaced by other
techniques as the state of the art improves.

For future work, we plan to accumulate better maps by
aggregating physically close features using their semantic
labels and enhance the visual map construction by intelli-
gently gathering data from multiple collections. Since we are
already able to separate visual features that are associated
with permanent objects, the accuracy would only improve
with multiple runs since we can aggregate different infor-
mation to update the label associated with the landmark. We
also plan on experimenting with deep learned features in our
system, that can be trained to extract both a visual descriptor
and a category label for the landmark.
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