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Pioneering SE(2)-Equivariant Trajectory Planning
for Automated Driving

Steffen Hagedorn1, Marcel Milich2, and Alexandru P. Condurache1

Abstract— Planning the trajectory of the controlled ego
vehicle is a key challenge in automated driving. As for human
drivers, predicting the motions of surrounding vehicles is
important to plan the own actions. Recent motion prediction
methods utilize equivariant neural networks to exploit geo-
metric symmetries in the scene. However, no existing method
combines motion prediction and trajectory planning in a joint
step while guaranteeing equivariance under roto-translations of
the input space. We address this gap by proposing a lightweight
equivariant planning model that generates multi-modal joint
predictions for all vehicles and selects one mode as the ego plan.
The equivariant network design improves sample efficiency,
guarantees output stability, and reduces model parameters.
We further propose equivariant route attraction to guide the
ego vehicle along a high-level route provided by an off-the-
shelf GPS navigation system. This module creates a momentum
from embedded vehicle positions toward the route in latent
space while keeping the equivariance property. Route attraction
enables goal-oriented behavior without forcing the vehicle to
stick to the exact route. We conduct experiments on the
challenging nuScenes dataset to investigate the capability of our
planner. The results show that the planned trajectory is stable
under roto-translations of the input scene which demonstrates
the equivariance of our model. Despite using only a small split
of the dataset for training, our method improves L2 distance
at 3 s by 20.6% and surpasses the state of the art.

I. INTRODUCTION

In automated driving, trajectory planning is the task of
finding a safe and efficient path and speed profile of a
controlled ego vehicle (EV) toward a goal position [1]. In
addition to past positions, map, and route information, many
planning methods rely on motion prediction of surrounding
vehicles (SVs) to model interactions [1]–[4]. Combining
prediction and planning by handling all vehicles jointly is
a promising approach to reduce computation and overcome
purely reactive behavior [2], [5], [6]. To increase sample
efficiency and robustness, the predicted trajectories of all
vehicles must be independent of the viewpoint from which
the scene is observed (cf. Fig. 1) [7]. Equivariant models
fulfill this requirement and are therefore utilized in many
tasks that solve problems in observable physical systems [8]–
[10]. Equivariance means that transformations of the input
transform the output in an equivalent way. Designing equiv-
ariant neural networks (NNs) is beneficial in multiple ways.
Beside guaranteeing output stability they have an increased
sample efficiency and can reduce model parameters [11].
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SE(2)  
Transformation

Fig. 1: Exemplary traffic scene that demonstrates the intuition
behind SE(2)-equivariant trajectory prediction and planning:
Roto-translations of the input scene should result in an
equivalent transformation of the trajectory output.

When given a fixed-size dataset, inducing prior knowledge
by means of equivariance can increase the performance [12].

While methods for joint prediction and planning have been
presented and the advantages of equivariance have been used
in stand-alone motion prediction, no existing planning model
combines both techniques.
Instead, many methods transform the whole scene into a
coordinate system centered around one vehicle, typically the
ego vehicle [13]–[15]. However, this approach has proven
sample-inefficient and vulnerable to domain shifts as the
scene representation is viewpoint-dependent [7], [16]. Other
works alleviate this problem by taking the perspective of
each vehicle [17]–[19]. Such methods are more robust but
computationally expensive [20] which also is a known down-
side of universally applicable equivariant approaches that are
based on irreducible representations of the transformation
group [21], [22]. In contrast, EqMotion reduces the compu-
tation by explicitly designed equivariant operations that do
not rely on irreducible representations [9]. EqDrive applies
EqMotion for vehicle motion prediction in traffic scenes [23].
Their results demonstrate that equivariant neural networks
can improve the performance in automated driving tasks.

Since the benefits of joining prediction and planning as
well as the advantages of equivariant models are shown in
recent methods, we want to pioneer the field of combining
both aspects. Therefore we propose PEP (Pioneering Equiv-
ariant Planning): A lightweight equivariant planning method
that integrates prediction and planning in a joint approach.
Similar to EqMotion [9], PEP is a graph neural network [24]
that consists of an equivariant feature learning branch that
processes vehicle positions and an invariant branch that
processes invariant features such as the distance between
two positions. We extend the architecture by adding another
equivariant branch that updates the EV position by providing
route information. This allows the joint processing of EV and
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SVs while conditioning the EV prediction on a goal. We
further add a mode selection layer that selects the EV plan
from K predicted modes. The network is trained with a loss
that jointly optimizes planning and prediction, and promotes
diverse multi-modal predictions.

