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Abstract— Recent advances in Automated vehicle (AV) tech-
nology and micromobility devices promise a transformational
change in the future of mobility usage. These advances also pose
challenges concerning human-AV interactions. To ensure the
smooth adoption of these new mobilities, it is essential to assess
how past experiences and perceptions of social interactions
by people may impact the interactions with AV mobility.
This research identifies and estimates an individual’s wellbeing
based on their actions, prior experiences, social interaction
perceptions, and dyadic interactions with other road users.
An online video-based user study was designed, and responses
from 300 participants were collected and analyzed to investigate
the impact on individual wellbeing. A machine learning model
was designed to predict the change in wellbeing. An optimal
policy based on the model allows informed AV actions toward
its yielding behavior with other road users to enhance users’
wellbeing. The findings from this study have broader implica-
tions for creating human-aware systems by creating policies that
align with the individual state and contribute toward designing
systems that align with an individual’s state of wellbeing.

I. INTRODUCTION

Recent innovations in mobility on developing autonomous
vehicles [1] and delivery robots hold promise not only toward
safety but also toward comfortable and satisfactory mobility
interactions [2]. With advances in automated vehicle (AV)
technology and shared mobility [3], [4], there have been civic
planning and engagement efforts to consider the demands
at a societal level of such mobilities [5], [6]. However, the
adoption of these technologies require societal acceptance as
these can potentially change traffic interactions[7]. Specifi-
cally, these new forms of AVs should be able to coexist with
existing road users. However, there have been several societal
challenges toward this smooth transition. As manifested in
the recent pushback on adopting such mobility, in the 2023
Paris referendum, 89% of voters supported a ban on electric
scooters [8]. One of the primary reasons for such public
sentiment is the perception of disregard towards public space
and potential conflicts with other road users [9]. To avoid
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this, mechanisms are needed to increase human acceptance
and satisfaction.

Primarily, researchers have focused on the safety and
comfort of road users. The major promise of AV technology
has been towards enhancing safety for drivers and road users
[10]. A roadblock to the adoption of AV technology has
been the challenge of public perception of their capabilities
and how that would impact other road users they would
interact with [11]. With the future of mobility dependent on
AV and humans existing in harmony, it is critical that the
efficacy of these interactions is not merely judged on safety
parameters alone but should consider factors that would im-
pact the overall wellbeing of the humans. Thus, we propose
wellbeing as a critical factor for assessing mobility users’
safety, satisfaction, and comfort. Amongst world institutions,
wellbeing has been considered a potential proxy measure
to define the state of an individual [12]. Wellbeing could
be defined as “when individuals have the psychological,
social and physical resources to meet challenges related to
those resources” [13]. Studies have found better wellbeing
to be associated with greater satisfaction with transportation
mobility used for commuting by survey participants [14].
A systematic review of factors underpinning unsafe traffic
behavior showed higher levels of wellbeing can help mitigate
potential driving-related violations[15]. Additionally, trust
in the AV and satisfaction with the interaction are critical
factors that can impact users’ adoption of the new mobilities.
Individuals may face challenges due to unintended actions
from AV mobility, which may not align with the preferences
of the user [16], as well as the perceptions of other road
users about their AV mobility [17].

This research aims to identify and estimate whether an
individual’s wellbeing is associated with the type of actions
they observe and how they want their AV mobility to interact
with sidewalk road users. As a first step toward addressing
this challenge, this work focuses on how interactions elicit
a response when they encounter a dyadic bi-directional
interaction when there is symmetry in action. Specifically,
we investigate accommodative actions, consisting of yielding
and unyielding actions, during a conflict of the path in an
interaction. An observational user study was conducted to
understand the empirical evidence on whether wellbeing will
impact the intention, satisfaction, and the type of action cho-
sen by traffic participants. Based on the findings, we propose
a predictive model to assess the increase and decrease in
their wellbeing based on the interaction and their inherent
state of wellbeing. Through this machine learning-based
approach, we propose a novel approach toward furthering
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Instructions
In this experiment, you will be the rider of an autonomous sidewalk mobility
vehicle. The autonomous sidewalk mobility vehicle is similar to E-Scooter that has
self-driving capabilities (The image is shown below). Hereafter, we will call it self-
driving scooter. This self-driving scooter is designed to ride on the city sidewalks.
During the ride, you can monitor the behavior of the self-driving scooter, where
the position, speed, braking, and all other driving functionality will be controlled
by the vehicle. It is your responsibility to monitor the vehicle.

