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Abstract—We consider the problem of sequential transmission
of Gauss–Markov sources. We show that in the limit of large
spatial block lengths, greedy compression with respect to the
squared error distortion is optimal; that is, there is no tension be-
tween optimizing the distortion of the source in the current time
instant and that of future times. We then extend this result to the
case where at time t a random compression rate Rt is allocated
independently of the rate at other time instants. This, in turn,
allows us to derive the optimal performance of sequential coding
over packet-erasure channels with instantaneous feedback. For
the case of packet erasures with delayed feedback, we connect
the problem to that of compression with side information that
is known at the encoder and may be known at the decoder —
where the most recent packets serve as side information that may
have been erased. We conclude the paper by demonstrating that
the loss due to a delay by one time unit is rather small.

Index Terms—Sequential coding of correlated sources, succes-
sive refinement, source streaming, packet erasures, source coding
with side information.

I. INTRODUCTION

Sequential coding of sources is increasingly finding appli-
cations, such as real-time video streaming, and cyberphysical
and networked control. Such systems use compressed packet-
based transmission and strive to achieve minimum distortion
for the given compression rates.

This setting was introduced and treated for the two-source
case by Viswanathan and Berger [1] and for more users in [2]–
[5]. For the special case of Gauss–Markov sources, an explicit
expression for the achievable sum-rate for given distortions
was derived in [2], [3] and extended for the (general) jointly
Gaussian three-source case in [6].

In practice, however, packet-based protocols are prone to
erasures and possible delays. The case of sequential coding
in the presence of packet erasures was treated for various
erasure models. The case when only the first packet is prone
to an erasure was considered in [7]. A more general approach
which trades between the performance given all previously
sent packets and the performance given only the last packet
was proposed in [8]. For random independent identically
distributed (i.i.d.) packet erasures, a hybridation between
pulse-code modulation (PCM) and differential PCM (DPCM),
termed leaky DPCM, was proposed in [9] and analyzed for the
case of very low erasure probability in [10]. The scenario in
which the erasures occur in bursts was considered in [11],
[12]. There, a sequence of source vectors sampled from a
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Gauss–Markov process in the temporal dimension must be
encoded sequentially and reconstructed with zero delay at the
decoder. The channel introduces a burst of erasures of a certain
maximum length and the decoder is not required to reconstruct
the sequences that fall in the erasure period and a recovery
window following it.

All of these works assume no feedback is available at the
encoder, namely that the encoder does not know whether a
transmitted packet successfully arrives to the decoder or is
erased in the process.

In this paper, we first consider the problem of sequential
coding of Gauss–Markov sources and determine the rate–
distortion region for large frames. Specifically, we show that
greedy quantization that optimizes the distortion for each time
is also optimal for minimizing the distortion of future time
instants. This insight allows us to extend the result to the case
where the compression rate rt available for the transmission of
the packet at time t is determined just prior to its transmission.

The packet-erasure channel with instantaneous output feed-
back (ACK/NACK) can be viewed as a special case of
the above noiseless channel with random rate allocation,
with rt = 0 corresponding to a packet-erasure event [13].
The optimal rate–distortion region of sequential coding of
Gauss–Markov sources in the presence of packet erasures and
instantaneous output feedback thereby follows as a simple
particularization of our more general result.

We further tackle the more challenging delayed feedback
setting, in which the encoder does not know whether the
most recently transmitted packets arrived or not. Viewing these
recent packets as side information (SI) that is available at
the encoder and possibly at the decoder, and leveraging the
results of Kaspi [14] along with their specialization for the
Gaussian case by Perron et al. [15],1 we adapt our transmission
scheme to the case of delayed feedback. We provide a detailed
description of the proposed scheme for the case where the
feedback is delayed by one time unit and demonstrate that the
loss compared to the case of instantaneous feedback is small.

II. PROBLEM STATEMENT

We now present the model of the source, channel, and the
admissible encoder and decoder both of which are required to
be causal in this work; see Fig. 1.

