
UFO: Uncertainty-aware LiDAR-image Fusion for Off-road
Semantic Terrain Map Estimation

Ohn Kim∗, Junwon Seo∗, Seongyong Ahn, Chong Hui Kim

Abstract— Autonomous off-road navigation requires an ac-
curate semantic understanding of the environment, often con-
verted into a bird’s-eye view (BEV) representation for various
downstream tasks. While learning-based methods have shown
success in generating local semantic terrain maps directly
from sensor data, their efficacy in off-road environments is
hindered by challenges in accurately representing uncertain
terrain features. This paper presents a learning-based fusion
method for generating dense terrain classification maps in BEV.
By performing LiDAR-image fusion at multiple scales, our
approach enhances the accuracy of semantic maps generated
from an RGB image and a single-sweep LiDAR scan. Utiliz-
ing uncertainty-aware pseudo-labels further enhances the net-
work’s ability to learn reliably in off-road environments without
requiring precise 3D annotations. By conducting thorough
experiments using off-road driving datasets, we demonstrate
that our method can improve accuracy in off-road terrains, val-
idating its efficacy in facilitating reliable and safe autonomous
navigation in challenging off-road settings.

I. INTRODUCTION
Autonomous navigation over complex and unstructured

off-road terrains has become essential in developing a wide
range of robotic applications, such as exploration, agricul-
ture, and search and rescue. The effectiveness of off-road
navigation is contingent upon the capability to accurately
comprehend the relevant characteristics of the surrounding
terrains related to navigational capability. Without prior
knowledge of the environments, off-road navigation sys-
tems should be capable of examining terrain characteristics
through onboard sensor measurements in real time [1].
The terrains can be classified semantically and translated
into bird’s eye view representations, facilitating their in-
tegration into motion planning algorithms [2]. A semantic
terrain classification map should be generated based on an
accurate and comprehensive understanding of surrounding
environments to ensure safe and effective navigation in off-
road environments, which are characterized by rough and
potentially hazardous terrains.

Producing a dependable semantic terrain classification
map is challenging due to the distinctive characteristics of
off-road environments, diverging significantly from indoor or
structured settings, such as uncertain terrain boundaries and
a wide range of terrain types [3], [4]. The highly variable ter-
rain classes in off-road environments necessitate fine-grained
labeling for comprehensive scene understanding [5]. Also,
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Fig. 1: Our method generates an off-road semantic terrain classification
map in BEV from an RGB camera image and a single-sweep LiDAR point
cloud in off-road environments. The classification accuracy is improved
by combining complementary features extracted from the RGB image and
the LiDAR point cloud. Moreover, our approach utilizes uncertainty-aware
pseudo-labels to perform semantic scene completion (SSC), resulting in a
dependable, dense semantic BEV map in diverse environments.

high intra-class variation of terrain appearances introduces
potential unreliability in terrain classification outcomes [6]–
[8]. Lastly, the complex geometry of off-road terrains makes
mapping in a bird’s eye view with accurate geometry chal-
lenging due to the inability to estimate elevation accurately
and adopt flat-ground assumptions [9].

These characteristics impose numerous restrictions on the
reliable application of existing semantic terrain classifica-
tion methods in various off-road environments. While it is
expected to project pixel-wise segmentation into a Bird’s
Eye View (BEV) map using LiDAR or stereo cameras [1],
they produce sparse mapping by accumulating point-wise
predictions from multiple time steps. Consequently, recent
approaches leverage the concept of Semantic Scene Comple-
tion (SSC), employing learning-based inpainting to generate
dense classification maps [10], [11]. However, these ap-
proaches encounter limitations due to the intrinsically sparse
and less semantically rich features of LiDAR measurements.
Some works explored deep learning-based models for terrain
classification based solely on visual data, which utilize
learning-based viewpoint transformations with 2D segmenta-
tion outcomes [12]–[16]. Nevertheless, without explicit range
measurements, these methods produce geometrically inac-
curate and unreliable outcomes, which might result in fatal
failure during high-speed navigation [9]. Additionally, their
dependence on specific data distributions of labeled datasets
makes extending their application to diverse environments
challenging.
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This paper presents a terrain classification method that
accurately estimates semantic maps in BEV in off-road
scenarios, as shown in Fig. 1. Using a single LiDAR scan
and an RGB image as input, the network generates dense and
accurate terrain class maps in BEV by fusing information
from multimodal sensor measurements. To ensure the appli-
cability of the network in off-road scenes without relying on
3D annotations, pseudo-labels are generated through image-
guided annotations. The reliability of the training with the
pseudo-label is enhanced by uncertainty estimation, enabling
the network to perform effectively in varied off-road envi-
ronments. To validate the performance of our methodology,
comprehensive experiments have been conducted using the
publicly available RELLIS-3D dataset [17]. Our method
shows improved accuracy compared to single-modal methods
by incorporating the multi-modal feature fusion methodology
for semantic terrain map estimation.

