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Abstract—Insufficient amounts of available training data is a 

critical challenge for both development and deployment of 

artificial intelligence and machine learning (AI/ML) models. This 

paper proposes a unified approach to both synthetic data 

generation (SDG) and automated data labeling (ADL) with a 

unified SDG-ADL algorithm. SDG-ADL uses multidimensional 

(n-D) representations of data visualized losslessly with General 

Line Coordinates (GLCs), relying on reversible GLC properties to 

visualize n-D data in multiple GLCs. This paper demonstrates use 

of the new Circular Coordinates in Static and Dynamic forms, 

used with Parallel Coordinates and Shifted Paired Coordinates, 

since each GLC exemplifies unique data properties, such as inter-

attribute n-D distributions and outlier detection. The approach is 

interactively implemented in computer software with the Dynamic 

Coordinates Visualization system (DCVis). Results with real data 

are demonstrated in case studies, evaluating impact on classifiers. 

Keywords—Synthetic Data Generation, Automated Data 

Labeling, General Line Coordinates, Circular Coordinates, Parallel 

Coordinates, Shifted Paired Coordinates, Tabular AI/ML Data, 

Multidimensional Data Visualization, Visual Knowledge Discovery. 

I. INTRODUCTION 

A. Motivation 

In many domains insufficient amounts of training data is a 
critical roadblock for the development and deployment of 
artificial intelligence and machine learning (AI/ML) models for 
multiple reasons: (1) to train ML models to predict from real-
world data; (2) to augment under-represented cases of real data; and 
(3) to anonymize data for either privacy or legal issues [1-5].  

For scenarios with high-risk or high-stakes decisions like that 
of cancer diagnostics, autonomous vehicle navigation, or market 
forecasting it is vital to generate extremely high-quality synthetic 
data to improve classifier performance and avoid catastrophic 
errors from erroneous classifications, then automating labeling 
saves valuable time of domain subject matter experts. 

AI/ML models require an increased availability of high 
quality labeled data to improve training supervised models when 
data is highly multidimensional (n-D). 

This paper addresses on-going critical challenges for both 
the tasks of synthetic data generation (SDG) and automated 
data labeling (ADL). Therefore, we propose a unified SDG-
ADL technology to support AI/ML models, utilizing General 
Line Coordinates (GLCs) to losslessly visualize n-D data [7-11] 

with newly implemented Circular Coordinates (CC) originally 
defined in [7]. GLCs are reversible so we use multiple together. 

B. Overview of Existing Methods 

There has been considerable progress made in deep 

learning Generative Adversarial Networks (GANs) methods 

for synthetic image generation [2]. A survey of current SDG 

techniques for both generation and evaluation from 2022 [1] 

listed several methods of SDG, see chart in Figure 1. 

However, there is a remaining lack of generative methods for 

synthetic tabular data, which we focus on in this paper. 

The SDG survey [1] identified major challenges of current 
state-of-the-art methods for generation of AI/ML data: 

• Ensuring that synthetic data has the same distribution 

as that of the underlying real data. 

• Ensuring that synthetic data generated by black-box 

methods, like deep learning GANs, can be trusted. 

 For instance, correlations between attributes and marginal 

distributions of both real and synthetic data can often appear 

deceptively similar. However, full n-D distributions can not be 

reliably identified with standard methods, due to the extremely 

small size of available real data relative to the size of the entire 

n-D feature space, worsening with increased dimensionality.  

      Real data, as seen in high-risk decision making scenarios, 

tends to exhibit this higher dimensionality, with an added need 

for quick generation and evaluation. Thus, fundamentally 

new methods are required for both the generation and 

evaluation of synthetic data, including for that of high-quality 

tabular ML/AI data. 

 
Figure 1. Existing methods for SDG and evaluation [1]. 
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C. Data “Blindness” Challenges 

What causes mismatches in distributions of n-D synthetic 
data from real data? Why is it difficult to interpret and explain 
SDG methods? A significant reason of both challenges is our 
inherent “blindness” to the distributions of data in highly n-D 
feature spaces. For instance, a most popular Synthetic 
Minority Over-sampling Technique (SMOTE) [15] uses any 
training case of the minority class to generate synthetic data. 
However, each training case influences the resultant accuracy 
of ML/AI models differently. Some cases are significantly 
more important to the classifiable features, often impacting 
features of other cases within the n-D feature space. SMOTE, 
“has been shown to yield poorly calibrated models, with an 
overestimated probability to belong to the minority class” [6] 
exhibiting this distributional “blindness”. Selecting best real 
data cases as prototypes for SDG is critical. 