Throughout the paper, ‖·‖ denotes the Euclidean norm.
Random variables are denoted by lower-case letters with

1The scenario considered in [14], [15] can be also viewed as special
case of the results of Heegard and Berger [16], where the SI is not available
at the encoder, by adjusting the distortion measure and “augmenting” the
source [17]. Interestingly, knowing the SI at the encoder allows one to improve
the optimal performance of this scenario in the Gaussian case; see Rem. 9.
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Fig. 1: Sequential coding of a Gauss–Markov source setup.

temporal subscripts (at), and random vectors (“frames”) of
length N by boldface possibly accented lower-case letters with
temporal subscripts (at, ˆ̃at). We denote temporal sequences by
at , (a1, . . . ,at). N is the set of natural numbers. All other
notations represent deterministic scalars.

We assume that the communication spans the time interval
[1, T ], where T ∈ N.

Source: Consider a Gauss–Markov source {st}, whose out-
comes are vectors (“frames”) of length N with i.i.d. samples
along the spatial dimension, that satisfy the temporal Markov
relation:

st = αtst−1 + wt, t = 1, . . . , T , (1)

where {αt} are known process coefficients that satisfy
|αt| < 1, and the outcomes of {wt} are i.i.d. along the spatial
dimension, Gaussian and mutually independent across time
of zero mean and variances {Wt}. We assume s0 = 0 for
convenience.

Denote by St , 1
NE

[
‖st‖2

]
the average power of the

entries of vector st. Then, we obtain the following recursive
relation:

St = α2
tSt−1 +Wt, t = 1, . . . , T , (2a)

S0 = 0. (2b)

Channel: At time t, a packet ft ∈
{

1, 2, . . . , 2NRt
}

is sent
over a noiseless channel of finite rate Rt.

Causal encoder: Sees st at time t and applies a causal
function Ft to the entire observed source sequence st to
generate a packet ft ∈

{
1, 2, . . . , 2NRt

}
:

ft = Ft
(
st
)
. (3)

Causal decoder: Applies a causal function Gt to the
sequence of received packets f t to construct an estimate ŝt of
st, at time t:

ŝt = Gt
(
f t
)
. (4)

Distortion: The mean-square error distortion at time t is
defined as

Dt ,
1

N
E
[
‖st − ŝt‖2

]
. (5)

If we specialize the source process into that of fixed
parameters, namely,

αt ≡ α,
Wt ≡W,

t = 1, . . . , T , (6)

then its power converges to

S∞ =
W

1− α2
.

We further define the steady-state distortion (assuming the
limit exists):

D∞ , lim
T→∞

Dt .

Definition (Distortion-rate region). The distortion–rate region
is the closure of all achievable distortion tuples DT ,
(D1, . . . , DT ) for a rate tuple RT , (R1, . . . , RT ), for any
N , however large; its inverse is the rate–distortion region.

III. DISTORTION–RATE REGION OF SEQUENTIAL CODING
OF GAUSS–MARKOV SOURCES

The optimal achievable distortions for given rates for the
model of Sec. II are provided in the following theorem.

Theorem 1 (Distortion–rate region). The distortion–rate re-
gion of sequential coding for a rate tuple RT is given by all
distortion tuples DT that satisfy Dt ≥ D∗t with

D∗t =
(
α2
tD
∗
t−1 +Wt

)
2−2Rt , t = 1, . . . , T , (7a)

D∗0 = 0. (7b)

Remark 1. Th. 1 establishes the optimal rate–distortion region
for the “causal encoder–causal decoder” setting of Ma and
Ishwar [2] for the case of Gauss–Markov sources. We note that
Ma and Ishwar [2] provide an explicit result only for the sum-
rate for the Gauss–Markov case [3]. Torbatian and Yang [6]
extend the sum-rate result to the case of three jointly Gaussian
sources (which do not necessarily constitute a Markov chain).
Our work, on the other hand, fully characterizes the rate–
distortion region for the case of Gauss–Markov sources.