II. RELATED WORKS
A. Robotics Mapping in Bird’s Eye View

Robotics mapping involves establishing a representation of
a robot’s surroundings using noisy measurements as it moves
through an environment [18]. The characteristics of these
environments are assessed based on terrain features such as
occupancy [19], traversability [20], or semantic class [21],
[22]. These representations are commonly converted into the
bird’s eye view due to their compatibility for integration with
path planners in various robotic applications [23], [24]. To
navigate efficiently and securely, the robot should be able to
construct a map around itself online.

In the field of on-road navigation, camera-based meth-
ods widely employ viewpoint transformation learned by
projecting pixel-wise features into BEV space [12]–[16],
[25]. Nevertheless, the practicality of implementing these
approaches in off-road settings is hampered by significant
challenges, primarily due to real-time constraints and the
absence of 3D terrain information. While other methods
adopt range sensors such as LiDAR, they face challenges
stemming from the sparsity of LiDAR returns despite its
high precision of geometric information [2], [20]. Some
methods perform semantic segmentation directly from raw
sensor measurements, such as image or LiDAR, and then
project the results onto BEV for the mapping [1]. However,
the sparsity issues become more pronounced during high-
speed navigation, where larger robot motion between LiDAR
scans results in fewer depth measurements per unit area,
compromising the reliability of the generated map.

Recent works propose learning-based approaches for pre-
dicting complete dense maps at a fixed size for off-road and
unstructured environments to address these limitations [9],
[26], [27]. Specifically, they leverage the concept of Semantic
Scene Completion to generate a complete 3D scene from a
single LiDAR scan [28], [29]. For instance, BEVNet achieves
dense and accurate off-road terrain semantic classification
based on SSC [11]. However, these methods often struggle
to acquire accurate semantic predictions in off-road environ-
ments solely using LiDAR features. They also necessitate 3D

ground truth for consecutive scans, which poses a challenge
in extending their applicability to off-road environments.

B. LiDAR-Image Fusion

While single-modal methods often face challenges in
complex environments due to the inherent limitations of the
input sensors, combining different modalities through sen-
sor fusion has proven notable performance improvement in
various applications [30]–[34]. LiDAR point clouds provide
precise geometric information but only capture sparse data
and lack texture information [35]. On the other hand, camera
images can offer detailed and dense semantic information,
while implicitly or explicitly inferred geometric information
is prone to errors [9]. Hence, the combination of LiDAR
and camera modalities is beneficial for performing terrain
classification in off-road environments, as they can enhance
each other’s capabilities.

Input-level fusion methods employed a BEV or spherical
projection to project image logits or features into LiDAR
space to improve the performance of LiDAR networks [36],
[37]. The feature-level fusion methods aim to enhance feature
representation by sharing information between the features
of 2D and 3D backbones [30], [34], [38], [39]. Notably, the
2DPASS [40] effectively leverages rich semantic informa-
tion from images by transferring knowledge across different
modalities during the learning feature representations. It also
acquires richer semantic and structural information through
multi-scale feature fusion. To enhance the performance of
models that generate semantic terrain classification maps
for off-road scenarios, it is necessary to combine LiDAR
and image modalities. This is because constructing precise
maps for off-road scenes involves comprehension of both
complicated geometry and rich semantics.

III. METHODS

This section details our proposed learning method for
generating a dense off-road semantic terrain classification
map in BEV. First, a method for creating a pseudo ground
truth for creating a dense semantic map is proposed. Then,
the network structure is presented, which can generate a
dense semantic terrain classification map in the robot’s local
frame from sensor measurements. LiDAR-image fusion is
adopted to enhance prediction accuracy, and uncertainty-
aware training is incorporated to increase the reliability of
our method in various off-road settings.

A. Image-guided Pseudo Ground-truth Generation

While labeled datasets can create BEV ground truth in
constrained environments, their acquisition cost and limited
applicability to specific sensor configurations and class def-
initions pose challenges in off-road conditions. To ensure
reliability in various off-road settings, we adopt a pseudo-
label-based approach for generating BEV ground truth. This
strategy alleviates constraints associated with the scarcity and
expense of 3D labels, enabling training across a wide range
of off-road scenarios. The overview of pseudo-labeling is
depicted in Fig. 2



Fig. 2: Overview of image-guided pseudo-label generation. A pre-trained
2D image segmentation network derives semantic segmentation results
from past and future images. These outcomes are aggregated using paired
point clouds and then projected onto BEV grids to generate the pseudo-
ground truth. Each grid determines a pseudo-label through the argmax
operation, while its uncertainty is also quantified. Areas within the white box
exhibit inconsistent semantic predictions across multiple timesteps, leading
to higher uncertainties, depicted by brighter colors.

