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Abstract—The multi-access variant of the coded caching problem
in the presence of an external wiretapper is investigated . A multi-
access coded caching scheme with K users, K caches and N files,
where each user has access to L neighbouring caches in a cyclic
wrap-around manner, is proposed, which is secure against the
wiretappers. Each transmission in the conventional insecure scheme
will be now encrypted by a random key. The proposed scheme uses
a novel technique for the key placement in the caches. It is also
shown that the proposed secure multi-access coded caching scheme
is within a constant multiplicative factor from the information-
theoretic optimal rate for L ≥ K

2
and N ≥ 2K.

I. INTRODUCTION

The technique of coded caching introduced in [1] helps in

reducing the peak-hour network traffic. This is achieved by

making a part of the content locally available at the user end

during off-peak hours. The proposed scheme in [1] consists of a

central server, having a library of N files, connected to K users

through an error-free broadcast link. Each user is equipped with

a dedicated cache, which can store M out of the N files in the

placement phase. Each user reveals the demand in the delivery

phase, which is assumed to be a single file from the N possible

choices. Then, the server broadcasts coded symbols to all the

users over the shared link. The objective is to jointly design

the placement and the delivery phases such that the load of the

shared link in the delivery phase is minimized.

However, in practical scenarios such as in cellular networks,

users can have access to multiple caches when their coverage

areas overlap. Incorporating this possibility, coded caching prob-

lem has been extended to multi-access set-up recently [2]–[8],

where each user can access L neighbouring caches in a cyclic

wrap-around fashion. In [3], the authors give an optimal multi-

access coded caching scheme when M
N = K−1

KL . A connection

between index coding and multi-access coded caching is estab-

lished in [4]. The construction of the multi-access schemes from

placement delivery arrays (PDAs) is shown in [5] and [6]. In [6]–

[8], the authors construct multi-access coded caching schemes

with linear subpacketization.

One of the main challenges of the coded caching problem is

associated with the security of the multicast transmission that

arises due to the broadcast nature of the channel. In [9], the

authors study the security aspects of the coded caching problem

assuming each user is equipped with a dedicated cache. The

scheme in [9] characterizes the fundamental limits of secure

coded caching problem in the presence of a wiretapper. In [10],

the secret sharing technique is used to ensure that no user will

be able to obtain any information, from its cache content as well

as the server transmission, about any file other than the one it

has requested. The coded caching schemes preserving privacy

for user demands are studied in [11]–[16].

In this paper, we study the coded caching problem with secure

delivery in a multi-access coded caching scheme. We extend

the model proposed in [9] for the dedicated cache networks

to the multi-access coded caching scheme, where an external

wiretapper can listen to the transmissions in the delivery phase.

The main contributions of this paper can be summarized as

follows,

• A secure multi-access coded caching scheme that is robust

against external wiretappers is proposed (Section IV, The-

orem 1 and Section V).

• A novel technique for the key placement in the multi-access

setting is introduced.

• The proposed scheme is shown to be optimal within a

constant multiplicative factor for L ≥ K
2 and N ≥ 2K

(Section IV, Theorem 2).

A. Notations

For a positive integer n, [n] denotes the set {1, 2, . . . , n}. For

any two integers, i and K ,

< i >K=

{

i (mod K) if i (mod K) 6= 0.

K if i (mod K) = 0.

gcd(a, b) represents the greatest common divisor of two positive

integers a and b. The notation ’⊕’ represents the element-wise

Exclusive OR (XOR) operation between two binary vectors.

II. PRELIMINARIES

A. Single Unicast Index Coding Problem with Symmetric and

Consecutive side information (SUICP(SC))

A single unicast index coding problem (SUICP) consists of

the following [17]:

• A sender with K independent messages M =
{x1, x2, . . . , xK}, xi ∈ {0, 1} for all i ∈ [K].

• K receivers, denoted by {R1, R2, . . . , RK}. Receiver Ri

wants the message xi and knows a set Ki ⊆ M\{xi} a

priori, called as the side information set of Ri. The sender

knows the side information set of all the receivers.

• An encoding function for the sender, Eic : {0, 1}K 7−→
{0, 1}ℓ, where ℓ is the length of the index code.

• K decoding functions, one for every user, D
(k)
ic :

{0, 1}ℓ × {0, 1}|Kk| 7−→ {0, 1} ∀k ∈ [K], such that

D
(k)
ic (Eic(M),Kk) = xk, for each receiver k.