We evaluate PEP on the prediction split of nuScenes [25].
Alongside the open-loop evaluation, we present a compre-
hensive ablation study and equivariance analysis.

In summary, our contributions are:
• We present the first equivariant planner integrated with

multi-modal joint prediction.
• We propose an equivariant route attraction mechanism

that allows following a high-level route.
• We report state-of-the-art performance on the nuScenes

dataset in open-loop planning.

II. RELATED WORK
A. Joint Prediction and Planning

Early planning models for automated driving plan the EV’s
trajectory directly from perception inputs without explicitly
considering the interplay with SVs [6]. Alternatively, many
solutions sequentially employ separate subsystems for pre-
diction and planning [3], [26]–[28]. While increasing ex-
plainability, such methods still handle EV and SVs separately
and lead to reactive behavior [6]. By modeling the future
of all vehicles simultaneously, joint prediction and planning
goes beyond reactive behavior and can reduce computa-
tion [2], [5]. Joint prediction and planning approaches can
be categorized into iterative methods and regression.
The iterative probabilistic method PRECOG predicts the
state of all vehicles one step into the future and uses the
outcome as input for the next iteration [2]. Goal information
is provided for the EV and leads to more precise predictions
for all vehicles. The EV’s plan is then inferred by optimizing
the expectation of the predicted distribution. GameFormer
is another iterative approach based on game theory [5].
Interactions are modeled as a level-k game in which the
individual predictions are updated based on the predicted
behavior of all vehicles from the previous level. The encoder-
decoder transformer architecture predicts multiple modes for
SVs while restricting EV prediction to a single mode that
serves as the plan.
In contrast, regressive methods learn a joint feature for the
whole prediction horizon from which complete trajectories
are regressed. SafePathNet employs a transformer for multi-
modal joint prediction of EV and SVs [29]. Every predicted
EV mode is then checked for collisions with the most
probable mode of each SV. The EV mode with the lowest
predicted collision rate is selected as the plan. Similarly,
DIPP starts with a multi-modal joint prediction and selects
the mode with the highest probability for each vehicle [30].
To infer the EV plan, a differentiable nonlinear optimizer
refines the EV prediction under consideration of the SV
predictions and additional hand-crafted constraints.
We also base our planner on multi-modal joint prediction
for all vehicles but further design the whole network to be
equivariant under 2D roto-translations of the input.

B. Equivariant Motion Prediction

Equivariant convolutional neural networks add rotation
equivariance to the inherent translation equivariance of the
convolution operation [31]. Rotation equivariance in the
2D image domain is achieved by oriented convolutional
filters [32], log-polar coordinates [33], circular harmon-
ics [34] or steerable filters [12], [35]. With the advent
of Graph Neural Networks (GNNs) [24] which work on
sparse data representations, equivariant adaptions of this
architecture emerged. To extract roto-translation-equivariant
features from point clouds or graphs, some approaches utilize
irreducible representations of the transformation group such
as spherical harmonics [36], [37]. Others base their method
on specifically designed and computationally less expensive
layers [38]–[40]. For example, [39] embed the representation
of neurons into a 3D space where they leverage basic
principles of matrix algebra to induce equivariance.
Equivariant GNNs are a common choice for solving tasks
in physical systems since these often possess rotational and
translational symmetries [41], [42]. Since motion prediction
models a physical system, equivariant NNs are well-suited
for this task. [43] first apply learning-based equivariant mo-
tion prediction to predict fluid flow. SE(3)-equivariant trans-
formers mark another milestone by regressing pedestrian tra-
jectories [37]. The first equivariant motion prediction model
for autonomous driving utilizes polar coordinate-indexed
filters to design an equivariant continuous convolution opera-
tor [10]. Recently, the motion prediction network EqMotion
presents strong performance on various tasks [9]. Similar
to [39], its specifically designed layers exploit geometrical
symmetries. In addition to the equivariant feature learning
they present an invariant interaction reasoning module and
an invariant pattern feature. This design allows to integrate
prior knowledge efficiently. Features like absolute distances
which are inherently SE(3)-invariant can be processed in the
invariant layers while absolute positions are handled by the
SE(3)-equivariant layers. EqDrive finally applies EqMotion
for vehicle trajectory prediction [9]. In this work, we propose
an equivariant model based on EqMotion that extends the
motion prediction to a trajectory planner for the EV and
integrates prior knowledge of its intended route.