Remark 2. The results and proof (provided in the sequel) of
Th. 1 imply that optimal greedy quantization at every step —
which is achieved via Gaussian backward [18, Ch. 10.3] or
forward [18, pp. 338–339] channels — becomes optimal when
N is large. Moreover, it achieves the optimum for all t ∈
[1, T ] simultaneously, meaning that there is no tension between
minimizing the current distortion and future distortions.

To prove this theorem we first construct the optimal greedy
scheme and determine its performance in Sec. III-A. We then
show that it is in fact (globally) optimal when N goes to
infinity, by constructing an outer bound for this scenario, in
Sec. III-B.

A. Achievable

We construct an inner bound using the optimal greedy
scheme. In this scheme all the quantizers are assumed to be
minimum mean square error (MMSE) quantizers. We note that
the quantized values of such quantizers are uncorrelated with
the resulting quantization errors.

Scheme.
Encoder. At time t:
• Generates the prediction error

s̃t , st − αtŝt−1 , (8)



where ŝt−1, defined in (4), is the previous source recon-
struction at the decoder, and ŝ0 = 0. A linear recursive
relation for ŝt is provided in the sequel in (9) .2

• Generates ˆ̃st, the quantized reconstruction of the predic-
tion error s̃t, by quantizing s̃t using the optimal MMSE
quantizer of rate Rt and frame length N .

• Sends ft = ˆ̃st over the channel.
Decoder. At time t:
• Receives ft.
• Recovers a reconstruction ˆ̃st of the prediction error s̃t.
• Generates an estimate ŝt of st:

ŝt = αtŝt−1 + ˆ̃st . (9)

The optimal achievable distortions {Dt} of this scheme for
long frame lengths N , are as follows.

Assertion 1 (Inner bound). Let ε > 0, however small. Then,
the expected distortion of the scheme at time t ∈ [1, T ] satisfies
the recursion

Dt ≤
(
α2
tDt−1 +Wt

)
2−2Rt + ε, t = 1, . . . , T , (10a)

D0 = 0, (10b)

for a large enough N .

Proof: First note that the error between st and ŝt, denoted
by et, is equal to

et , st − ŝt (11a)

= (s̃t + αtŝt−1)−
(
αtŝt−1 + ˆ̃st

)
(11b)

= s̃t − ˆ̃st (11c)

where (11b) follows from (8) and (9). Thus, the distortion (5)
is also the distortion in reconstructing s̃t.

Using (1), (8) and (11), we express s̃t as

s̃t , st − αtŝt−1

= αt (st−1 − ŝt−1) + wt

= αtet−1 + wt .

Since wt is independent of et−1, the average power of the
entries of s̃t is equal to

S̃t = α2
tDt−1 +Wt .

Using the property that the rate–distortion function under
mean square error distortion of an i.i.d. source with given
variance is upper bounded by that of a white Gaussian source
with the same variance (see, e.g., [18, pp. 338–339]), we obtain
the following recursion:

Dt ≤
(
α2
tDt−1 +Wt

)
2−2Rt ,

and hence (7) is achievable within an arbitrarily small ε > 0,
for a sufficiently large N .

2ŝt−1 = E
[
st−1

∣∣f t−1
]

and αtŝt−1 = E
[
st
∣∣f t−1

]
are the MMSE

estimators of st−1 and st, respectively, given all the past channel outputs.

B. Impossible (Converse)

We shall now construct an outer bound that coincides with
the inner bound of Assert. 1 for large frame lengths N .

Assertion 2 (Outer bound). Consider the setting of Sec. II.
Then, the average achievable distortion Dt at time t ∈ [1, T ]
is bounded from below by Dt ≥ D∗t , where D∗t satisfies (7)
with equality.