The broadcast rate ℓ∗ of an index coding problem is the minimum

number of index code symbols to be transmitted such that every

receiver can decode its required message by using the broad-

casted index code symbols and the available side-information

set.
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A scalar linear index code of length ℓ is described by a matrix

A ∈ F
K×ℓ
2 and the broadcast codeword c is given as,

c = xA =

K
∑

k=1

xkAk,

where Ak is the kth row of matrix A.

In an SUICP(SC) with K messages and K receivers, each

receiver will have K − (U + D + 1) consecutive messages

in the side information set. That is, for receiver k, Kk =
{x<k+D+1>K

, x<k+D+2>K
, . . . , x<k−U−1>K

}, where U and

D are two non-negative integers such that U + D < K . For

a given K,U and D, rK(U,D) represents an achievable index

code length for the SUICP(SC) problem.

B. Adjacent Independent Row (AIR) Matrices

For two positive integers m,n and m ≥ n, an AIR matrix

Am×n is a zero-one matrix with the property that any n adjacent

rows (with cyclic wrap-around) of A are linearly independent

over Fq (irrespective of the field size q). For example,

A5×3 =













1 0 0
0 1 0
0 0 1
1 0 1
0 1 1













.

It can be verified that any 3 adjacent rows of A are linearly

independent. A general construction of AIR matrices is given in

[18].

Consider an SUICP(SC) with K receivers. Receiver Rk wants

the message xk. Rk does not have access to the next D mes-

sages {x<k+1>K
, x<k+2>K

, . . . , x<k+D>K
} and the previous

U messages {x<k−1>K
, x<k−2>K

, . . . , x<k−U>K
}. Encoding

x = [x1, x2, . . . , xK ] with the AIR matrix AK×(U+D+1) gives

an index code with length rK(U,D) = U +D + 1 [18].

III. SYSTEM MODEL

A central server having a library of N independent files, W =
{W1,W2, . . . ,WN} each of size F bits (Wn ∼ unif [FF

2 ]), con-

nected to K users {U1, U2, . . . , UK} through an error-free broad-

cast link. The system consists of K caches {Z1,Z2, . . . ,ZK}
each of capacity MF bits, where 0 ≤ M ≤ N . Each

user has access to L < K caches in a cyclic wrap-around

manner. Lk denotes the caches accessible for user Uk, and

Lk = {Zk,Z<k+1>K
, . . . ,Z<k+L−1>K

}. Note that, |Lk| =
L, ∀k ∈ [K]. A system under the aforementioned setting is

called a (K,L,N) multi-access network. The coded caching

schemes under this model have been discussed in [2]–[8].

A (K,L,N) multi-access coded caching scheme works in two

phases. In the placement phase, server fills the caches with the

file contents, without knowing the user demands. Zk denotes

the content stored in the cache Zk. In the delivery phase, each

user requests a single file from the server. Let Wdk
be the file

demanded by user k. Corresponding to the demand vector d =
{d1, d2, . . . , dK}, the server makes a transmission Xd of size

RF bits. Each user Uk, k ∈ [K] should be able to decode the

demanded file from the transmission Xd and the contents in the

caches in Lk. That is,

[Decodability] H(Wdk
|ZLk

, dk, X
d) = 0, ∀k ∈ [K]. (1)

Z1 Z2 ZL

U1 U2 UK

Server

Users

Caches ZL+1 ZK

Insecure Link

X
d

Wiretapper

I(Xd;W) = 0

N Files

M

Fig. 1: (K,L,N) Multi-access Coded Caching Network in the

presence of an external wiretapper.

In this work, we assume that the communication link from the

server to the users is insecure, and we incorporate the possibility

of an external wiretapper in the delivery phase, which can

observe the broadcast transmission Xd (See Fig. 1). In addition

to the decodability condition, we require that the communication

Xd should not reveal any information about the files W. That

is,

[Security Condition] I(Xd;W) = 0. (2)

For a (K,L,N) multi-access coded caching scheme, a memory-

rate pair (M,Rs) is said to be securely achievable if there exists

a scheme (for cache memory M with rate Rs) satisfying the

decodability condition (1) and the security condition (2) for every

possible demand vectors. When L = 1, the problem reduces to

the setting in [9]. The multi-access coded caching schemes in

[2]–[8] do not satisfy the security condition.