III. METHOD

In this section, we introduce our equivariant trajectory
planner PEP, which is an expansion of EqMotion. For a more
detailed overview of EqMotion, we refer the reader to [9].
Fig. 2 provides an overview of our model.

A. Problem Formulation

PEP is an equivariant trajectory planner based on multi-
modal joint prediction of all vehicles and trained by imitation
learning. Given the past trajectories Xi = [x1

i , x
2
i , . . . , x

Tp

i ] ∈
RTp×2 of i = 1, . . . ,M vehicles, including the EV, and EV
route information L ∈ RC×2, the planning task is to forecast
ŶEV = [ŷ1EV , ŷ

2
EV , . . . , ŷ

Tf

EV ] ∈ RTf×2 as close to the real
future trajectory YEV as possible. We further denote the set
of all past trajectories as X = [X1, . . . ,XM ].
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Fig. 2: PEP model overview. After feature initialization, the features are updated N times in three parallel but interacting
branches. A multi-modal decoder then predicts multiple future scenarios for all vehicles jointly. Alongside the trajectories,
a probability for each scenario is estimated. The EV trajectory of the most probable mode is selected as the plan.

Especially, we require the planning function Fplan(X, L) =
ŶEV to be equivariant under transformations Tg in the Eu-
clidean group SE(2), which comprises rotations R ∈ SO(2)
and translations t ∈ R2. All feature updates f in Fplan must
satisfy the equivariance condition f(xTg) = f(x)Tg where
the roto-translation right group action Tg acts on 2D inputs
x via matrix-multiplication and addition xTg = xR + t.

B. Feature Initialization

The key idea of handling a set of positions translation-
equivariantly is to shift the viewpoint into the center, i.e. the
mean coordinate X̄. To return to the initial coordinate system
after a transformation, X̄ is re-added. Like EqMotion [9], we
initialize the equivariant feature of vehicle i as

G(0)
i = ϕinitg (Xi − X̄) + X̄ ∈ RC×2 (1)

where function ϕinitg is realized by a fully connected layer
(FCL) [9]. In the following, all ϕ describe FCLs. Since an
FCL is a linear transformation and can be expressed as
a matrix multiplication, rotation-equivariance follows from
the multiplicative associative law. We initialize the invariant
feature of vehicle i as a function of velocity ∆Xi and
heading angle, which are both inferred from positions Xi as
in EqMotion [9]. The [·; ·] operator denotes concatenation.

h(0)
i = ϕinith([||∆Xi||2; angle(∆Xτ

i ,∆Xτ−1
i )]) ∈ RD (2)

EqMotion further adds an invariant relationship learning,
which computes cij ∈ [0, 1]Q between agents i and j from
the initial equivariant and invariant feature [9]. cij describes
the relationship of i and j in Q categories. For instance, the
network could learn to extract distance, velocity differences
or heading differences of i and j.