If at any point you feel the need to brake to slow/stop the self-driving scooter,
press the spacebar to show your intent to brake. Note that the vehicle will not
stop when pressing the spacebar.

Fig. 1: Information about the mobility at the beginning of
the experiment.

Fig. 2: Layout of the scenario shown to the participants.

the relationship between individual factors that may influence
the individual’s wellbeing. To our understanding, no existing
research has looked to predict the state of wellbeing based
on situational interactions and the current state of wellbeing.

II. USER STUDY

We used an online user study to evaluate the influence of
interactions between a delivery robot and an AV scooter. This
experiment assessed different facets of an individual’s trust,
wellbeing, and travel satisfaction. This section describes the
details of the study.

A. Materials

The scenarios were based on an urban-mixed traffic envi-
ronment, similar to downtown areas. The participant observes
the ego view of an individual riding an AV scooter. At
the beginning of the experiment, participants were informed
about the mobility design and how the participant is required
to monitor the vehicle. The participants’ instructions and the
mobility design are shown in Figure 1. For the online study,
video recordings of a custom driving simulator were used
to simulate the scenarios. The simulated environments were
created using Unreal Engine 4.27 [18] with AirSim [19].
The videos were recorded with the front-facing camera with
a 133-degree horizontal field of view. The participants could
observe the scooter handle and their hands as they rode it.
A sample interaction is shown in Figure 2.

For each scenario, participants made decisions about how
to interact with other road users. The decisions from the
participant required coordination among road users where the
outcome may not be rule-driven. In the scenarios, the road
user was the delivery robot, and the participant expressed
their intent for the AV scooter. The maneuver would be

completed by the AV scooter, which may or may not align
with the participant’s intent.

B. Scenarios

Participants were presented with two rides, each compris-
ing two interactions. Four scenarios were developed where
the ego and sidewalk road user (delivery robot) performed
either yielding or unyielding action. Figure 3 displays the
four scenarios used in the study. In the first interaction,
participants received yielding or unyielding behavior from
the delivery robot. In the second interaction, the roles were
reversed where the ego point of view performs the yielding
or unyielding action, and the other road user (delivery robot)
receives the action. These two interactions repeat in the next
ride with different scenarios.

C. Study design

To evaluate the impact of the interactions between the
AV scooter and other road users on participants’ wellbeing,
a mixed design was chosen. The 2 between-subject factors
for the study design were: (1) Ego scooter’s action: the AV
scooter yielding to the delivery robot or unyielding to the
delivery robot, and (2) Other’s action: The robot yielding to
the ego or unyielding to the ego. The within-subject factor for
the experiment was the different scenarios presented to the
participants. The levels of the scenarios were : S2 → S1,
S3 → S2, S4 → S3, and S1 → S4. The scenarios were
randomly chosen from a balanced Latin square combination
of the 4 scenarios. For the next ride, a pair of scenarios were
chosen that were not seen in the previous interaction. The
combinations of scenarios are shown in Table I. There were a
total of 32 combinations resulting from the two 2-interaction
rides, each involving four different accommodative actions.
To simplify the cases, the robot’s accommodative action
remained the same in both rides, while the scooter could
perform all possible permutations of accommodative actions
across the two rides. The sequence was randomized to
minimize learning effects that may compromise the study’s
validity. The accommodative behaviors in these scenarios
were: (1) stopping and yielding for the delivery robot to go
first(S1 and S3), (2) merging (S4), and (3) changing their
path (S2). Given the participant’s intent, the AV scooter’s
behavior was aligned or non-aligned with the participant’s
intent to yield. Aligned means that the AV scooter would
take the same action as intended by the participant. Non-
aligned means the scooter AV action was different from the
intention expressed by the participant.

D. Experimental conditions

The experimental conditions were presented to the par-
ticipants, where two factors - (1) robot action (yielding or
unyielding, denoted as Oy and Ou, respectively), and (2)
ego AV scooter action (yielding or unyielding, denoted as
Ey and Eu, respectively) were presented as a combination
to participants.