IV. MAIN RESULTS

In this section, we present a (K,L,N) secure multi-access

coded caching scheme by distributed key placement. Then we

show that the proposed scheme is optimal within a constant gap

when L ≥ K
2 .

Theorem 1: For a (K,L,N ≥ K) multi-access coded caching

scheme, the following rates are securely achievable.

• At M = 1, Rs = K .

• If i ∈ {1, 2, . . . , ⌊N
L ⌋} and gcd(i,K) = 1, then, at M =

iN
K + K

L (1− iL
K )2, Rs = K(1− iL

K )2.

• If i ∈ {1, 2, . . . , ⌊N
L ⌋} and g = gcd(i,K) 6= 1, then, at

M = iN
K + 2K

g(L+1) (1−
iL
K )2, Rs = K(1− iL

K )2.

• At M = N
L , Rs = 0.

The lower convex envelope of the above memory-rate pairs are

also securely achievable.

The scheme is presented in Section V.

The total memory M is the sum of data memory MD and key

memory MK . For the secure coded caching scheme, the cache

memory has to be at least a file size (M ≥ 1). At M = 1,

the entire memory is dedicated for storing the keys (MK = 1
and MD = 0). At M = iN

K + K
L (1 − iL

K )2 with gcd(K, i) =
1, MD = iN

K and MK = K
L (1 − iL

K )2. Similarly, at M =
iN
K + 2K

g(L+1) (1−
iL
K )2 with gcd(i,K) = g 6= 1, MD = iN

K and

MK = 2K
g(L+1) (1 − iL

K )2. At these memory points, we stick to

uncoded placement of file contents. At M = N
L , the complete



Wn,1, ∀n ∈ [N ] Wn,2, ∀n ∈ [N ] Wn,3, ∀n ∈ [N ]

U1 U2 U3

N FilesServer

Z1 Z2 Z3

K
(1)

K
(2)

K
(1)

⊕
K

(2)

Insecure Link

Wiretapper

I(Xd;W) = 0

Xd

Fig. 2: Cache Placement: (K = 3, L = 2, N) Secure

Multi-access Coded caching.

cache memory is filled with the file content, and MK = 0.

At this memory point, we make use of the coded placement

of file contents. If we restrict to uncoded placement, Rs = 0 is

achievable at M = ⌈N
L ⌉.

Example 1: In this example, we illustrate the achievable

scheme in Theorem 1 for a (3, 2, N) multi-access coded caching

problem for M = N
3 + 1

6 . The cache placement is shown in Fig.

2. In the conventional coded caching setting, the server would

have sent Wd1,3 ⊕ Wd2,1 ⊕ Wd3,2 for a demand vector d =
[d1, d2, d3]. The technique for ensuring secrecy is one-time pad

scheme [19]. That is, every multicast transmission in the conven-

tional (insecure) coded caching scheme will now be encrypted

by a random key. So in our example, the transmission will be

encrypted by a key, K1 of size F
3 bits, K1 ∼ unif{F

F/3
2 }.

But, K1 has to be accessible for all the 3 users. For that, the

key will be split into 2 non-overlapping ’sub-keys’, K
(1)
1 and

K
(2)
1 . Thus the actual key is the concatenation of the sub-keys,

K1 = [K
(1)
1 K

(2)
1 ]. The cache key placement is shown in Fig. 2.

So, from the placement phase all the 3 users will get the key

K1. Thus from the transmission, Wd1,3 ⊕Wd2,1 ⊕Wd3,2 ⊕K1,

the users can subtract out the key and get back the actual

transmission. The wiretapper, which doesn’t have access to the

key would gain no information regarding any of the file contents.

The secure delivery is achieved by using an additional cache

memory of F
6 bits. Notice that the extra memory needed for

storing the keys will not scale up with the number of files

with the server. Therefore, as the number of files increases,

the fraction of additional memory needed for storing keys will

decrease.

Now, we focus on the case with L ≥ K
2 and restrict to the

uncoded placement of file contents. In that case, the memory-rate

pairs (1,K), (NK + (K−L)2

KL ,K(1− L
K )2) and (2NK , 0) are securely

achievable. Notice that, the key placement can be still coded. Let

R∗(M) denote the information-theoretic optimal memory-rate

trade-off for the multi-access coded caching problem, restricted

to the uncoded placement of file contents. In the following

theorem, we show that the proposed scheme is order optimal

when N ≥ 2K for L ≥ K
2 .