Proof: Let N ∈ N. We shall prove

Dt ≥ 2−2RtEf̌t−1

[
N
(
st|f t−1 = f̌ t−1

)]
(12a)

≥ D∗t , t = 1, . . . , T , (12b)

by induction, where the sequence {D∗t } is defined in (7),

N (st) ,
1

2πe2
2
N

h(st),

N
(
st
∣∣fk = f̌k

)
,

1

2πe2
2
N

h
(
st

∣∣∣fk=f̌k
)

denote the entropy-power and conditional entropy-power of
st given fk = f̌k, the expectation Ef̌t−1 [·] is with respect to
f̌ t−1, and the random vector f̌ t is distributed the same as f t.

Basic step (t = 1). First note that, since s0 = 0 and vector
w1 consists of i.i.d. Gaussian entries of variance W1, (12b)
is satisfied with equality. To prove (12a), we use the fact that
the optimal achievable distortion D1 for a Gaussian source
(s1 = w1) with i.i.d. entries of power W1 and rate R1 is
dictated by its rate–distortion function (RDF) [18, Ch. 10.3.2]:

D1 ≥W12−2R1 .

Inductive step. Let k ≥ 2 and suppose (12) is true for
t = k − 1. We shall now prove that it holds also for t = k.

Dk =
1

N
E
[
‖sk − ŝk‖2

]
=

1

N
E
[
E
[
‖sk − ŝk‖2

∣∣∣fk−1
]]

(13a)

=
1

N
Ef̌k−1

[
E
[
‖sk − ŝk‖2

∣∣∣fk−1 = f̌k−1
]]

(13b)

≥ Ef̌k−1

[
N
(
sk
∣∣fk−1 = f̌k−1

)
2−2Rk

]
(13c)

= Ef̌k−1

[
N
(
αksk−1 + wk|fk−1 = f̌k−1

)]
2−2Rk (13d)

≥
{
Ef̌k−2

[
Ef̌k−1

[
N
(
αksk−1|fk−1 = f̌k−1

)∣∣f̌k−2
]]

+ N (wk)
}

2−2Rk (13e)

≥
{
α2
kEf̌k−2

[
N
(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)]
+Wk

}
2−2Rk (13f)

≥
{
α2
kEf̌k−2

[
N
(
sk−1|fk−2 = f̌k−2

)]
2−2Rk−1

+Wk

}
2−2Rk (13g)

≥ 2−2Rk
(
α2
kD
∗
k−1 +Wk

)
(13h)

= D∗k, (13i)

where (13a) follows from the law of total expectation, (13b)
holds since fk−1 and f̌k−1 have the same distribution, (13c)



follows by bounding from below the inner expectation (con-
ditional distortion) by the rate–distortion function and the
Shannon lower bound [18, Ch. 10] — this also proves (12a),
(13d) is due to (1), (13e) follows from the entropy-power
inequality [18, Ch. 17], (13f) holds since wk is Gaussian,
the scaling property of differential entropies and Jensen’s in-
equality:

Ef̌k−1

[
2

2
N

h
(
sk−1

∣∣∣fk−1=f̌k−1
)∣∣∣∣f̌k−2

]
≥ 2

2
N

Ef̌k−1

[
h
(
sk−1

∣∣∣fk−1=f̌k−1
)]

≡ 2
2
N

h
(
sk−1

∣∣∣fk−2=f̌k−2, fk−1

)
,

(13g) follows from the following standard set of inequalities:

NRk−1 ≥ H
(
fk−1

∣∣fk−2 = f̌k−2
)

≥ I
(
sk−1; fk−1

∣∣fk−2 = f̌k−2
)

= h
(
sk−1

∣∣fk−2 = f̌k−2
)

− h
(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)
,

(13h) is by the induction hypothesis, and (13i) holds by the
definition of {D∗t } as the sequence that satisfies (7) — which
also proves (12b). This concludes the proof of (12b) as desired.

Assertion 3 (Outer bound for non-Gaussian noise). Consider
the setting of Sec. II with independent non-Gaussian noise
entries {wt}. Then, the average achievable distortion Dt at
time t ∈ [1, T ] is bounded from below by Dt ≥ D∗t , with D∗t
given by the recursion

D∗t =
(
α2D∗t−1 + N (wt)

)
2−2Rt ,

D∗0 = 0,

where N (wt) = 1
2πe 2h(wt) is the entropy-power of wt.