(a) Scenario S1 (b) Scenario S2 (c) Scenario S3 (d) Scenario S4

Fig. 3: Different scenarios presented to participants. The blue arrow shows the AV scooter’s path, and the yellow arrow
shows the delivery robot’s path.

TABLE I: Order of scenarios in each interaction and accom-
modative action combinations

Interactions Accommodative actions
1st two-interaction ride 2nd two-interaction ride

S2 → S1 S4 → S3 OuEu

S3 → S2 S1 → S4 OuEy

S4 → S3 S2 → S1 OyEu

S1 → S4 S3 → S2 OyEy

E. Study Procedure

1) Participant recruitment: A total of 300 participants
(161 males, 132 females, and 7 others; mean age of 39.35,
SD = 13.55) were recruited from the Prolific1 online study
platform. Participants were required to be adults (greater than
18 years old) holding a valid US driver’s license. For their
participation, each participant received $3.0 as compensation
for completing the survey, which took approximately 25
minutes to finish. All participants provided informed consent,
and the study was approved by the Bioethics Committee in
Honda R&D (approval code: 99HM-065H).

2) Procedure: Participants received instructions and com-
pleted a pre-experiment survey to measure their initial social
interaction perceptions that captures their content, positive
relationship, and wellbeing (see Table II). Participants then
underwent a 3-minute training session on the web-based
driving simulation. The training included familiarization with
the simulation, other road users, and how participants interact
with delivery robots. They were also instructed to complete
the survey post-interactions. All the survey questions were
displayed in a pop-up window, similar to the main study.
Participants were instructed on how the scooter communi-
cates the situation in a descriptive voice to the user and
how to indicate their intent to brake or decelerate using the
space bar. Upon completing the tutorial, each participant
completed two rides consisting of two interactions. After
each interaction, participants answered questions about their
wellbeing, trust, positive relationship, and satisfaction. In
the second interaction, they were asked to indicate their
preferred action for their self-driving scooter before they
saw the scooter’s behavior toward the robot. After complet-
ing both rides, participants answered questions about their
demographic information and previous experience with au-
tonomous features in vehicles, and prior micromobility use.
In the end, they were compensated for their participation.
The entire experimental procedure is illustrated in Figure 4

1Prolific Academic Ltd. (www.prolific.co)

TABLE II: Initial questionnaire to capture social interaction
perceptions.

1. Social wellbeing: Content - Generally, I am content with the relation with
sidewalk and road users
2. Social wellbeing: Positive relation - Generally, I think the sidewalk and
road users around me interact with each other in a positive manner
3. Social wellbeing: Ego wellbeing - Generally, experience with sidewalk
and road users contributes to my wellbeing

TABLE III: Wellbeing (1–7) and Trust (8) questionnaire

1. Positive relationship (me to others): Based on the current interaction, I am content
with the relation with other robot.
2. Positive relationship (others to me): Based on the current interaction, I think the
delivery robot around me handle others in a positive manner.
3. Satisfaction (positive activation): During my current travel event I w;as wor-
ried/confident.
4. Satisfaction (positive deactivation): During my current travel event I was tired/alert.
5. Satisfaction (cognitive evaluation): My current travel event worked poorly/worked
well.
6. Wellbeing: This travel event contributes to my wellbeing.
7. Trust (in others): Based on the current interaction, I trust robots in my surrounding.
8. Trust (in scooter): Based on the current interaction, I trust my self-driving scooter.

3) Attention Checks and Commitment Question: To en-
sure high data quality from attentive and motivated partic-
ipants in the online study, five attention check questions
and a commitment request were included in the survey.
Studies show that asking respondents to commit to providing
thoughtful responses decreases the rate of quality issues [20].
Post-training, participants were asked to commit to providing
thoughtful answers. For the first attention check question, a
counterfactual statement was presented to assess the attention
of participants (e.g., “I work fourteen months in a year”:
yes or no) in the pre-experiment survey. This statement was
incorporated to elicit the correct response from attentive
respondents [21]. The main survey included four additional
questions (two per ride) consisting of instructed response
items and special attention checks. Specifically, respondents
were asked to select a specific response category (e.g., select
“strongly disagree”) [22]. No data was recorded for the
participants who failed two or more attention checks.