Theorem 2: For a (K,L,N) multi-access coded caching

scheme with L ≥ K
2 and 1 ≤ M ≤ 2N

K ,

Rs(M)

R∗(M)
≤

{

6 if 2K ≤ N < 3K .

4 if N ≥ 3K .

Proof of Theorem 2 is given in Appendix A.

Example 2: Now, we will illustrate one more example of the

achievable scheme for (K = 6, L = 2, N) with i = 2. In the

placement phase, the server divides each file into K
gcd(K,i) = 3

subfiles, Wn = {Wn,1,Wn,2,Wn,3}. Then the server indepen-

dently generates two random keys K1,K2 ∼ unif [F
F/3
2 ]. Split

each key into L + 1 = 3 sub-keys, Ki = [K
(1)
i K

(2)
i K

(3)
i ]

for i ∈ [2]. The cache placement is summarized in Table I.

The cache memory M is N
3 + 2

9 . Let the demand vector be

Z1 Wn,1,∀n ∈ [N ], K
(3)
2 , K

(1)
1

Z2 Wn,2,∀n ∈ [N ], K
(2)
1 , K

(3)
1

Z3 Wn,3,∀n ∈ [N ], K
(1)
1 , K

(2)
1

Z4 Wn,1,∀n ∈ [N ], K
(3)
1 , K

(1)
2

Z5 Wn,2,∀n ∈ [N ], K
(2)
2 , K

(3)
2

Z6 Wn,3,∀n ∈ [N ], K
(1)
2 , K

(2)
2

TABLE I: Cache Placement

d = [d1, d2, d3, d4, d5, d6]. Then, the transmission is,

Xd =
{

Wd1,3 ⊕Wd2,1 ⊕Wd3,2 ⊕K1,

Wd4,3 ⊕Wd5,1 ⊕Wd6,2 ⊕K2

}

.

The transmission rate Rs is 2
3 . Each user requires one subfile of

their demanded file from the delivery phase. First 3 users can de-

code the intended subfiles from the transmission Wd1,3⊕Wd2,1⊕
Wd3,2 ⊕ K1. Similarly, the users U4, U5 and U6 can decode

the subfile from the transmission Wd4,3 ⊕Wd5,1 ⊕Wd6,2 ⊕K2.

Observe that the first 3 users need the key K1 and the remaining

users need the key K2 for decrypting the transmission. From

Table I, it is clear that the users U1, U2 and U3 has the key K1

from the placement phase. Similarly, the key K2 is available for

the users U4, U5 and U6.

Before presenting the actual scheme, we show that for secure

delivery, the cache memory M ≥ 1.

Proposition 1: For a (K,L,N) secure multi-access coded

caching scheme with N ≥ K , the cache memory M ≥ 1.

Proof: For a demand vector d = [d1, d2, . . . , dK ] with all

di’s are distinct, we can write,

H(Wd1
,Wd2

, . . . ,WdK
|Xd, Z1, Z2, . . . , ZK) = 0. (3)

I(Wd1
,Wd2

, . . . ,WdK
;Xd) = 0 (4)

(3) is a consequence of the decodability condition (1), and (4)

is a consequence of the security condition (2). We have,

KF = H(Wd1
,Wd2

, . . . ,WdK
) (5a)

= I(Wd1
,Wd2

, . . . ,WdK
;Xd, Z1, . . . , ZK)

+H(Wd1
,Wd2

, . . . ,WdK
|Xd, Z1, . . . , ZK) (5b)

= I(Wd1
,Wd2

, . . . ,WdK
;Xd, Z1, . . . , ZK) (5c)

= I(Wd1
,Wd2

, . . . ,WdK
;Xd)

+ I(Wd1
,Wd2

, . . . ,WdK
;Z1, . . . , ZK |Xd) (5d)

= I(Wd1
,Wd2

, . . . ,WdK
;Z1, . . . , ZK |Xd) (5e)

≤ H(Z1, . . . , ZK) ≤

K
∑

k=1

H(Zk) ≤ KMF. (5f)



This implies M ≥ 1.

V. SECURE MULTI-ACCESS CODED CACHING SCHEME

In this section, we present the achievable scheme in Theorem

1.

1) Case 1 (M = 1): At M = 1, the entire memory is

dedicated for key placement. That is, MK = 1 and MD = 0.