Proof: The proof is identical to that of Assert. 2 with Wt

replaced by N (wt).3

C. Steady State of Asymptotically Stationary Sources

For the asymptotically stationary source in (6), the steady-
state average distortion is as follows.

Corollary 1 (Steady state). Let ε > 0, however small. Then,
the minimum steady-state distortion is equal to

D∗∞ =
W2−2R

1− α22−2R
+ ε, (15)

for a large enough N .

Proof: Note that (15) is a fixed point of (7a) (up to ε).
Now since α < 1 and 2−2R < 1, Dt converges to D∞.

This can be easily proved as follows. Assume Dt−1 6= D∞
(otherwise we are already at the fixed point). Then,

Dt −D∞ =
[(
α2Dt−1 +W

)
2−2R

]
−
[(
α2D∞ +W

)
2−2R

]
= α22−2R (Dt−1 −D∞) ,

3Recall that in the Gaussian setting N (wt) = Var (wt) ≡Wt.

or equivalently

Dt −D∞
Dt−1 −D∞

= α22−2R < 1.

Hence, if 0 ≶ Dt−1 −D∞, then

0 ≶ Dt −D∞ ≶ Dt−1 −D∞

and converges (exponentially fast) to D∞.

Remark 3. As is evident from the proof, the result of Corol. 1
remains true for any initial value D0.

IV. RANDOM-RATE BUDGETS

In this section we generalize the results of Sec. III to random
rates {rt} that are independent of each other and of {wt}. Rate
rt is revealed to the encoder just before the transmission at
time t.

Theorem 2 (Distortion–rate region). The distortion–rate re-
gion of sequential coding with independent rates rT is given
by all distortion tuples DT that satisfy Dt ≥ D∗t withD∗0 = 0
and

D∗t =
(
α2
tD
∗
t−1 +Wt

)
E
[
2−2rt

]
, t = 1, . . . , T . (16)

Remark 4. An immediate consequence of this theorem and
Jensen’s inequality is that using packets of a fixed rate that is
equal to E [rt] performs better than using random rates.

Proof:
Achievable. Since the achievability scheme in Th. 1 does

not use the knowledge of future transmission rates to encode
and decode the packet at time t, we have

dt ,
1

N
E
[
‖st − ŝt‖2

∣∣∣rT ] (17a)

=
1

N
E
[
‖st − ŝt‖2

∣∣∣rt] (17b)

≤ (α2
tdt−1 +Wt)2

−2rt + ε, (17c)

Taking an expectation of (17c) with respect to rt and using
the independence of rt−1 and rt, we achieve (16).

Impossible. Revealing the rates to the encoder and the
decoder prior to the start of transmission can only improve the
distortion. Thus, the distortions {dt} conditioned on {rt} (17a)
are bounded from below as in Th. 1; by taking the expectation
with respect to {rt}, we attain the desired result.

For the special case of an asymptotically stationary
source (6), the steady-state distortion is given as follows.

Corollary 2 (Steady state). Assume that the rates {rt} are
i.i.d. Let ε > 0, however small. Then, the minimum steady-
state distortion is equal to

D∞ =
BW

1− α2B
+ ε (18)

for a large enough N , where

B , E
[
2−2rt

]
.

Proof: Note that (18) is a fixed point of (16).



Since α < 1 and B < 1, E [Dt] converges to D∞. This can
be easily proved as follows. Assume Dt−1 6= D∞ (otherwise
we are already at the fixed point). Then,

Dt −D∞ =
[(
α2Dt−1 +W

)
B
]
−
[(
α2D∞ +W

)
B
]

= α2B (Dt−1 −D∞) ,

or equivalently

Dt −D∞
Dt−1 −D∞

= α2B < 1.