F. Measurements

1) Individual state of trust, wellbeing, and positive rela-
tions: We utilized a modified version of the social interac-
tion perception questionnaire developed by Radzyk [23] to
assess users’ wellbeing (Q1–Q7 in Table III). The adapted
questionnaire was situational and more relevant to our study
scenario. The questionnaire was designed to measure four
factors: (1) positive relationship, (2) satisfaction with travel
[24], (3) general wellbeing, and (4) trust. We included two

www.prolific.co
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Fig. 4: The procedure followed by all the participants

questions to assess positive relationships about (1) Partic-
ipants’ relationships toward others (Q1) and (2) Others’
relationships toward them (Q2). To measure satisfaction with
travel, we included one question from the three factors in
Satisfaction with Travel Scale [24]: positive activation (Q3),
positive deactivation (Q4), and cognitive evaluation (Q5).
After each interaction, we included a question to measure the
user’s overall sense of wellbeing (Q6). Trust was measured
using a question about the user’s trust in others (Q7).
Additionally, Participants’ trust in the self-driving scooter
was also assessed independently (Q8) (see Table III for more
detail). The measures of positive relations and satisfaction
with travel were the mean scores of the two responses each
participant provided after each interaction.

2) Social interaction perceptions between road users:
Participants responded to three questions to assess the ini-
tial perception of social interactions between participants
and other road users. The questions covered: (1) general
contentment between sidewalk and road users, (2) positive
relationship between sidewalk and road users, and (3) per-
ceived ego wellbeing as a result of their experience with
sidewalk and road users. The statements are shown in Table
II. The participants responded on a scale of 1 to 7, where 1
corresponds to low, whereas 7 corresponds to high.

3) User’s yielding/unyielding intention: To determine the
user’s intention in the interaction where the ego is the
contributor, participants were asked: “What action would you
like your self-driving scooter to take regarding the delivery
robot?” Two options are given, one implying yielding action
and the other unyielding action. By asking this question,
we can assess whether the user’s intention aligns with
the behavior of the self-driving scooter in that particular
scenario.

4) User’s braking behavior: To determine the user’s
braking behavior, key presses from the online study were
recorded and analyzed. Participants expressed their intent to
brake by pressing the Spacebar key on their computers to
record if they felt their mobility should brake or decelerate. A
gray indicator outlining the screen would show up to provide
visual feedback. The scooter’s actual driving behaviors are
not affected by participants’ button-pressing inputs. The fre-
quency (number of brake presses) and the intensity (longest
continuous brake press) were recorded to account for the
braking behavior of the participants.

III. REGRESSION ANALYSIS

Of the 300 participants, 299 were considered for the
analysis (responses from 1 participant were not recorded).
Out of all participants, only 43 participants reported using
an Electric bike, 24 had used a Segway, and 76 had used
an electric scooter before the experiment. Participants aged
18 to 25 reported the lowest positive experience while using
micromobility, whereas those aged 36-45 reported the highest
positive experience.

A. Results from the regression analysis

A linear mixed effects model using lme4 [25] package in
R was used to measure the influence on trust, wellbeing, and
satisfaction. For the analysis, the following model was used
for the dependent variables (DVs):

DV ∼ Robot yielding + AV scooter yielding +

Braking frequency + Social interaction perception +

Scenarios + Alignment + (1|Participant) + ϵ

The dependent measures were based on the survey statements
reported in Table III: (1) Wellbeing (question 6), (2) Satisfac-
tion (mean of questions 3,4 and 5), Trust (in other) (question
7), and Trust (in scooter) (question 8). Table IV shows the
statistically significant findings from the study (p-value <
0.05). The results from the analysis found that interaction
with other road users influenced self-reported measures for
participants. The delivery robot’s yielding behavior by the
delivery robot positively influenced the state of wellbeing,
satisfaction, and trust in other road users when the partici-
pants interacted with the robot during the first interaction.