A pre-trained image segmentation network is utilized to
produce the ground truth for semantic terrain classification.
Image-based labels are beneficial in off-road scenes because
they can accurately identify ambiguous boundaries and di-
verse classes, which are often characterized by rich details
and textures. A dataset containing paired point clouds and
RGB images can be easily obtained by navigating a robot
equipped with LiDAR and a camera. The pseudo-labels of
the BEV grid are then acquired by aggregating semantic
segmentation predictions of the pre-trained model. Despite
potential higher uncertainty in pseudo-labels, incorporating
predictions from multiple sequential time steps during their
generation along with uncertainty quantification can enhance
their overall reliability.

For each paired LiDAR and RGB image, the inference
results of 2D semantic segmentation are aggregated from
the past 50 and future 100 data instances. Given the image
segmentation results at timestamp t′, the prediction for each
pixel is projected onto the BEV grid using the paired LiDAR
point cloud. Given a ith LiDAR point Pi ∈ R3 at timestamp
t′, the projection to pixel Ii of each 3D point to a pixel in
the image plane is determined based on camera parameters
as follows:

Ii = K ·T ·Pi, (1)

where K ∈ R3×4 and T ∈ R4×4 are the camera intrinsic and

extrinsic matrices respectively. The point is assigned a one-
hot-encoded class prediction Si ∈ RK , where K is the total
number of classes. The labeled points are then transformed
into the reference robot frame at timestamp t as Pi

t′→t, based
on the robot pose recovered by SLAM or odometry [41].
Multiple predictions are merged into a reference frame to
produce dense BEV labels, and points from multiple times-
tamps are rasterized into BEV grid cells based on their x and
y positions. A label for each grid Gj is determined from
the points assigned to the grid, while some grids without
assigned points are labeled as an unknown class. To avoid the
aliasing of moving objects during aggregation, only points
that belong to static object classes are aggregated, while
points that belong to moving objects are aggregated only
if they are from reference timestamp.

Class predictions of points assigned in the same grid are
summed to calculate the grid class score, cj ∈ RK , where
j is the index of the BEV grid. Then, the pseudo-label of
a grid, yj , is determined through a majority vote of class
predictions:

cjk =
1

|Gj |
∑

i s.t. Pi
t′→t

∈Gj
Si
k, (2)

yj = argmax
k

cjk. (3)

Adopting multiple segmentation inference outcomes through
majority voting introduces ensemble-like effects, effectively
addressing potential inaccuracies in 2D segmentation results.

Additionally, the uncertainty of the pseudo-label of grid
j, denoted as uj ∈ [0, 1], is calculated to measure the
reliability of the pseudo-label by measuring the consistency
of segmentation for a grid over multiple timestamps:

uj = − 1

logK

K∑
k

cjk log(c
j
k + ϵ), (4)

where ϵ = 1e−6 is used for stability. These uncertainty
estimates can be leveraged during the network training to
enhance the robustness of our semantic terrain classification
map generation method [42].

B. BEV Semantic Fusion Network

Our network is trained to generate a dense top-view
semantic classification map, utilizing a sparse frontal LiDAR
point cloud and a paired RGB image. The pipeline of our
method is depicted in Fig. 3.

LiDAR and image features are extracted in 3D voxel
spaces using separate networks. The input LiDAR point
cloud undergoes discretization into a (H,W,D) grid with
a resolution of 0.1m × 0.1m × 0.2m, and each point is
further discretized into sparse voxels. In each voxel, a point
is encoded as a 3-dimensional feature, comprising the offset
from the voxel center (∆x,∆y,∆z). Utilizing a simplified
PointNet [43] architecture that includes a linear layer, Batch-
Norm, and ReLU, each voxel of size (N, 3) is transformed
into sparse LiDAR voxel features of size C, where N is the
maximum number of points per voxel. Simultaneously, image
features are extracted from a pre-trained image backbone and



Fig. 3: High-level architecture of the proposed method. The network takes input from a single-sweep LiDAR point cloud and an RGB image captured
by the front camera, producing a dense semantic terrain classification map in BEV. Extracted features from the image and point cloud, obtained through
distinct encoders, are fused using Multi-scale Attentive Feature Fusion, integrated into the encoder of a 3D UNet of each modality. Subsequently, these
fused features are passed to a 2D UNet to generate the dense semantic terrain classification map in BEV.

similarly converted into sparse image voxel features. The
LiDAR points are projected onto the image plane via point-
to-pixel mapping similar to Eq. 1, and the corresponding
image features are propagated to the voxel to which the point
belongs.