Hence, if 0 ≶ Dt−1 −D∞, then

0 ≶ Dt −D∞ ≶ Dt−1 −D∞

and converges exponentially fast to D∞.

V. PACKET ERASURES WITH INSTANTANEOUS FEEDBACK

A. One Packet Per Frame

An important special case of the random-rate budget model
of Sec. IV is that of packet erasures [13]. Since a packet
erasure at time t can be viewed as rt = 0, and assuming that
the encoder sends packets of fixed rate R and is cognizant of
any packet erasures instantaneously, the packet erasure channel
can be cast as the random rate channel of Sec. IV with

rt = btR (19a)

=

{
R, bt = 1

0, bt = 0
(19b)

where {bt} are the packet-erasure events, such that bt = 1
corresponds to a successful arrival of the packet ft at time t,
and bt = 0 means it was erased. We further denote by

gt , btft (20)

the received output where gt = 0 corresponds to an erasure,
and otherwise gt = ft. We assume that {bt} are i.i.d. according
to a Ber(β) distribution for β ∈ [0, 1].

Remark 5. We shall concentrate on the case of packets of
fixed rate R to simplify the subsequent discussion. This way
the only randomness in rate comes from the packet-erasure
effect. Nevertheless, all the results that follow can be easily
extended to random/varying rate allocations to which the effect
of packet erasures {bt} is added in the same manner as in (19).

Corollary 3 (Distortion–rate region). The distortion–rate re-
gion of sequential coding with packet erasures and instanta-
neous feedback is given as in Th. 2 with

E
[
2−2rt

]
= 1− β

(
1− 2−2R

)
.

Proof: Computing the expectation, we obtain

E
[
2−2rt

]
= E

[
2−2btR

]
= β2−2R + (1− β),

as desired.

Corollary 4 (Steady state). The steady-state distortion is given
as in Corol. 2 with

B , E
[
2−2rt

]
= 1− β

(
1− 2−2R

)
.

B. Multiple Packets Per Frame

In Sec. V-A we assumed one packet (ft) was sent per
each source frame (st). Instead, one may choose to transmit
multiple packets of lower rate per one source frame. Naı̈ve
repetition of the same packet trades off diversity for multiplex-
ing in this case [19] and can potentially improve the overall
performance.

An improvement over this naı̈ve repetition-based scheme
was proposed in [20], where the repetitive transmission of
a single compressed description was replaced by multiple
descriptions compression [21]–[24].

If we assume the availability of a perfect instantaneous
feedback after each packet, a further improvement can be
achieved by noting that this scenario falls again in the random-
rate budget framework of Sec. IV.

Specifically, if we assume the use of K packets of equal
rate R/K (and hence a total rate of R), the rate probability
distribution amounts to

rt =
bt
K
R

with bt denoting the number of successful packet arrivals at
time t, corresponding to source frame st. Assuming that the
erasure events of all packets are i.i.d. with probability 1− β
implies that {bt} are i.i.d. according to a Binomial distribution
B (K,β).

Interestingly, the optimal number of packets depends on the
(total) rate R and packet successful arrival probability β, and
is determined by the number that minimizes E [2−rt ]. This is
demonstrated in Fig. 2.
Remark 6. We only considered uniform rate allocations for all
the packets. Clearly, one can generalize the same approach to
non-uniform packet rates.
Remark 7. In practice one might expect longer packets to be
prone to higher erasure probability. This can be taken into
account when deciding on the K that minimizes E

[
2−2rt

]
.

VI. PACKET ERASURES WITH DELAYED FEEDBACK

In this section we consider the case of i.i.d. packet erasures
with a delayed-by-one output feedback, i.e., the case where at
time t, the encoder does know whether the last packet arrived
or not (does not know bt−1), but knows the erasure pattern
of all preceding packets (knows bt−2). The encoder (3) and
decoder (4) mappings can be written as [recall the definition
of gt , btft in (20)]:

ft = Ft
(
st, gt−2

)
,

ŝt = Gt
(
gt
)
.