1) Wellbeing: The analysis found that yielding behavior
from robots found an increase in wellbeing in the first inter-
action. Additionally, the frequency of the intention to brake
was negatively associated with wellbeing. Out of the scenario
combinations, S2 → S1 was found to increase wellbeing.
The Social interaction perceptions on ego wellbeing was
found to increase wellbeing for both interactions.

2) Satisfaction: The analysis found that yielding behavior
from robots found an increase in satisfaction in both inter-
actions. The frequency of intention to brake was negatively
associated with satisfaction in the first interaction. The per-
ceived ego wellbeing was found to increase satisfaction for
only the first interaction. For both interactions, scenarios:
S2 → S1, S3 → S2, and S1 → S4 was found to increase
satisfaction.



TABLE IV: Estimates from the regression analysis. Only estimates with p-value < 0.05 have been reported. *p < 0.05;
**p < 0.01; ***p < 0.001

Dependent Variable Independent Variable Estimate Std. Error t-value p-value η2p-value

Wellbeinginteraction 1

Robot yielding 0.2934 0.1479 1.984 0.0482∗ 0.01
Brake frequency: Interaction 1 −0.0950 0.0304 −3.129 0.0018∗∗ 0.02
Social interaction perception: Ego wellbeing 0.4488 0.0707 6.344 < 0.0001∗∗∗ 0.12
Scenario: S2 → S1 0.3418 0.1013 3.375 0.0008∗∗∗ 0.04

Wellbeinginteraction 2 Social interaction perception: Ego wellbeing 0.4553 0.0715 6.365 < 0.0001∗∗∗ 0.12

Satisfaction (positive activation)interaction 1

Robot_yielding 0.3737 0.1149 3.254 0.0013∗∗ 0.04
Brake frequency: Interaction 1 −0.0510 0.0236 −2.160 0.0312∗ 0.000812
Social interaction perception: Ego wellbeing 0.1089 0.0549 1.983 0.0484∗ 0.01
Scenario: S1 → S4 0.4690 0.1282 3.658 0.0003∗∗∗ 0.03
Scenario: S2 → S1 0.6573 0.0788 8.340 < 0.0001∗∗∗ 0.19
Scenario: S3 → S2 0.4052 0.1269 3.192 0.0015∗∗ 0.02

Satisfaction (positive activation)interaction 2

Robot yielding 0.3665 0.1154 3.176 0.0017∗∗ 0.03
Scenario: S1 → S4 0.4192 0.1264 3.320 0.0010∗∗∗ 0.03
Scenario: S2 → S1 0.6771 0.0805 8.413 < 0.0001∗∗∗ 0.19
Scenario: S3 → S2 0.4144 0.1276 3.247 0.0013∗∗ 0.02

Trust (in others)interaction 1

Robot yielding 0.5802 0.1706 3.401 0.0008∗∗∗ 0.20
Brake frequency: Interaction 1 −0.0964 0.0389 −2.470 0.0138∗ 0.000245
Social interaction perception: Ego wellbeing 0.3209 0.0814 3.945 0.0001∗∗∗ 0.03
AV scooter yielding −0.2429 0.1138 −2.133 0.0334∗ 0.000551
Alignment 0.2950 0.1135 2.599 0.0096∗∗ 0.00000343
Scenario: S1 → S4 −0.4357 0.1918 −2.271 0.0236∗ 0.10

Trust (in scooter)interaction 1

Social interaction perception: Positive relation 0.2224 0.0932 2.385 0.0177∗ 0.05
Social interaction perception: Ego wellbeing 0.1984 0.0733 2.707 0.0072∗∗ 0.10
Scenario: S2 → S1 0.6539 0.1107 5.907 < 0.0001∗∗∗ 0.10

Trust (in scooter)interaction 2

Brake frequency: Interaction 1 −0.1137 0.0373 −3.052 0.0024∗∗ 0.02
Social interaction perception: Ego wellbeing 0.2169 0.0807 2.688 0.0076∗∗ 0.02
AV scooter yielding 0.7437 0.1083 6.864 < 0.0001∗∗∗ 0.10

3) Trust: The analysis found that yielding behavior from
robots found an increase in trust in other road users in the
first interaction. The frequency of intention to brake was
negatively associated with trust in other road users in the
first interaction. The perceived ego wellbeing was found to
increase trust in others for both interactions. For the first
interaction, yielding behavior from the AV scooter resulted
in negative impact on trust in others, whereas the alignment
in AV action and Robot action resulted in positive influence
on trust in others. The perceived ego wellbeing was found
to increase trust in others for only the first interaction. trust
in AV scooter increased due to perceived ego wellbeing,
and perceived positive relations with other road users in the
first interaction. In the second interaction, braking frequency
decreased trust in AV scooter, whereas yielding behavior
from AV scooter increased trust in AV scooter.