C. Feature Update

1) Equivariant Route Attraction: Many automated driving
systems comprise a tactical planner or navigation system to
provide a coarse intended route at lane level. We introduce
a novel module called ’equivariant route attraction’ to incor-
porate the intended EV route into the joint prediction. The
intuition is to move the equivariant feature of the EV toward
the high-level route L in latent space before considering
interactions with other vehicles. This order of feature updates

prioritizes social interactions over route following, which is
important for collision avoidance. Since the goal is only
known for the EV (i = 0), we update only this feature:

fra : G(l)
0 ← G(l)

0 + ϕ(l)
ra (L−G(l)

0 ) ∈ RC×2. (3)

The FCL ϕra takes vector L − G(l)
0 as input, which points

from the equivariant EV feature embedding toward the route.
Superscript (l) denotes the l-th of N feature update blocks.
We show that the route attraction module fra fulfills the
equivariance condition stated in the problem formulation:

fra(xR + t) = G(l)
0 R + t + ϕra(LR + t− (G(l)

0 R + t))

= G(l)
0 R + t + ϕra((L−G(l)

0 )R)

= G(l)
0 R + t + ϕra(L−G(l)

0 )R

= (G(l)
0 + ϕra(L−G(l)

0 ))R + t
= fra(x)R + t □

(4)

2) Equivariant Feature Learning: This feature update step
comprises inner aggregation and neighbor aggregation. Inner
aggregation updates the equivariant feature of vehicle i using
a weight computed from its invariant feature. Ḡ(l) is the
mean position of equivariant features G(l)

i [9]:

G(l)
i ← ϕ

(l)
att (h

(l)
i ) · (G(l)

i − Ḡ(l)) + Ḡ(l) ∈ RC×2 (5)

Neighbor aggregation first defines an edge weight for each
neighbor based on relationship feature cij , equivariant, and
invariant features. The i-th equivariant feature is then updated
by a weighted sum over all its neighbors Ni [9].

e(l)ij =

K∑
k=1

cij,kϕ
(l)
e,k([h

(l)
i ;h(l)

j ; ||G(l)
i −G(l)

j ||2]) ∈ RC (6)

G(l)
i ← G(l)

i +
∑
j∈Ni

e(l)ij · (G
(l)
i −G(l)

j ) ∈ RC×2 (7)

Finally, we apply the equivariant non-linear function pro-
posed in [9] to infer G(l+1)

i .
3) Invariant Feature Learning: The last step of the feature

update in EqMotion [9] is invariant feature learning:

p(l)
i =

∑
j∈Ni

ϕ(l)
m ([h(l)

i ;h(l)
j ; ||G(l)

i −G(l)
j ||2]) ∈ RD (8)

h(l+1)
i = ϕ

(l)
h ([h(l)

i ;p(l)
i ]) ∈ RD (9)



D. Trajectory Decoding
To achieve multi-modal predictions, we introduce K paral-

lel FCL trajectory decoders. Each decoder predicts all agents
simulateneously based on their equivariant features:

Ŷ
k

i = ϕk
dec(G

N
i − ḠN ) + ḠN ∈ R(Tf+1)×2 (10)

Note that we predict an additional output beyond prediction
horizon Tf . It serves as a probability indicator for the
trajectory selector, which outputs the final EV plan.

E. Trajectory Selection
We define mode probability as the mean of the spatial

coordinate dimension C of the additionally predicted point.

Pk
i = meanC(Ŷ

k,Tf+1

i ) ∈ RK (11)

Selecting the most probable mode yields the EV plan:

ŶEV = Ŷ
k∗

0 where k∗ = argmax
k=1,...,K

Pk
0 (12)

To promote mode diversity we apply a winner-takes-all
(WTA) loss as described below.

F. Training Objective
In accordance with the problem statement, we focus on

the planning performance in the loss function. Additionally,
prediction performance for SVs is optimized in order to
benefit from realistic interaction modeling:

L = Lplan + Lwta + α · Lpred. (13)

Here, Lplan is the average L2 distance between the planned
EV trajectory and ground truth. Lwta considers mode selec-
tion by assigning a loss of 0 if the closest mode to the ground
truth is selected correctly and else 1. Lpred is the minimal
average L2 error for SVs, weighted with α = 0.1.

IV. RESULTS & DISCUSSION
A. Implementation

All results are gathered with the same architecture using
N = 4 feature update blocks with Q = 4 relationship
categories, a coordinate dimension of C = D = 64, and
K = 6 trajectory decoders. Past and future trajectories are
encoded as Tp = 4 and Tf = 6 positions, which corresponds
to tp = 1.5 s and tf = 3 s in the selected dataset, respectively.