More advanced SDG methods select real cases by 
importance determined from only partial knowledge of the 
real n-D data distribution. While these advanced methods are 
widely accepted [1], these methods have a fundamental issue 
of limited partial knowledge of real data distributions which 
are not sufficient for reliably selecting real data cases with the 
right methods to produce representative cases from. It is also 
a significant problem for ADL that real cases to be labeled 
have different impacts on the overall model accuracy. 

As a result, current algorithms are inherently “blind” to 
real data distributions. Therefore, current methods are heavily 
heuristic and do not ensure that the results with extended 
synthetic data will truly produce more reliable models than 
without added synthetic data. Thus, blindness of n-D data 
distributions can lead to catastrophic failure. 

II. PROPOSED APPROACH 

A. Lossless Visualization of Multidimensional Data 

Commonly used visual methods to evaluate the quality of 
synthetic data are one-dimensional visualization tools like box plots, 
histograms, and violin plots [1]. However, these methods can 
not adequately represent n-D AI/ML data losslessly, especially 
for our purpose of comparing highly n-D distributions of real 
and synthetic data. Commonly, dimensional reduction methods 
are used to handle highly n-D data, however, these are inherently 
lossy, preservating only a part of the overall n-D data properties 
and corrupting other properties. This is shown by the Johnson-
Lindenstrauss lemma [7] which bounds the needed dimension k 
to represent n-D data within a controlled loss of squared distance 
±𝜖 error. The Johnson-Lindenstrauss lemma: Given 0 < 𝜖 < 1, 
a set 𝑋  of 𝑚  points in ℝ𝑛 , and number 𝑘 > (8 ln (𝑚))/𝜖2 , 

there is a linear map 𝑓: ℝ𝑛 → ℝ𝑘 such that for all 𝑢, 𝑣 ∈ 𝑋: 

(1 − 𝜖)‖𝑢 − 𝑣‖2 ≤ ‖𝑓(𝑢) − 𝑓(𝑣)‖2 ≤ (1 + 𝜖)‖𝑢 − 𝑣‖2 

To overcome fundamental limitations of lossy visualization 
methods for n-D data we adapt Visual Knowledge Discovery 
(VKD) methodologies based on the lossless and reversible 
visualization methods of GLCs [7-11]. GLCs can guide both 
SDG and ADL to increase quality of the resulting model. In our 
approach both SDG and ADL complement each other. These 
processes identify areas where synthetic data can be safely 

generated and areas where unlabeled data can be safely labeled, 
and alternatively avoided. 

Figure 2 losslessly visualizes the Iris 4-D dataset [12] where 
Setosa species are red, Versicolor are green, and Virginica are 
blue in different GLCs. Later in this paper we will illustrate the 
proposed methods with these data and their GLCs visualizations. 

  
(a) Parallel Coordinates (PC). (b) Shifted Paired Coordinates 

(SPC). 

  
(c) Static Circular Coordinates 

(SCC). 
(d) Dynamic Circular Coordinates 

(DCC). 
Figure 2: GLC visualization methods for 4-D Iris data. 

B. Advantages of the Approach over Alternatives 

One current SDG and evaluation method reviewed in [1] 

assumes that a given dataset 𝐷 is split into a train-set, 𝐷𝑡𝑟𝑎𝑖𝑛 , 

and test-set, 𝐷𝑡𝑒𝑠𝑡 . ML models trained on 𝐷𝑡𝑟𝑎𝑖𝑛, and on 𝐷𝑠𝑦𝑛𝑡ℎ 

(the synthetic data) are then compared and evaluated against, 

𝐷𝑡𝑒𝑠𝑡 . If the performance (accuracy, recall, precision, F1-

score) of the models trained using 𝐷𝑡𝑟𝑎𝑖𝑛  is like those trained 

using 𝐷𝑠𝑦𝑛𝑡ℎ, then, the conclusion is made that the synthetic 

data are likely to follow the underlying data distribution [1, 

3, 4]. This is an overoptimistic expectation, which can not be 

taken as granted for high-risk tasks. 

First, this expectation is applicable only for the data split 

actually used. It can be false for all other data splits. The 

number of possible splits is growing exponentially with the 

size of the dataset. Testing all possible splits is not feasible.  

Second, it is not clear if a real dataset 𝐷 itself follows the 

underlying distribution of the whole data, which is never 

known. Thus, expected data consistency only holds between 

models produced from available real data and simulated data 

using just the specific split data used.  