To that end, we recall the following result by Perron et
al. [15, Th. 2], which is a specialization to the jointly Gaussian



(a) R = 1

(b) R = 5.5

Fig. 2: Evaluation of 2−rt for K = 1, 2 and 3 packets, all
possible values of β ∈ [0, 1], and two (total) rates R = 1
and 5.5.

case of the result by Kaspi [14, Th. 1], who established the
rate–distortion region of lossy compression with two-sided SI
where the SI may or may not be available at the decoder.4

Remark 8. Kaspi’s result [14, Th. 1] can also be viewed as a
special case of [16] with some adjustments; see [17].

Theorem 3 ( [15]). Let s be an i.i.d. zero-mean Gaussian
source of power S, which is jointly Gaussian with SI y, which
is available at the encoder and satisfies s = y + z where z
is an i.i.d. Gaussian noise of power Z that is independent of
y. Denote by ŝ+ and ŝ− the reconstructions of s with and
without the SI y, and by D+ and D− their mean squared
error distortion requirements, respectively. Then, the smallest

4We use a backward channel to represent the SI s = y + z, as opposed
to the forward channel y = s + z used in [15], [16].

rate required to achieve these distortions is given by

RKaspi(S,Z,D−, D+)

=



0, D− ≥ S and D+ ≥ Z
1
2 log

(
S
D−

)
, D− < S and D+‖S ≥ D−‖Z

1
2 log

(
Z
D+

)
, D+ < Z and D− ≥ D+ + S − Z

1
2 log

(
S

D−−∆2

)
,

{
D− < S and D+‖S < D−‖Z
and D− < D+ + S − Z

where a‖b , ab
a+b denotes the harmonic mean of a and b, and

∆ ,

√
(S − Z)(S −D−)D+ −

√
(Z −D+)(D− −D+)S√

Z (S −D+)
.

Remark 9. Surprisingly, as observed by Perron et al. [15], if
the side-information signal y is not available at the encoder —
corresponding to the case considered in [16] and [14, Th. 2] —
the required rate can be strictly higher than that in Th. 3. This
is in stark contrast to the case where the side-information is
never available at the encoder and the case where the side-
information is always available at the decoder studied by
Wyner and Ziv [25], [26]. Knowing the SI at the encoder
allows to (anti-)correlate the noise z with the quantization
error — some thing that is not possible when the SI is not
available at the encoder, as the two noises must be independent
in that case. This allows for some improvement, though a
modest one, as implied by the results for the dual channel
problem [27, Prop. 1], [28].

In our case, at time t, the previous packet ft−1 will serve
as the SI. Note that it is always available to the encoder;
the decoder may or may not have access to it, depending
whether the previous packet arrived or not. Since the feedback
is delayed, during the transmission of the current packet ft the
encoder does not know whether the previous packet was lost.

The tradeoff between D+ and D− for a given rate R will be
determined by the probability of a successful packet arrival β.

Scheme (Kaspi-based).
Encoder. At time t:
• Generates the prediction error

s̃t , st − α2
t ŝt−2 .

• Generates ft by quantizing the prediction error s̃t as in
Th. 3, where ft−1 is available as SI at the encoder and
possibly at the decoder (depending on bt−1) using the
optimal quantizer of rate R and frame length N that
minimizes the averaged over bt−1 distortion:

DWeighted
t = βD+

t + (1− β)D−t ; (21)

more precisely, since the encoder does not know
(bt−1, bt) at time t:

– Denote the reconstruction of s̃t at the decoder
from ft and gt−1 — namely given that bt = 1 —
by Qt(s̃t), and the corresponding distortion by
DWeighted
t .



– Denote the reconstruction from ft and gt−2 —
namely given that bt = 1 and bt−1 = 0 — by
Q−t (s̃t), and the corresponding distortion by D−t .

– Denote the reconstruction from (ft−1, ft) and
gt−2 — namely given that bt = 1 and bt−1 = 1 —
by Q+

t (s̃t), and the corresponding distortion by D+
t .