The input features from RGB and LiDAR are indepen-
dently passed through separate 3D U-Net composed of sparse
convolution layers to extract features for each modality.
The 3D U-Net architecture employs a multi-level encoder-
decoder structure, where each decoder layer is connected
to the encoder of the same level through a residual skip
connection. After each level of the sparse encoder, a multi-
modal fusion block is integrated to promote feature fusion
between LiDAR and image features. This facilitates the
effective blending of rich semantic information from RGB
with the geometric details derived from LiDAR points,
ultimately leading to the generation of a precise semantic
terrain classification map.

For feature fusion at each level, attentive fusion is em-
ployed to complement the features from each modality
effectively, as shown in Fig. 3. Image and LiDAR features are
concatenated channel-wise, followed by sparse convolution
to generate a fused feature map. Channel attention is applied
to the fused feature, emphasizing features that can strengthen
the information from complementary sensors. The attended
fused features are then added back to the original features of
each modality, enabling a concentration on the more crucial
information from each modality and distilling features from
different modalities to enhance each feature further.

From the fused voxel features, a dense BEV terrain clas-
sification map is produced using a 2D convolution network.
The voxel feature map, with dimensions (H,W,D,Cd)
undergoes compression to yield a BEV feature map of
dimensions (H,W,Cd × D) with empty grids initialized
to zero. A U-Net-structured 2D convolution network is
employed to generate a dense semantic map. This network
progressively reduces the spatial size of features, capturing

higher-level semantic information, while the decoder part
of the network upsamples feature maps to recover spatial
information. Through this process, every grid feature is
interpolated from sparse features to produce a dense terrain
classification map of size (H,W,K) after a set of 1 × 1
convolutions in the segmentation head, which outputs logits
for the classes.

C. Uncertainty-aware Terrain Classification

The model is optimized using the pseudo-label by em-
ploying uncertainty-weighted cross-entropy loss. To impose
a lower weight on the ground truth with high uncertainty
stemming from inconsistent pseudo-labels, the cross-entropy
loss is calculated as follows:

Lcls = −
∑
j

∑
k Yj

k log Ŷ
j
k

1 + uj/τ
, (5)

where Ŷj ∈ RK is softmax probability for grid j, Yj ∈ RK

is one-hot vector representation of the label yj , and τ
is the coefficient for controlling smoothness. By assigning
weights inversely proportional to uncertainty in the cross-
entropy term, the contribution of certain labels can be
enhanced during optimization while that of uncertain labels
is minimized. By utilizing this strategy, the network can
be effectively trained without requiring manual annotations,
while minimizing the negative impact on accuracy caused by
pseudo-labeling.

IV. EXPERIMENTS

In this section, we validate the effectiveness of our method
in enhancing terrain classification map generation perfor-
mance. Through a quantitative and qualitative analysis, the
results obtained from our method are compared with those
of other existing approaches. This evaluation focuses on
assessing the effectiveness of LiDAR-image fusion for terrain
classification and confirming the validity of uncertainty-
aware optimization for improving reliability.



TABLE I: Quantitative results on the RELLIS-3D dataset [17]. Our method shows improved precision compared to those relying on a single modality.

Method Acc [%] mIoU [%]
void dynamic static road grass dirt puddle rubble tree bush

PyrOccNet [13] 30.0 18.6 89.5 0.0 4.1 22.8 37.8 3.7 4.7 14.9 4.5 8.5
TIM [15] 30.5 17.6 88.8 0.0 1.2 9.6 36.6 6.1 3.2 13.5 7.2 9.4

BEVNet [11] 50.7 31.6 91.6 3.6 11.1 40.1 54.9 0.0 0.3 35.0 54.3 25.0
Ours 51.4 35.8 92.2 0.9 23.5 50.7 54.3 4.6 11.2 39.8 54.6 26.5

A. Dataset

We present our experimental results utilizing the publicly
available off-road dataset, RELLIS-3D [17]. This dataset
contains RGB camera images and LiDAR point clouds, ac-
companied by point-wise semantic annotations and accurate
robot poses recovered by SLAM [44]. We utilized sequences
0, 1, 2, and 4 for training and sequence 3 for evaluation.
Note that this ensures the evaluation dataset contains distinct
trajectory sequences not present in the training dataset. To
address the class imbalance, some similar minor classes are
grouped into a single category, resulting in a total of 10
classes, as shown in Tab. I.