The server stores the random key Kk ∼ unif [FF
2 ] in cache Zk,

for all k ∈ [K]. For the demand vector d = [d1, d2, . . . , dK ],
the server will transmit Wdk

⊕ Kk for all k ∈ [K]. Therefore,

Rs = K .

2) Case 2 (gcd(K, i) = 1): a) Placement Phase: The

cache memory M = Ni
K + K

L (1 − Li
K )2, where MD = Ni

K and

MK = K
L (1−Li

K )2. The cache file placement is as follows. A file

is divided into K non-overlapping subfiles of same size, F/K
bits, and the nth file is thus Wn = {Wn,1,Wn,2, . . . ,Wn,K}.

The server fills the cache Zk with the subfiles

{Wn,<(k−1)i+1>K
,Wn,<(k−1)i+2>K

, . . . ,Wn,<ki>K
} for

all n ∈ [N ]. That is, content of Z1 is {Wn,1,Wn,2, . . . ,Wn,i},

Z2 stores {Wn,<i+1>K
,Wn,<i+2>K

, . . . ,Wn,<2i>K
} and so

on. By this placement strategy, it is ensured that each user has

access to some iL consecutive subfiles of all the files. That is,

user Uk has access to the subfiles stored in the set of caches Lk.

So Uk gets {Wn,<(k−1)i+1>K
, . . . ,Wn,<(k+L−1)i>K

} for all

n ∈ [N ] from the placement itself. Since i ∈ {1, 2, . . . , ⌊K
L ⌋},

K ≥ iL. Therefore, each user requires the remaining K − iL
subfiles of the demanded file in the delivery phase.

Now, for the cache key placement, the server indepen-

dently generates (K − iL)2 keys, Kα ∼ unif [F
F/K
2 ],

α ∈ [(K − iL)2]. Each key is divided into L sub-keys

each of size F
KL bits. For all α ∈ [(K − iL)2], the key

Kα = {Kα,1,Kα,2, . . . ,Kα,L}. Consider the AIR matrix

AK×L, where every adjacent L rows of A are linearly in-

dependent. Now encode [Kα,1,Kα,2, . . . ,Kα,L] using A. That

is, [Kα,1,Kα,2, . . . ,Kα,K ] = [Kα,1,Kα,2, . . . ,Kα,L]A
T . The

server fills the cache k ∈ [K] with the coded sub-key Kα,k

of all the keys α ∈ [(K − iL)2]. The size of a coded sub-key is

same as the size of a sub-key. Which means, |Kα,k| =
F
KL for

all k ∈ [K] and α ∈ [(K − iL)2]. Observe that, by the above

key placement strategy, every user can get all the keys (by the

linear independence property of the AIR matrix).

b) Delivery Phase: First we explain the delivery scheme with-

out key encryption. Then to ensure secrecy, every transmission

will be encrypted by a key.

Let Wdk
be the file demanded by user Uk and the demand

vector is thus d = [d1, d2, . . . , dK ]. As discussed previously, all

users need K − iL subfiles of their respective demanded file

that are not available from the placement phase. This has been

summarized in Table II. Consider row j of the Table II. Since,

K and i are relatively prime, {< i(k + L − 1) + j >K}Kk=1 =
{1, 2, . . . ,K}. Applying a permutation on row j,

πj([Wd1,<iL+j>K
,Wd2,<i(L+1)+j>K

, . . . ,

WdK ,<i(L+K−1)+j>K
]) = [Wdj1

,1,Wdj2
,2, . . . ,WdjK

,K ]

where πj(.) is the permutation operation on row j and jk
is k such that < i(k + L − 1) + j >K= k. After the

permutation operation πj(.), the jthk user will be requiring the

subfile Wjk,k. But user jk has some iL consecutive subfiles from

[Wdj1
,1,Wdj2

,2, . . . ,WdjK
,K ]. That is, user jk has access to all

the subfiles except those that are indexed with {< k− j+1 >K

, < k − j + 2 >K , . . . , < k − 1 >K} ∪ {k} ∪ {< k + 1 >K

, < k + 2 >K , . . . , < k + K − iL − j >K}. The subfile

required for user jk is Wdjk
,k. Thus the row j corresponds

to an index coding problem with symmetric and consecutive

side information with U = j − 1 and D = K − iL − j.