Third, the described split method is not applicable to tasks 

where we have an insufficient amount of training data for 

models, but where we want to expand the training data with 

synthetic data. This is the task that we consider in this paper. 
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A modified method splits not just the given real dataset, 𝐷 

into a train-set, 𝐷𝑡𝑟𝑎𝑖𝑛 , and test-set, 𝐷𝑡𝑒𝑠𝑡  but the entire 

extended dataset including synthetic data. The motivation is 

that an insufficient amount of training data disqualifies a 

model built only on 𝐷𝑡𝑟𝑎𝑖𝑛  to be an appropriate standard to 

evaluate the quality of models built on other data. 

Now, the selection of only one or a few specific splits in 

k-fold cross validation can be misleading which can produce a 

drastically inflated accuracy for real data as shown in [9, 10]. 

The evaluation method from [1] discussed above tests the 
model on real data, for the model that was built on both real and 
synthetic data. Other test methods can give a more complete 
picture [5], where α-Precision measures the similarity between 
synthetic and real cases, β-Recall evaluates diversity of 
synthetic data relative to real data, and authenticity measures 
how well the model can generalize, therefore, not overfit to real 
data. While these measures are useful, they are not sufficient to 
ensure accuracy of models built with synthetic data. However, 
we can use these methods to discard low-quality cases [5]. 

C. Proposed Visual SDG-ADL Algorithm 

Our proposed SDG-ADL algorithm operates on all triplets 
of ‹𝐴𝑖 , 𝑆𝑗 , 𝐷› , where 𝐴𝑖  is a supervised ML classification 

algorithm, 𝑆𝑗 is a SDG algorithm, and 𝐷 is given real ML data. 

We are interested in finding the most efficient pair ‹𝐴𝑖 , 𝑆𝑗› for 

the given ML data 𝐷. The SDG-ADL algorithm steps are: 

Step 1. Visualize n-D ML data 𝐷 in a selected GLC losslessly. 
(In this paper we use GLCs of PC, SPC, SCC, and DCC). 
Step 2. Find and outline the Most Pure (MP) areas, pure being 
regions where only one label is assigned to the selected area. 
Step 3. Find and outline the Least Pure (LP) areas. 
Step 4. Order remaining areas by Purity Levels (PL),  
Step 5. Hide absolutely pure areas to decrease occlusion. 
Step 6. Assign Synthetic Data and Labeling to Most Pure areas. 
Step 7. Evaluate Performance of SDG algorithm on all data. 
Step 8. Modify step 6 repeating according to results from Step 7. 
Step 9. Assign Synthetic Data and Labels to areas outside of the 
Least Pure area if Step 8 did not produce desired results. 
Step 10. Repeat from Step 7 to Step 9 to improve results. 
Step 11. If misclassification remains repeat from Step 1, select 
another GLC that shows data properties of remaining MP areas. 

D. Static Circular Coordinates (SCC) 

Circular Coordinates were first introduced in [9]. Below we 
will call them Static Circular Coordinates (SCC) to contrast 
with a variant definition of Circular Coordinates that we will call 
Dynamic Circular Coordinates, defined later. SCC are 
constructed from tabular data, where each n-D point is a row 
labeled by its class. Numeric attributes are normalized using 
min-max normalization to the range of [0, 1]: 

𝑥′ =  (𝑥 − min(x))  (max(𝑥) − min (𝑥))⁄  

where max(x) and min(x) are minimum and maximum values of 
the attribute. Each coordinate occupies a section of the 
circumference of the circle, e.g., if data contains four 
coordinates, then four non-overlapping sections are created that 
cover all the circumference. Each individual attribute value xi of 
the n-D point x = (x1, x2, …, xn) is plotted as a vertex at the 

distance xi on the circumference from the start point of the 
segment assigned for this attribute. Vertices are connected by 
Beziér curves connecting each vertex to the next vertex where 
vertex xi connects to the next vertex xi+1. Vertices with 
connected Beziér curves are uniquely colored by a class label. 

Figure 2 demonstrates a single data class, Setosa, from Iris 
data visualized in SCC, shown in red with 50 cases. This single 
class of data has four components, giving us four vertices xi to 
each 4-D point 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)  plotted with three inter-
connecting Beziér curves of vertices (𝑥1, 𝑥2) , (𝑥2, 𝑥3) , and 
(𝑥3, 𝑥4). The circle is subdivided into four sectors by black axes. 

  
(a) SCC 4-D visualization. (b) Selecting a single case in yellow. 

Figure 3. SCC demonstrated with 4-D Iris data single Setosa data class (a) 
shown next to same visualization and data with a single case selected (b). 