B. Dataset
Since PEP performs joint prediction and planning, we use

only multi-vehicle scenes in the official nuScenes prediction
split, i.e. 471 training and 136 test scenes [25]. These are
only 607 of 1000 total scenes. Route attraction uses the high-
level route the driver was supposed to follow during data
acquisition, which is provided in the CAN-Bus expansion.

C. Training Setup
PEP is implemented in PyTorch and has 1.3M trainable

parameters when configured as described in A. It is trained
over 400 epochs with batch size 512. We used the Adam
optimizer [44] with an initial learning rate of 5× 10−4 that
decreases with a factor of 0.8 every other epoch. On a single
GTX 1080Ti training to convergence takes about 1.25 h.

TABLE I: Planning results on nuScenes

Model Per GC Vel Acc Traj L2 (m) CR (%)
3 s Avg. 3 s Avg.

NMP [45] ✓ - - - - 2.31 - 1.92 -
SA-NMP [45] ✓ - - - - 2.05 - 1.59 -

FF [46] ✓ - - - - 2.54 1.43 1.07 0.43
EO [47] ✓ - - - - 2.78 1.60 0.88 0.33

ST-P3 [48] ✓ ✓ - - - 2.90 2.11 1.27 0.71
UniAD [4] ✓ ✓ - - - 1.65 1.03 0.71 0.31

DeepEM [49] ✓ ✓ - - - 0.73 0.48 0.36 0.19
FusionAD [50] ✓ ✓ ✓ ✓ ✓ - 0.81 0.27 0.12
VAD-Tiny [51] ✓ ✓ ✓ ✓ ✓ 0.65 0.41 0.27 0.16
VAD-Base [51] ✓ ✓ ✓ ✓ ✓ 0.60 0.37 0.24 0.14

BEV-Planner++ [52] ✓ ✓ ✓ ✓ ✓ 0.57 0.35 0.73 0.34
AD-MLP-I [15] - - - - ✓ 1.48 0.97 0.83 0.49
AD-MLP-II [15] - - ✓ ✓ ✓ 0.49 0.35 0.28 0.23
AD-MLP-IV [15] - ✓ ✓ ✓ ✓ 0.41 0.29 0.24 0.19

PEP (Ours) - ✓ - - ✓ 0.32 0.28 0.43 0.37

D. Planning

Planning performance is evaluated in open loop. Table I
provides a broad comparison with other methods. Except
for our model, results are taken from [15], [49], [50], [52].
To facilitate an overview, the methods are categorized based
on model design criteria. ’Per’ indicates that a method uses
additional information from perception, ’GC’ stands for goal
conditioning of the EV, and ’Vel’, ’Acc’, and ’Traj’ encode
whether ground truth velocity, acceleration, and trajectory
are provided, respectively. L2 distance between the planned
trajectory and ground truth trajectory is used as the main
metric. Additionally, the Collision Rate (CR) is evaluated.
PEP achieves the lowest L2 distance at the last planned
position, 3 s into the future as well as averaged along the
trajectory. Regarding the CR, PEP performs slightly worse
than methods, which additionally use ground truth velocity
and acceleration as input. However, the performance is
similar to other methods that, like PEP, do not do so.
The results suggest that route attraction becomes increasingly
beneficial the longer the planning horizon gets. Compared to
SOTA, the L2(3 s) is reduced by 28.1% while the L2(Avg.)
decreases by 3.6%. We assume that the L2(Avg.) and CR
could be further reduced by incorporating map information
under consideration of roto-translation equivariance. Map in-
formation should lead to more accurate interaction modeling,
which increases prediction and, thus, planning performance.
Including a map will therefore be the next step to further
improve our lightweight map-less approach. The qualitative
results in Fig. 3 showcase how PEP benefits from prediction,
route, and multi-modality.

E. Prediction

Even though prediction is not the primary task of PEP,
it leverages joint prediction for realistic interaction model-
ing when planning the EV trajectory. During our planning
experiments, we measured an SV prediction performance
with a minL2(Avg.) of 0.82m and a minL2(3 s) of 0.99m.
Considering that no map is available for the SVs, these
results are worth mentioning. In the following, we investigate
whether planning really benefits from joint prediction.