B. Experimental Setup

1) Implementation Details: For all experiments, the input
point cloud is cropped at [(0, 51.2), (−25.6, 25.6), (−3, 5)]
meters along the x, y, z axes, and a voxel grid size of
0.1m × 0.1m × 0.2m is used, resulting in dimensions
(H,W,D) = (512, 512, 40). The maximum number of
points per voxel is set to N = 10, and the channels of
voxel features are set to C = 64. For the 2D segmentation
backbone, we adopt DeepLabV3 with ResNet50. The 3D
U-Net sparse convolution network comprises encoder and
decoder sections, each with four layers, and an attentive
feature fusion block is attached to every encoder layer.
The LiDAR stream encoder has one SparseConv and two
SubMConv for each layer, while the image stream encoder
has only one SubMConv for each layer. This design is
because the pre-trained 2D image segmentation model has
already extracted rich features for images. For the 2D U-
Net, the encoder and decoder have four layers, respectively.
Each downsampling and upsampling layer is connected with
a skip connection, and each layer consists of multiple 3× 3
convolutions, ReLU, and BatchNorm.

We train our model using the Adam optimizer, with a
learning rate of 3e−4 and a batch size of 8 for 30 epochs.
During training, point clouds are randomly augmented with
vertical flipping, translations in the x and y axes within the
range of (-5, 5) meters, and rotations around the z-axis within
the range of (−π

4 ,
π
4 ) radians.

2) Ground-truth Generation: To establish the ground truth
in the top view, we accumulate point clouds from consecutive
LiDAR scans by transforming the points into the LiDAR
coordinate frame of the current scan. The accumulation
spans the past 50 scans and future 100 scans, with labels
for each point determined by projecting the points into the
semantic segmentation inference results of RGB images of
the corresponding timestamp. Each point is then rasterized

into grids based on their x, y locations, and the semantic
class and uncertainty for pseudo-labels are calculated for
each grid. To mitigate the aliasing impacts of moving objects,
only points belonging to static object classes are aggregated.
For moving objects, only points from 3 sequential scans from
the current scan are leveraged and given higher weight during
the argmax operation.

3) Comparison Methods: Our method is compared to
relevant approaches to evaluate our proposed method for
generating the BEV semantic terrain classification map using
LiDAR-image fusion. First, image-only methods that con-
duct view transformation to convert monocular images to
BEV semantic maps are utilized. The Pyramid Occupancy
Network (PyrOccNet [13]) employs a multiscale convolution
network architecture to produce dense map representations
directly from monocular images in BEV. Translating Im-
ages into Maps (TIM [15]) addresses generating BEV maps
from images by solving sequences-to-sequences translation
problems through an attention-based architecture. We also
compare our method with a LiDAR-only approach that
generates a dense semantic map in off-road, BEVNet [11].
Note that all models are evaluated solely with a LiDAR point
cloud or RGB image of the current timestamp without using
methods for temporal aggregation, such as recurrent neural
networks, to objectively focus our evaluation on terrain map
generation quality from sensor measurements.

4) Evaluation Metrics: Intersection over Union (IoU) is
employed to assess the performance of semantic terrain
classification in BEV. The IoU for class k is calculated as:

IoUk =
TPk

TPk + FPk + FNk
, (6)

where TPk,FPk, and FNk, represent the number of true
positive, false positive, and false negative predictions in
grids, respectively. To evaluate the overall performance, the
mean IoU (mIoU) is computed as:

mIoU =
1

K

K∑
k=1

IoUk, (7)

where K is the total number of classes. Please note that
unlabeled grids lacking ground truth labels due to the absence
of accumulated points are excluded from the evaluation. For
a comprehensive evaluation of our semantic terrain classi-
fication model, we additionally present overall prediction
accuracy computed as:

Accuracy =

∑K
k=1 TPk∑K

k=1(TPk + FPk)
. (8)



Fig. 4: Compared to other methods, Ours successfully predicted a semantic terrain map with the LiDAR-image fusion. The camera-only method excels
at extracting semantic information from terrain but fails to represent a map with accurate geographical information in complex off-road environments. On
the other hand, LiDAR-only methods accurately represent geographical information but are vulnerable to the semantic classification of terrain.

C. Experimental Results

The quantitative result for the RELLIS-3D dataset is
presented in Tab. I. Our approach outperforms other meth-
ods specifically designed for structured conditions or that
rely on a single modality. Image-only view-transformation
methods perform poorly in off-road environments, especially
for grass, road, tree, and bush classes containing intricate
geometrical structures. LiDAR-based methods, on the other
hand, exhibit more robust performance when predicting
terrains with complex shapes. However, the accuracy of the
LiDAR-only methods is inferior to ours, which improves
reliability by utilizing uncertainty-aware optimization and
sensor fusion. Specifically, LiDAR-only methods exhibit
inferior performance in predicting classes requiring a higher-
level understanding of textures, such as puddles and rubble.