By encoding the subfiles [Wdj1
,1,Wdj2

,2, . . . ,WdjK
,K ] using a

K × K − iL AIR matrix, we obtain an index coding solution

of length K − iL. Same is repeated for all the (K − iL)
rows of Table II. Therefore, there are (K − iL)2 transmissions,

and each transmission is encrypted by a key Kα. Thus the

rate of transmission, Rs = 1
K (K − iL)2 = K(1 − iL

K )2.

The Decodability of the files is directly followed by the linear

independence property of AIR matrices.

3) Case 3 (gcd(K, i) 6= 1): Now, we will consider the case

where gcd(K, i) 6= 1. Let gcd(K, i) = g. We define, K̃ := K
g

and ĩ := i
g . By definition, gcd(K̃, ĩ) = 1.

First we will see the multicast messages without key

encryption. The server divides each file into K̃ non-

overlapping subfiles of equal size, F/K̃. The data mem-

ory MD = iN
K = ĩN

K̃
. The server fills cache k with the

subfiles {Wn,<(k−1)̃i+1>K̃
,Wn,<(k−1)̃i+2>K̃

, . . . ,Wn,<kĩ>K̃
}.

That means, each cache contains ĩ consecutive subfiles of the

total K̃ subfiles. By this placement strategy, the file contents

stored in the caches {Zk,ZK̃+k, . . . ,Z(g−1)K̃+k}, k ∈ [K̃] are

same. So, we are essentially splitting the entire users into g
mutually exclusive groups. The first group is the set of first K̃
users and second group is the next K̃ users and so on. Observe

that each of these groups constitute an individual (K̃, L,N)
multi-access coded caching scheme. So, there are (K̃ − ĩL)2

multicast messages corresponding to every group. Therefore,

every user requires (K̃ − ĩL)2 keys. But there are g groups.

Hence the total number of keys that the server has to generate

is g(K̃ − ĩL)2. The cache key placement is as follows.

The server independently generates g(K̃−ĩL)2 keys uniformly

distributed over F
F/K̃
2 . Consider the keys K1,K2, . . . ,Kg. Let

the key Kj be used to encrypt a transmission corresponding to

group j ∈ [g]. Divide each key into L+ 1 non-overlapping sub-

keys, K
(t)
j , t ∈ [L+1] such that Kj = {Kj,1,Kj,2, . . . ,Kj,L+1}.

Consider the vector
{

K
(1)
1 ,K

(2)
1 , . . . ,K

(L+1)
1 ,K

(<L+2>L+1)
1 , . . . ,

K
(<2K̃>L+1)
1 ,K

(1)
2 , . . . ,K

(<2K̃>L+1)
2 ,K

(1)
3 , . . . ,K

(<2K̃>L+1)
g

}

.

The length of the vector is 2K̃g = 2K . Apply L − 1 right

cyclic shifts on the vector and store the first two elements of

the resultant vector in Z1, the next two in Z2 and so on. For

instance, in Example 2, L = 2 and g = 2. U1, U2 and U3 are in

first group and the remaining 3 users are in group 2. The keys

K1 and K2 are divided into L + 1 = 3 sub-keys. The vector

{K1
1,K

2
1,K

3
1,K

1
1,K

2
1,K

3
1,K

1
2,K

2
2,K

3
2,K

1
2,K

2
2,K

3
2} is subjected

to a right shift operation by an amount L− 1 = 1. The resulting

vector is {K3
2,K

1
1,K

2
1,K

3
1,K

1
1,K

2
1, K

3
1,K

1
2,K

2
2,K

3
2,K

1
2,K

2
2}.

The sever stores K
3
2 and K

1
1 in Z1, K2

1 and K
3
1 in Z2 and so on.

By this key placement strategy, all the users in group j obtain

K
(t)
j for all t ∈ [L+1]. Because each user has access to 2L sub-

keys. Since, we are applying L− 1 right cyclic shifts, each user

will get at least L + 1 continuous sub-keys of the desired key.

We showed the key placement of g keys (one key per group).