E. Demonstrating steps 1-3 of SDG-ADL with GLCs 

Figures 4 and 5 visualize the Iris data in both PC and SCC 

for discovering MP and LP areas with the heaviest inter-class 

case overlap, where cases are hardest to classify. These figures 

illustrate the SDG-ADL algorithm steps 1-3. Figure 4 shows 

MP and LP areas, with colored rectangles on the coordinates 

show absolutely pure MP areas. Yellow polylines highlight 

some overlap cases in LP area. Figure 5 shows SCC with MP 

areas denoted by sectors 1 and 3 and LP area is sector 2. 

 
Figure 4. MP and LP areas of Iris 4-D data in PC. Rectangles on axes outline 

MP areas, cases in MP area have been hidden, simplifying observation of 
LP areas. Yellow polylines highlight some overlap cases in LP area. 

 

 
Figure 5. 4-D Iris data of three classes in SCC. MP areas are shown by 

segments 1, 3 and LP area are shown by segment 2. The yellow 
highlighted case is example of the case from the LP area. 

1 
2 

3 
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Cases contained in the overlap LP area in Figure 5 require 

discovering more complex rules than rules based on a single 

coordinate used to find it. Visualization of the cases in this 

overlap area with Shifted Paired Coordinates defined in [7] 

shown in Figure 6 allows for this discovery. This visualization 

involves relations between all four coordinates and is visible in 

Figure 6, where more green lines (cases) slope downwards than 

blue lines. Here 8 green case lines slope downwards (negative 

derivative) and one green case line trends upwards (positive 

derivative), while 3 case lines are horizontal (total 12 green 

lines). In contrast 4 blue case lines slope upwards, and 5 blue 

case lines trend downwards, while one case stays horizontal 

(zero derivative) with a total of 10 blue case lines. This leads to 

a classifying slope rule Rs: 

If a line slopes upwards (has a positive derivative), then it is 

in the blue class, else it is in the green class. 

Table 1. Confusion matrix for rule Rs. 

 Predicted blue Predicted green precision 

Actual blue 4 6 4/10 (40%) 

Actual green 1 11 11/12 (91.67%) 

Precision 4/5 (80%) 12/16 (75%) 15/22 (68.18%) 
 

Accuracy is 68.18% due to 15/22. See the confusion matrix 

(Table 1). We have a total of 7 misclassified cases out of 150 

cases with total 95.33% accuracy of all rules constructed 

completely visually without any complex machine learning 

models used. Support Vector Machine (SVM) results with 4 

misclassified cases, but with 59 support vectors [7, p. 121], 

which is not interpretable. In Figure 6 yellow circles mark two 

pairs of very similar green and blue lines of cases from two 

distinct labels which both go down. We keep them in the SPC 

overlap area. Classifying the remaining cases may require using 

additional complementary GLC(s). 

  
Figure 6. Visualization in SPC of the overlap cases after removing cases 

covered by first 5 rules from Figure 3 with coordinate X2 inverted. 

F. Dynamic Circular Coordinates (DCC) 

Below we define Dynamic Circular Coordinates (DCC), 

DCC were first introduced under the influence of previously 

successful ideas of SCC, GLC-Linear [7], and Dynamic 

Elliptic Paired Coordinates [13]. In these GLC visualizations, 

the location of each attribute xi depends upon the location of 

the previous attribute xi-1, going the attribute length out from 

the former point with the first x1 positioned at the northernmost 

point on the axis going clockwise. Then, coefficients of the 

visualized linear discriminant function (LDF) variables can be 

scaled to visually tune the separation of data classes, benefiting 

from thoroughy data labeling. In DCC, visualizing a n-D point 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) also is a sequence of Beziér curves like 

SCC. The first Beziér curve connects x1 to x2 and x2 to x3 

continuing with curves to connect each point to the next. The 

difference is that the points themselves xi are dependent on 

each other after the first. In contrast, in SCC the locations of 

points x1, x2, …, xn is fixed in the circle segments dedicated to 

each coordinate X1, X2, …, Xn. Figure 7 shows the same 4-D 

Iris data for Setosa class as in Figure 3.  

  
Figure 7. DCC demonstrated on 4-D Iris data with single Setosa class 

coefficients of [1, 1, 1, 1]. 

  
(a) coefficients of [1, 1, 1, 1]. (b) coefficients of 

[0.08,  0.43, 0.89, 0.52]. 
Figure 8. DCC with 4-D Iris data two class Setosa (red) and Versicolor 
(blue) with two unique sets of Linear Discriminant Function coefficients.  

III. CASE STUDIES 

A.  Benchmark generation and case study strategy 

 The following sections present case studies of generating 
synthetic data and classification models in different ways. To be 
able to compare them, we first need benchmarks, evaluated on 
only actual real data without any synthetic cases. 
  