Using LiDAR-image fusion, our method outperforms other
baselines regarding mIoU and accuracy. Our method demon-
strates improved IoU scores for classes challenging to distin-
guish solely with a single modality, such as dirt and puddles,
validating the benefits of our fusion approach for accurately
estimating the semantic properties of the surroundings. Qual-
itative results are presented in Fig. 4. Our method effectively
produces semantic terrain maps with precise structures by

incorporating LiDAR features. Furthermore, our approach
exhibits enhanced precision in estimating semantic terrain
classes in off-road conditions. For example, our method
accurately identifies puddles and dirt in BEV maps, which
are challenging to capture solely with LiDAR point clouds.

D. Ablation Study

We present comprehensive ablation studies to examine
the validity of each component of our methodology for
estimating semantic terrain maps in off-road environments.
Tab. II provides quantitative validation of the effectiveness
of incorporating the LiDAR-image fusion component and
uncertainty-aware optimization. The models without the fu-
sion component are trained only using LiDAR features. No-
tably, incorporating multimodal fusion significantly improves
performance, indicating strengthened features through fu-
sion. While solely using uncertainty-weighted cross-entropy
does not significantly enhance performance, it improves
results when combined with the fusion methodology. This
suggests that uncertainty-aware optimization effectively mit-
igates training uncertainty arising from imprecise labels and
addresses the uncertainty of image features in pre-trained
models.



TABLE II: Results of the ablation studies. Incorporating each module
improves performance.

Module RELLIS-3D

Semantic Fusion Uncertainty-aware Loss mIoU Acc

✗ ✗ 29.2 48.1
✗ ✓ 28.2 48.9
✓ ✗ 35.2 52.5
✓ ✓ 35.8 51.4

We then quantitatively evaluate the efficacy of our LiDAR-
image fusion method, which fuses features of each modality
on multiple scales with an attention mechanism. For com-
parisons, we train the network with modifications in fusion
strategies. First, we conduct Early fusion, which simply
concatenates image and LiDAR features before forward-
ing into the sparse convolution networks. Additionally, the
network is trained without attentive fusion (w.o. attention),
indicating that no channel attention is applied during the
fusion step. Lastly, features are not fused in the multi-scale of
the encoders but only in the last layer of the decoder (w.o.
multi-scale), which is then forwarded to the 2D UNet for
producing dense maps. To objectively assess the contribution
of fusion methodologies, these models are compared with the
model learned using our approach without uncertainty-aware
loss (Ours).

TABLE III: Results of the ablation for LiDAR-image fusion.

Fusion Method mIoU Acc

Early fusion 29.7 47.7
Feature fusion (w.o. attention) 33.8 51.7
Feature fusion (w.o. multi-scale) 34.4 51.5
Feature fusion (Ours) 35.2 52.5

The experimental results for ablation studies for the fusion
module are presented in Tab. III. It shows that our network
design is effective in both datasets. While the early fusion
methods, which simply concatenate the features, show im-
proved results compared to the model that does not conduct
fusion, it shows lower performance than feature-level fusion
methods. This implies that more than simply decorating
point features with image features is required to ensure
the supplementation of the features effectively. Adopting
attention during the feature fusion improves the performance,
implying that the channel attention mechanism can facilitate
overlapping two complementary features of each modality.
Lastly, conducting feature fusions on multiple scales im-
proves the results, suggesting the efficacy of fusing features
at multiple resolutions, which aligns with other works that
report the effectiveness of multi-scale fusions [16], [40].

V. CONCLUSION

This paper presents an approach to generating a dense
terrain classification map in BEV. It can improve mapping
accuracy through RGB-LiDAR fusion and enhance reliability

using uncertainty-aware pseudo-labeling. Utilizing a single
LiDAR scan and an RGB image as input, the network
employs attentive fusion at multiple scales to extract richer
terrain features. Also, pseudo-labels are generated through
image-guided annotations to enable the network to be learned
without relying on 3D annotations. The training’s reliability
with pseudo-labels is enhanced by uncertainty estimation,
assigning lower weights to grids with high uncertainties.
Evaluation using off-road driving datasets demonstrates the
method’s efficacy for semantic terrain class map generation.
The multimodal fusion approach proves advantageous in mit-
igating uncertainties associated with semantic understanding
in challenging off-road scenes, where accurately assessing
terrain properties poses greater difficulty than in structured
environments.
Limitations and Future Works Although this method is
highly effective in producing a precise semantic classification
map of its surroundings in off-road environments, it is
prone to generating overconfident predictions, which is a
typical problem in map representations based on learning.
This overconfidence arises from the explicit reliance on the
network to generate the dense map. During interpolation
from limited sensor measurements to infer semantic occu-
pancy of grid cells, regions with occlusions may lead to
overconfident predictions due to high uncertainties regarding
terrain characteristics.