B. Implications from the findings
Findings from the regression analysis show that the yield-

ing behavior of the delivery robot and the yielding behavior
of the AV scooter increased wellbeing and trust in the AV
scooter, respectively. This implies that any yielding behavior
from the delivery robot enhanced participants’ wellbeing and
trust. However, AV scooter yielding resulted in lower trust
in other road users. This result could be attributed to the
interplay between trust in AV versus trust in society, given
the action of other road users.

Results found wellbeing, satisfaction, and trust were pos-
itively influenced by initial social interaction perceptions.

This could be attributed to an individual’s initial perceptions
about their social interactions and how they impact trust
and wellbeing during interactions with other road users.
Additionally, different scenarios also impacted participants’
wellbeing and satisfaction. All scenarios except for S1 → S4
reported an increase in wellbeing, trust, and satisfaction.
S1 → S4 involved the delivery robot approaching the
participant from behind in S4, which may help explain
trust and satisfaction. Results also found a negative impact
of braking frequency on trust, wellbeing, and satisfaction.
This finding could be attributed to participants expressing
higher perceived risk through braking. Findings from the
regression analysis provide a unique perspective on how
social interactions with different behaviors impact the user’s
state, one of which is their state of wellbeing.

As a result, for a human-aware system to enhance users’
wellbeing, the system needs to consider four critical elements
while making its decisions: 1) the system should adapt
its behavior based on the scenario depending on users’
perception of the scenario; 2) the system should consider
objective indicators such as users’ braking intentions; 3) prior
knowledge of users’ wellbeing can assist in ensuring optimal
action; and 4) the system actions should be personalized
to the user based on user’s perception about their social
interactions. To demonstrate this concept, we develop a
preliminary model to predict the change in wellbeing by
utilizing the findings from regression and propose the optimal
policy to increase users’ wellbeing.



IV. PREDICTIVE MODELING AND OPTIMAL POLICY

Based on the findings from the regression analysis, we
infer that the participants’ wellbeing is influenced by the
yielding behaviors of the robot and AV scooter, scenario
type, influence of social interaction on ego wellbeing, and
braking behavior from the participant. Therefore, a human-
aware system that can utilize these relations to make better-
informed decisions can help enhance user’s wellbeing. The
system must first predict the user’s wellbeing and then utilize
it to calculate the optimal action. To achieve this design,
we propose a classification model that can predict change
in wellbeing as a binary variable (decrease or increase).
Hereafter, wellbeing is calculated as the average value of
the user’s response to the wellbeing questionnaire (Q1-7
in Table III) to combine the effect of positive relation,
satisfaction, and trust in others.

A. Model Training and Evaluation

We consider the participants’ past experience, robot and
scooter actions, scenario type, and user’s initial wellbeing
and braking behavior as potential predictors. Participants’
past experience includes their prior micromobility use and
their responses to the social interaction perception question-
naires. Robot action is considered a binary variable, where
1 represents yielding behavior, and 0 represents unyielding
behavior in the first interaction of a ride. Similarly, Scooter’s
action is also considered a binary variable with the same
coding applied to the robot’s action for the second interaction
of a ride. The initial wellbeing is calculated based on
the user’s response in the first interaction. The change in
wellbeing is defined as decreasing if the wellbeing response
in the second interaction decreases compared to that in the
first interaction. It is defined as increasing if it remains the
same or increases in the second interaction. Scenario type
consists of the four scenario types (S1-4) and is one-hot
encoded. Finally, the user’s braking behavior is defined as a
binary variable of whether the user indicated to brake before
the intention question in the second interaction or not. Note
that we do not use alignment or user’s intention as a predictor
as they cannot be obtained in real applications. For the 299
participants’ data, since each participant completed two rides,
we have a total of 598 samples.