This will be repeated (K̃− ĩL)2 times, so that each user will get

(K̃ − ĩL)2 random keys (All the users in the same group will



U1 U2 . . . Uk . . . UK

row 1 Wd1,<iL+1>K
Wd2,<i(L+1)+1>K

. . . Wdk,<i(L+k−1)+1>K
. . . WdK ,<i(L+K−1)+1>K

row 2 Wd1,<iL+2>K
Wd2,<i(L+1)+2>K

. . . Wdk,<i(L+k−1)+2>K
. . . WdK ,<i(L+K−1)+2>K

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

row j Wd1,<iL+j>K
Wd2,<i(L+1)+j>K

. . . Wdk,<i(L+k−1)+j>K
. . . WdK ,<i(L+K−1)+j>K

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

row K − iL Wd1,K Wd2,i . . . Wdk,<i(k−1)>K
. . . WdK ,<i(K−1)>K

TABLE II: Subfiles of the demanded file required by every user.

get the same (K̃ − ĩL)2 keys). Therefore MK = 2K̃
L+1(1−

iL
K )2.

In the delivery phase, once the demand of all the users

are revealed, the previous delivery strategy can be used for

each group separately since K̃ and ĩ are relatively prime (the

transmissions intending to group j ∈ [g] must be encrypted by

the keys available for the users in group j). So, in this case the

securely achieved rate is, Rs = gK̃
(

1− ĩL
K̃

)2

= K
(

1− iL
K

)2
.

4) Case 4 (M = N
L ): At M

N = 1
L , file Wn is divided

into L non-overlapping subfiles of equal size, F/L. For all

n ∈ [N ], the file Wn = {Wn,1,Wn,2, . . . ,Wn,L}. Consider

the AIR matrix AK×L, every adjacent L rows of A are linearly

independent. Now encode [Wn,1,Wn,2, . . . ,Wn,L] using A. That

is, [Cn,1, Cn,2, . . . , Cn,K ] = [Wn,1,Wn,2, . . . ,Wn,L]A
T . The

server fills the cache k ∈ [K] with the coded subfile Cn,k of

all the files n ∈ [N ]. The size of a coded subfile is same as the

size of a subfile. This means, |Cn,k| =
F
L for all k ∈ [K] and

n ∈ [N ]. So, the memory constraint of all the caches are met by

the given placement strategy. Each user can decode all the files

from the accessible cache contents itself. User Uk has access to L
adjacent caches in the cyclic wrap-around fashion. That means,

Uk possesses L adjacent coded subfiles of every file. Since, every

consecutive L columns of AT are linearly independent, Uk can

get all the L subfiles of all the files from the available L coded

subfiles. In short, every user can decode all the N files without

any more transmissions. That is, at M = N
L , the transmission

rate required is zero. Since there is no transmission, the question

of secure delivery is meaningless.

The in-between memory-rate pairs are securely achievable

by memory sharing. We plot the rate-memory trade-off of the

proposed scheme for a (K = 24, L = 3, N = 96) multi-access

coded caching scheme in Fig. 3. Also, the proposed scheme is

compared with the multi-access coded caching schemes proposed

in [2], [4], [5]. These schemes do not satisfy the security

condition.

Proof of Secure Delivery

We have, I(Xd;W) = H(Xd)−H(Xd|W).
But, H(Xd) ≤ K(1− iL

K )2 F bits.
Case 1: At M=1,

H(Xd|W) = H(Kk : k ∈ [K]|W)

= H(Kk : k ∈ [K]) = KF bits.

Case 2 (gcd(K, i) = 1): At M = iN
K + K

L (1− iL
K )2,

H(Xd|W) = H(Kα : α ∈ [(K − iL)2]|W)

= H(Kα : α ∈ [(K − iL)2])

= K

(

1−
iL

K

)2

F bits.
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Fig. 3: Performance Comparison: (K = 24, L = 3, N = 96)
Multi-access Coded Caching Scheme. The schemes in [2], [4],

[5] do not satisfy the security condition (2).

Case 3 (gcd(K, i) = g 6= 1): At M = iN
K + 2K

g(L+1) (1 −
iL
K )2,

H(Xd|W) = H(Kα : α ∈ [g(K̃ − ĩL)2]|W)

= H(Kα : α ∈ [g(K̃ − ĩL)2])

= K

(

1−
iL

K

)2

F bits.

In all the above cases, H(Xd) ≤ H(Xd|W). Therefore,

I(Xd;W) = 0.

VI. CONCLUSION

In this work, we have analyzed the multi-access coded caching

problem in the presence of an external wiretapper. We have

proposed a multi-access coded caching scheme with secure de-

livery which uses key encryption for each multicast transmission.