To enhance the applicability and reliability of our method
in diverse real-world environments, we can leverage tech-
niques for minimizing domain gaps, such as domain adap-
tation [45], [46]. Moreover, the potential of image data still
needs to be fully exploited for BEV map generation. The
method could benefit from incorporating view-transformation
techniques, depth estimation, or leveraging recent successes
in transformer architecture. Incorporating these features from
dense image data could significantly enhance the generation
of a dense map in BEV grids.

REFERENCES

[1] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, “Real-
time semantic mapping for autonomous off-road navigation,” in Field
and Service Robotics: Results of the 11th International Conference.
Springer, 2018, pp. 335–350. i, ii

[2] J. Seo, T. Kim, K. Kwak, J. Min, and I. Shim, “Scate: A scalable
framework for self-supervised traversability estimation in unstructured
environments,” IEEE Robotics and Automation Letters, vol. 8, no. 2,
pp. 888–895, 2023. i, ii

[3] X. Cai, M. Everett, J. Fink, and J. P. How, “Risk-aware off-road
navigation via a learned speed distribution map,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2022,
pp. 2931–2937. i

[4] M. V. Gasparino, A. N. Sivakumar, Y. Liu, A. E. Velasquez, V. A.
Higuti, J. Rogers, H. Tran, and G. Chowdhary, “Wayfast: Navigation
with predictive traversability in the field,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 4, pp. 10 651–10 658, 2022. i

[5] T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy,
K. Weerakoon, and D. Manocha, “Ga-nav: Efficient terrain segmenta-
tion for robot navigation in unstructured outdoor environments,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 8138–8145, 2022.
i

[6] M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A rugd
dataset for autonomous navigation and visual perception in unstruc-
tured outdoor environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 5000–5007. i



[7] J. Seo, S. Sim, and I. Shim, “Learning off-road terrain traversability
with self-supervisions only,” IEEE Robotics and Automation Letters,
vol. 8, no. 8, pp. 4617–4624, 2023. i

[8] X. Cai, M. Everett, L. Sharma, P. R. Osteen, and J. P. How, “Proba-
bilistic traversability model for risk-aware motion planning in off-road
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2023, pp. 11 297–11 304. i

[9] X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Schmittle,
J. Lee, W. Yuan, Z. Chen, S. Deng et al., “Terrainnet: Visual modeling
of complex terrain for high-speed, off-road navigation,” Robotics:
Science and Systems (RSS), 2023. i, ii

[10] Y. Han, J. Banfi, and M. Campbell, “Planning paths through unknown
space by imagining what lies therein,” in Conference on Robot
Learning (CoRL). PMLR, 2021, pp. 905–914. i

[11] A. Shaban, X. Meng, J. Lee, B. Boots, and D. Fox, “Semantic terrain
classification for off-road autonomous driving,” in Conference on
Robot Learning (CoRL), 2022, pp. 619–629. i, ii, v

[12] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in European
Conference on Computer Vision (ECCV), 2020. i, ii

[13] T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 11 138–11 147. i, ii, v

[14] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and
J. Dai, “Bevformer: Learning bird’s-eye-view representation from
multi-camera images via spatiotemporal transformers,” in European
Conference on Computer Vision (ECCV). Springer, 2022, pp. 1–18.
i, ii

[15] A. Saha, O. Mendez, C. Russell, and R. Bowden, “Translating images
into maps,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 9200–9206. i, ii, v

[16] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, and S. Han,
“Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye
view representation,” in IEEE International Conference on Robotics
and Automation (ICRA), 2023, pp. 2774–2781. i, ii, vii

[17] P. Jiang, P. Osteen, M. Wigness, and S. Saripalli, “Rellis-3d dataset:
Data, benchmarks and analysis,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 1110–1116. ii, v

[18] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari,
“Bayesian spatial kernel smoothing for scalable dense semantic map-
ping,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 790–
797, 2020. ii

[19] K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided 3-d
occupancy mapping with bayesian generalized kernel inference,” IEEE
Transactions on Robotics, vol. 35, no. 4, pp. 953–966, 2019. ii

[20] J. Seo, T. Kim, S. Ahn, and K. Kwak, “Metaverse: Meta-learning
traversability cost map for off-road navigation,” arXiv preprint
arXiv:2307.13991, 2023. ii

[21] J. Wilson, Y. Fu, A. Zhang, J. Song, A. Capodieci, P. Jayakumar,
K. Barton, and M. Ghaffari, “Convolutional bayesian kernel inference
for 3d semantic mapping,” in IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 8364–8370. ii