Given the modest sample size, we train simple classifica-
tion models to predict wellbeing change. We consider logistic
regression (LR), support vector classifier (SVC) with radial
basis function (RBF) kernel, random forest (RF) classifier,
and AdaBoost classifier. To identify the best set of features
for each of the classifiers, we use backward sequential feature
selection to obtain the smallest feature set that maximizes
the area under the curve (AUC) for the receiver’s operating
characteristics (ROC). The AUC-ROC is calculated using 5-
fold cross-validation during the feature selection. Based on
the selected feature set for each model, we then calculate
the model’s performance using 5-fold cross-validation, where
each fold consists of a different set of participants. We iterate
the cross-validation 1000 times with a randomized split of
participants across the folds in each iteration to obtain robust

TABLE V: Average 5-fold cross-validation performance of
the models with 95% CI.

Accuracy F1-score AUC-ROC

SVC 69.47%± 0.06% 0.7781± 0.0005 0.7136± 0.0006
LR 65.86%± 0.05% 0.7539± 0.0004 0.6866± 0.0004
RF 62.52%± 0.08% 0.7121± 0.0007 0.6275± 0.0008
AdaBoost 64.73%± 0.07% 0.7345± 0.0005 0.6840± 0.0006

performance metrics for the participants’ distribution. The
models are trained using the sklearn package (version 1.21)
in Python with their default parameters.

Table V shows the average performance metrics of the
models across the 1000 iterations with 95% confidence
interval (CI). The SVC outperforms other models with an
average AUC-ROC of 0.7136. The best feature set selected
for the SVC consists of 8 features: 1) Prior micromobility
use (yes or no), 2) Social interaction perception-Content,
3) Social interaction perception-Ego wellbeing, 4) Scenario
type, 5) User’s initial wellbeing, 6) Robot’s action, 7) User’s
braking behavior, and 8) Scooter’s action.

B. Optimal Policy Design

Although the model allows us to predict users’ change in
wellbeing, it also helps to identify the optimal choice for
the scooter’s action, given the other predictors. This can be
achieved as follows. Let x denote the vector of the eight
predictors, x\{e} denote the vector of the seven predictors
excluding the ego scooter’s action, and e ∈ {Eu, Ey} denote
the ego scooter’s action. The learned model f : x →
∆w predicts the likelihood of change in wellbeing ∆w ∈
{∆w↓,∆w↑} as

Pr(∆w|x) = Pr(∆w|x\{e}, e) .

For a human-aware system aimed at increasing users’ well-
being, we can define the optimal policy as maximizing the
likelihood of an increase in wellbeing ∆w↑. Therefore, the
optimal policy π(e) for ego scooter’s action e ∈ {Eu, Ey}
is given as

π(e) = argmax
e∈{Eu,Ey}

Pr(∆w↑|x\{e}, e) .

Before any interaction, if the system knows the user’s past
experience, social interaction perceptions, and the scenario
and knows the user’s braking behavior, the scooter can take
the optimal yielding action.

To further analyze the policy, we train the SVC model
using the entire data and visualize the policy for different
combinations of the other predictors. Specifically, we show
the effect of an individual’s social interaction perception
responses and prior micromobility use affect the learned
optimal policy. Figure 5 visualizes the optimal policy with
varying values of social interaction perception-Content. The
x-axis maps the initial wellbeing, and the y-axis shows a
robot’s action and user’s braking behavior. The other predic-
tors are fixed to be their median values (Prior micromobility
use: No, Social interaction perception-Ego wellbeing: 5,
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Fig. 5: Optimal scooter action with variations with user’s response to Social interaction perception: Content. Red and green
colors show the optimal action given the user’s initial wellbeing, the robot’s action in the prior interaction, and the user’s
braking behavior.
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Fig. 6: Optimal scooter action with variations with user’s response to Social interaction perception: Ego wellbeing. Red and
green colors show the optimal action given the user’s initial wellbeing, the robot’s action in the prior interaction, and the
user’s braking behavior.