Also, we have introduced a distributed placement strategy for the

keys. The proposed secure multi-access coded caching scheme is

optimal within a constant multiplicative gap of 6 when L ≥ K
2

and N ≥ 2K . The fraction of extra memory needed for key-

placement is almost negligible, especially when number of files

with the sever is large.
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APPENDIX A

PROOF OF THEOREM 2

Consider a (K,L,N) multi-access coded caching scheme

with L ≥ K
2 . R∗(M) is the information-theoretic optimal rate

at cache memory M , restricted to uncoded placement of file

contents. If we restrict to uncoded data placement, the memory-

rate pairs (1,K), (NK + (K−L)2

KL ,K(1 − L
K )2) and (2NK , 0) are

securely achievable. In this case, for 1 ≤ M ≤ 2N
K ,

Rs(M)

R∗(M)
≤

{

6 if 2K ≤ N < 3K .

4 if N ≥ 3K .

To prove the optimality gap, we use the fact that the achievable

scheme in [2] (Insecure scheme) achieving R
(

iN
K

)

= K(1 −
iL
K )2 is optimal within a factor 2 for L ≥ K

2 . That is,

R(M)

R∗(M)
≤ 2.

To prove the optimality gap, we need to show that,

Rs(M)

R(M)
≤

{

3 if 2K ≤ N < 3K .

2 if N ≥ 3K .
(6)

We will show that (6) holds at M = 1, M = N
K and for

M ≥ N
K + K

L

(

1− L
K

)2
. Since, (6) holds at the corner points,

we can argue that the inequality holds also at the in-between

memory points.

1) At M = 1
By memory sharing between the (M,R) pairs (0,K) and

(NK ,K
(

1− L
K

)2
), we obtain,

R(1) = K −
2LK − L2

N
.

Also, Rs(M) = K. Therefore,

Rs(1)

R(1)
=

K

K − 2LK−L2

N

.

But, 2LK−L2

N ≤ K2

N . So,

Rs(1)

R(1)
≤

K

K − K2

N

=
1

1− K
N

≤ 2 for N ≥ 2K.

2) At M = N
K

By memory sharing between the (M,R) pairs (1,K) and

(NK + K
L

(

1− L
K

)2
,K

(

1− L
K

)2
), we obtain,

Rs

(

N

K

)

= K −
K(1− β)(NK − 1)

(NK − 1) + βK
L

.

where β :=
(

1− L
K

)2
. Therefore,

Rs

(

N
K

)

R
(

N
K

) =
K

(

1−
(1−β)(N

K
−1)

(N
K

−1)+βK
L

)

Kβ

=
1−

(1−β)(N
K

−1)

(N
K

−1)+βK
L

β
≤

1

β
−

1
β − 1

1 + 2β
t

,

where t = N
K − 1. We have,

Rs

(

N
K

)

R
(

N
K

) ≤
1 + 2

t

1 + 2β
t

≤ 1 +
2

t
= 1 +

2
N
K − 1

.

So, we get,

Rs

(

N
K

)

R
(

N
K

) ≤

{

3 if 2K ≤ N < 3K .

2 if N ≥ 3K .

3) For N
K + K

L

(

1− L
K

)2
≤ M ≤ 2K

By memory sharing between (NK ,K
(

1− L
K

)2
) and

(2NK , 0), we obtain,

R(M) = K

(

2−
M

N/K

)(

1−
L

K

)2

.

By memory sharing between the memory-rate pairs

(NK + K
L

(

1− L
K

)2
,K

(

1− L
K

)2
) and (2NK , 0), we have,
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Rs(M) =
K

(

2− M
N/K

)

(

1− L
K

)2

1− K/L
N/K

(

1− L
K

)2 .

For, N
K + K

L

(

1− L
K

)2
≤ M ≤ 2K ,

Rs(M)

R(M)
=

1

1− K/L
N/K

(

1− L
K

)2 ≤
1

1− 1
2N/K

.

For the last inequality, we used the fact that for L ≥ K
2 ,

K
L

(

1− L
K

)2
≤ 1

2 . Therefore,

Rs(M)

R(M)
≤

1

1− 1
2N/K

≤ 2 forN ≥ K.

So, in conclusion

Rs(M)

R(M)
≤

{

3 if 2K ≤ N < 3K .

2 if N ≥ 3K .

And, for 1 ≤ M ≤ 2N
K ,

Rs(M)

R∗(M)
≤

{

6 if 2K ≤ N < 3K .

4 if N ≥ 3K .

This completes the proof of Theorem 2. �
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