F. Ablation

We present ablation studies for the major design choices
of our model. To assess the impact of SV predictions on
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Fig. 3: Qualitative results. While the EV (red) uses the route (dashed) for guidance, it does not stick to it (left). Predicting
actions of SVs improves EV planning, for example by anticipating SVs to decelerate (blue, left) or to cross the EV lane
(blue, middle). Multi-modal predictions help the planner to consider diverse future scenarios (green, right).

TABLE II: Ablations of PEP model

Prediction Route Equivariance L2 (m) CR (%)
3 s Avg. 3 s Avg.

- - - 4.94 2.88 1.33 1.79
✓ ✓ - 2.81 2.24 1.73 1.23
✓ - ✓ 1.71 1.46 1.40 0.85
- ✓ ✓ 0.35 0.31 0.48 0.42
✓ ✓ ✓ 0.32 0.28 0.43 0.37

EV planning performance, Lpred is removed from the loss
function (c.f. Eq. 13) so that the model is not explicitly
trained to predict SVs. Route ablation is realized by skipping
the route attraction module described in Eq. 3. Finally,
we deliberately destroy the SE(2)-equivariance of PEP by
not subtracting and re-adding the mean position X̄ during
equivariant feature initialization (c.f. Eq. 1). All networks
are trained until convergence.
Overall, the ablation experiments show that each component
contributes to the planning performance. Ablating all compo-
nents at once yields the highest L2 distances and CR(Avg.)
but not the highest CR(3 s). This is explainable by poor
behaviors like driving off-road or stopping, which are the
consequence of a map-less and route-less approach without
explicit prediction. Such behaviors increase the L2 distance
and reduce the CR in an unreasonable way. Next, we inves-
tigate the effect of ablating individual components. Ablating
equivariance results in the highest L2(3 s) and L2(Avg.)
increase, which indicates that the model benefits from the
prior knowledge on scene symmetry that is integrated by
means of SE(2)-equivariance. Not integrating this knowledge
into the model architecture means that the model has to learn
it itself, which reduces the sample efficiency and requires
model capacity. Discarding the route also leads to a severe
performance decrease as it takes away the only available map
information, making the model fully interaction-based. In
contrast, PEP performs only marginally worse when ablating
explicit prediction, which is consistent with recent findings
that EV information is decisive for open loop planning on
nuScenes where interactions play a minor role [15], [52]. Our
results show that prediction is less important than route infor-
mation and equivariant model design. Nevertheless, ablating
prediction leads to −10.7% L2(Avg.) and −9.4% L2(3 s)
compared to the complete model.
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Fig. 4: Output stability. Inferred outside the training distribu-
tion, our SE(2)-equivariant model guarantees a stable output.

G. Equivariance

To investigate equivariance, we measure the output stabil-
ity under input transformations. To this, the input trajectory
and route are rotated by θ ∈ [1◦, 2◦, . . . , 359◦]. Then, the EV
trajectory is planned and transformed back into the baseline
coordinate system by a rotation of −θ. The trajectory planned
without applying any rotation, i.e. θ = 0, serves as the
baseline. For an ideal equivariant model, the L2 distance to
the baseline should be zero for all θ.
Fig. 4 depicts the output stability under rotation. Except for
negligible numerical effects from rotation, the L2-distance
is constant around zero, demonstrating that PEP is rotation-
equivariant. Repeating the experiment with added random 2D
translations confirms the results. In contrast, AD-MLP [15]
which is trained on EV-centered data, is sensitive to input
rotations which could, for example, arise from measurement
errors. Especially when designing safety-relevant systems for
automated driving, output stability and explainable behavior
under input transformations are crucial.

V. CONCLUSION

In this work, we have proposed PEP, a simplistic equiv-
ariant planning model that integrates prediction and plan-
ning in a joint approach. Our experiments show that PEP
achieves state-of-the-art performance in open-loop planning
on nuScenes. Three major design choices contribute to the
performance: Joint prediction and planning, our novel route
attraction module, and the SE(2)-equivariant network design.
We demonstrate output stability under transformations of the
input. This property of equivariant models can provide safety
guarantees and might become an important aspect in the
future of automated driving.
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