Then, the encoder sees αtQ
+
t−1(s̃t−1) as possible SI

available at the decoder to minimize DWeighted
t as in (21).

• Sends ft over the channel.

Decoder. At time t:
• Receives gt.
• Generates a reconstruction ˆ̃st of the prediction error s̃t:

ˆ̃st =


Q+
t (s̃t), bt = 1, bt−1 = 1

Q−t (s̃t), bt = 1, bt−1 = 0

0, bt = 0

(22)

• Generates an estimate ŝt of st:

ŝt = αtŝt−1 + ˆ̃st .

This scheme is the optimal greedy scheme whose perfor-
mance is stated next, in the limit of large N .

Theorem 4. Let ε > 0, however small. Then, for a large
enough N , the expected distortion of the scheme at time
t ∈ [2, T ] given (b1, . . . , bt) satisfies the recursion

Dt =


D+
t + ε, bt = 1, bt−1 = 1

D−t + ε, bt = 1, bt−1 = 0

α2
tDt−1 +W + ε, bt = 0

D1 = D+
1 = D−1 = Wt2

−b12R + ε,

where D+
t and D−t are the distortions that minimize

DWeighted
t = βD+

t + (1− β)D−t ,

such that the rate of Th. 3 satisfies

RKaspi(αtD
−
t−1 +W,αtD

+
t−1 +W,D−t , D

+
t ) = R.

The proof is again the same as that of Ths. 1 and 2, with
ˆ̃st generated as in (22).

Remark 10. Here, in contrast to the case of instantaneous
feedback, evaluating the average distortions {Dt} in explicit
form (recall Corol. 3) is much more challenging. We do it
numerically, instead.

Somewhat surprisingly, the loss in performance of the
Kaspi-based scheme due to the feedback delay is rather small
compared to the scenario in Sec. V where the feedback is
available instantaneously, for all values of β.5 This is demon-
strated in Fig. 3, where the perfomances of these schemes
are compared along with the performances of the following
three simple schemes for αt ≡ 0.7,W ≡ 1, β = 0.5, R = 2

5For β values close to 0 or 1, the loss becomes even smaller as in these
cases using the scheme of Sec. V that assumes that the previous packet arrived
or was erased, respectively, becomes optimal.

Fig. 3: Distortions Dt as a function of the time t of the
various schemes presented in this section, along with that of
the instantaneous-feedback scheme of Sec. V, for α = 0.7,
W = 1, β = 0.5 and R = 2.

(we derive their performance for the special case of an
asymptotically stationary source):
• No prediction: A scheme that does not use prediction

at all, as if the source samples were independent. This
scheme achieves a distortion of

Dt = βSt2
−2R + (1− β)St, t = 1, . . . , T ,

where St is the power of the entries of st as given in (2).
• Assumes worst case (WC): Since at time t the encoder

does not know bt−1, a “safe” way would be to work as
if bt−1 = 0. This achieves a distortion of

Dt =
[
α4Dt−2 + (1 + α2)W

] [
β2−2R + (1− β)2

]
+ β(1− β)(α2Dt−1 +W ), t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

• Assumes best case (BC): The optimistic counterpart of
the previous scheme is that which always works as if
bt−1 = 1. This scheme achieves a distortion of

Dt = β
[
α2Dt−1|t−22−2R +W

) [
β2−2R + (1− β)

]
+ (1− β)

[
α2Dt−1|t−2 +W

]
, t = 2, . . . , T ,

Dt−1|t−2 , α2Dt−2 +W, t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

VII. DISCUSSION: FEEDBACK WITH LARGER DELAYS

To extend the scheme of Sec. VI for larger delays, a
generalization of Th. 3 is needed. Unfortunately, the optimal
rate–distortion region for more than two decoders remains
an open problem and is only known for the case when the
source and the possible SIs form a Markov chain (“degraded”).
Nonetheless, achievable regions for multiple decoders have
been proposed in [16], which can be used for the construction
of schemes that accommodate larger delays.
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