[22] J. Wilson, J. Song, Y. Fu, A. Zhang, A. Capodieci, P. Jayakumar,
K. Barton, and M. Ghaffari, “Motionsc: Data set and network for real-
time semantic mapping in dynamic environments,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 8439–8446, 2022. ii

[23] M. Stölzle, T. Miki, L. Gerdes, M. Azkarate, and M. Hutter, “Re-
constructing occluded elevation information in terrain maps with self-
supervised learning,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 1697–1704, 2022. ii

[24] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
gpu,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 2273–2280. ii

[25] A. W. Harley, Z. Fang, J. Li, R. Ambrus, and K. Fragkiadaki, “Simple-
bev: What really matters for multi-sensor bev perception?” in IEEE
International Conference on Robotics and Automation (ICRA), 2023,
pp. 2759–2765. ii

[26] J. Fei, K. Peng, P. Heidenreich, F. Bieder, and C. Stiller, “Pillarsegnet:
Pillar-based semantic grid map estimation using sparse lidar data,” in
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2021, pp. 838–844.
ii

[27] K. Peng, J. Fei, K. Yang, A. Roitberg, J. Zhang, F. Bieder, P. Heidenre-
ich, C. Stiller, and R. Stiefelhagen, “Mass: Multi-attentional semantic

segmentation of lidar data for dense top-view understanding,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
15 824–15 840, 2022. ii

[28] R. Cheng, C. Agia, Y. Ren, X. Li, and L. Bingbing, “S3cnet: A
sparse semantic scene completion network for lidar point clouds,” in
Conference on Robot Learning (CoRL), 2021, pp. 2148–2161. ii

[29] Z. Xia, Y. Liu, X. Li, X. Zhu, Y. Ma, Y. Li, Y. Hou, and Y. Qiao,
“Scpnet: Semantic scene completion on point cloud,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2023, pp. 17 642–17 651. ii

[30] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in European Conference on
Computer Vision (ECCV), 2018, pp. 641–656. ii

[31] Z. Chen, J. Zhang, and D. Tao, “Progressive lidar adaptation for road
detection,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 3, pp.
693–702, 2019. ii

[32] S. Pang, D. Morris, and H. Radha, “Clocs: Camera-lidar object
candidates fusion for 3d object detection,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
10 386–10 393. ii

[33] Z. Zhuang, R. Li, K. Jia, Q. Wang, Y. Li, and M. Tan, “Perception-
aware multi-sensor fusion for 3d lidar semantic segmentation,” in
IEEE/CVF International Conference on Computer Vision (ICCV),
2021, pp. 16 280–16 290. ii

[34] Y. Li, A. W. Yu, T. Meng, B. Caine, J. Ngiam, D. Peng, J. Shen,
Y. Lu, D. Zhou, Q. V. Le et al., “Deepfusion: Lidar-camera deep fusion
for multi-modal 3d object detection,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 17 182–
17 191. ii

[35] X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L. Tai,
“Transfusion: Robust lidar-camera fusion for 3d object detection with
transformers,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 1090–1099. ii

[36] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “Pointpainting:
Sequential fusion for 3d object detection,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4604–
4612. ii

[37] C. Wang, C. Ma, M. Zhu, and X. Yang, “Pointaugmenting: Cross-
modal augmentation for 3d object detection,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp.
11 794–11 803. ii

[38] A. Piergiovanni, V. Casser, M. S. Ryoo, and A. Angelova, “4d-
net for learned multi-modal alignment,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 15 435–15 445. ii

[39] D. Peng, Y. Lei, W. Li, P. Zhang, and Y. Guo, “Sparse-to-dense feature
matching: Intra and inter domain cross-modal learning in domain
adaptation for 3d semantic segmentation,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 7108–7117. ii

[40] X. Yan, J. Gao, C. Zheng, C. Zheng, R. Zhang, S. Cui, and Z. Li,
“2dpass: 2d priors assisted semantic segmentation on lidar point
clouds,” in European Conference on Computer Vision (ECCV), 2022,
pp. 677–695. ii, vii

[41] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 5135–5142. iii

[42] S. Ye, D. Chen, S. Han, and J. Liao, “Learning with noisy labels
for robust point cloud segmentation,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 6443–6452. iii

[43] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 652–
660. iii

[44] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 1271–1278. v

[45] S. Matsuzaki, H. Masuzawa, and J. Miura, “Multi-source soft pseudo-
label learning with domain similarity-based weighting for semantic
segmentation,” arXiv preprint arXiv:2303.00979, 2023. vii

[46] M. Jeon, J. Seo, and J. Min, “Da-raw: Domain adaptive object
detection for real-world adverse weather conditions,” arXiv preprint
arXiv:2309.08152, 2023. vii