Scenario: S4 → S3). The red and the green color shows
the optimal scooter’s action being unyielding and yielding,
respectively, based on the learned policy.

From Figure 5a, we see that the scooter’s optimal action is
unyielding when the user’s initial wellbeing is low and vice-
versa. This is expected as individuals with lower wellbeing
prioritize their needs over others and therefore do not yield
to the robot. Furthermore, we observe that when the robot is
unyielding to the user in the previous interaction, the learned
policy shows that the user’s wellbeing will increase if the AV
scooter does not yield to the robot even for relatively higher
levels of wellbeing. In contrast, the policy recommends that
the AV scooter yielding to the robot will increase the user’s
wellbeing when the robot yielded in the previous interaction
when the user’s wellbeing is not too low. This captures the
inherent indirect upstream reciprocity behavior[26] of the
user where prior help from a robot motivates the user to help
another robot to increase their wellbeing. Finally, the policy
also captures how to quantify the user’s braking behavior to
estimate the scooter’s optimal action.

Comparing individuals’ social interaction perception
across Figures 5a, 5b, and 5c, we see that higher individuals’
content with their relationship with sidewalk and road users
(Social interaction perception: content), they are more in-
clined toward not yielding to the robot even for higher levels

of wellbeing. However, comparing individuals’ perception
of their wellbeing with experiences with sidewalk and road
users (Social interaction perception: ego wellbeing) across
Figures 6a, 6b, and 6c, we see that individuals with higher
response values are more inclined to yield to the robot for
their wellbeing to increase. This is expected as more pro-
social individuals prefer to help the robot by yielding. This
demonstrates that the learned policy can distinguish users’
perceptions of social interactions to ensure optimal scooter
actions.

In summary, we show that the users’ self-reported survey
was influenced by their interaction with others and their
intent. We observe that any yielding behavior contributed
toward the ego would lead to enhancing their wellbeing
and trust. However, users’ social interaction perception can
impact the influence of other factors on the users’ change in
wellbeing. We demonstrated that a policy based on a simple
machine learning model could quantitatively capture optimal
actions by an AV scooter to enhance users’ wellbeing.
Future work will evaluate these policies using user studies to
capture their efficacy. Finally, we want to acknowledge some
limitations of the study. Given that our observational user
study used pre-recorded videos and the users did not have
active control over the vehicle, the lack of sense of control
in AVs can affect wellbeing and trust [27]. To mitigate



this, we requested participants to indicate their intent to
accelerate and decelerate throughout the study. Moreover, the
proposed model is limited to a dyadic interaction between
a self-driving scooter as an AV and a delivery robot as
others. Additionally, maneuvers beyond yielding and non-
yielding behaviors in future studies can help understand
different types of ego and other agent actions. Given the
limited scenarios and data sample size, complex machine-
learning models were not used in this work. A larger sample
size can allow training complex models that consider not
only other factors but also dynamic relations across time
to improve model performance. Furthermore, multi-objective
policies can be calculated to consider other cognitive states
like user trust and workload along with goal-related costs.
Nonetheless, the presented work demonstrates a significant
step toward human-aware automation that can enhance well-
being in mobility through optimal policies.

V. CONCLUSION

The recent emergence of automated vehicle (AV) tech-
nology and shared mobility has presented several challenges
for how shared mobility systems like electric scooters are
likely to influence the wellbeing of other road users. A key
challenge is to understand the nature of these interactions
and how prosocial interactions between agents may impact
scooter users’ wellbeing, trust, and satisfaction. We conduct
an online video-based user study to evaluate users’ subjective
ratings of wellbeing, trust, satisfaction, and relationship with
other road users during interactions between a self-driving
scooter and delivery robots. We found that the yielding
behavior of the delivery robot and AV scooter influenced
the well-being, satisfaction, and trust of other road users.
Based on the findings, we show that a prediction model for
change in user wellbeing can be used to identify optimal
actions of the AV scooter that increases wellbeing. The
learned policy shows that the optimal actions are not only
dependent on the robot and user’s behavior but also depend
on users’ predispositions about their social interactions. The
findings from this study provide a step toward designing
personalized AV policies that could aid in ensuring optimal
actions and outcomes in a shared environment to enhance
users’ wellbeing.
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