 To benchmark our case studies, we first have performed a 
Monte-Carlo simulation of 1000 executions of training and 
validating with fourteen commonly used classifiers on the Iris 
data. The random split of data to training and validation was 
90%:10% in 10-fold cross validation (CV). We repeated these 
values for execution count and cross validation folds in all case 
studies. The stability of the standard deviation (STD) was used 



5 

as a criterion of accuracy robustness for the evaluated models. 
Classifiers evaluated with are: Decision Tree (DT), Random 
Forest (RF), Extra Trees (XT), K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Linear Discriminant Analysis 
(LDA), Logistic Regression (LR), Ridge Regression (Ridge), 
Gaussian Naïve Bayes (NB), Multi-Layer Perceptron (MLP), 
Stochastic Gradient Descent (SGD), Gradient Boost (GB), 
AdaBoost (AB), Extreme Gradient Boosting (XB). All case 
studies were executed on the same consumer grade hardware. 

 Consider an example with all 150 cases of Iris data where 
135 cases are randomly selected to be training data and 15 cases 
to be validation data in each 10-fold Cross Validation round. 
Next, we consider 250 cases, with 120 real cases and 130 
synthetic cases. We want to know how successful models will 
be, which we generated on the benchmark data to classify all 
these 250 cases. We will call these data an exploration data 
(Exp. in tables) and accuracy of the models built in the 
benchmark study as default classifier performance. Benchmark 
results are first listed in Table 2.  

Table 2. Iris benchmark tests on the classifier ensemble. Training data used is 
Iris, validation data is also Iris. 

 

For these case studies we: (1) take balanced Iris data, (2) cut 

out some cases of a given class causing an imbalance, (3) 

generate synthetic data to rebalance, (4) compute accuracy of 

classification trained from synthetic data, and (5) compare 

accuracy with and without synthetic data to evaluate the SDG 

efficiency. We consider the following strategies of SDG: 

(G1) Within the pure areas of cases of the same given class.  

(G2) Outside of the pure areas of cases of the same class. 

(G3) Randomly throughout the graph. 

Our hypotheses for these SDG methods are that G1 will 

yield the same or an improved accuracy, G2 will decrease 

accuracy, and G3 will be unstable with accuracy going in both 

directions depending on the random synthetic data generated.  

A. Case Study I: Single Synthetic Case Strategy 

     This case study shows a significant advantage from lossless 

visualization of n-D data for generation of synthetic n-D data. 

Figure 9 shows a case marked with a yellow highlight. This case 

is an outlier of the red (Setosa) class on the second coordinate 

X2 We added a single synthetic 4-D point slightly above that 4-

D point to explore how sensitive classifier algorithms are 

toward such outliers when their number will increase. 

  
(a) Inserted case in PC. (b) Inserted case in SCC. 

Figure 9. Synthetic red case, highlighted in yellow, inserted into the Setosa 

class and placed directly above the real outlier case in X2. 

     Table 3 shows the accuracy of classification of data after 

adding the synthesis 4-D point. It did not impact accuracy for 

most of the algorithms listed in Table 3, but for SGD algorithm 

it improved the accuracy by about 4.5%. This demonstrates 

robustness of classification algorithms regarding this outlier. 

The reason for this is the separation of the red (Setosa) class in 

both coordinates X3 and X4, which is visible in Figure 9. 

Without such visualization it would be difficult to determine the 

source of robustness for the resultant synthetic data. 

Table 3. Accuracies for Case Study 1 (one synthetic Setosa case added). 

 

Similar experiment with SCC is in Figure 10 and Table 4. 

  
(a) Inserted case in PC. (b) Inserted case in SCC. 

Figure 10. Synthetic green case, highlighted in yellow, inserted into the 

Versicolor class and placed directly below last case in X1. 

Table 4. Results with one synthetic Versicolor case added. 
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B. Case Study II: Full Data Duplication Strategy 

First we cloned all cases of Iris data and shifted them up by 

adding 0.1to create synthetic cases of the same classes (see 

Figure 11). This had positive results shown in Table 3.  

 
Figure 11. Iris with all cases duplicated and then shifted up by adding 0.1. 

Table 3. Classifier models with almost perfect performance across the board. 

 

C. Case Study III: In-Class Limits Strategy 

This case study tests SDG with G1 placing synthetic cases 

in the class limits of the real data class prototyped from.  

  
(a) Default Iris data in PC. (b) 30 cases to be removed. 

Figure 12. Iris data in parallel Coordinates. 
 

  
(a) Imbalanced data with 20 Setosa 
(red) cases, and 50 per other class. 

  (b) Data where 30 Setosa (red) 
cases are synthetic data. 

Figure 13. Balancing test of Iris data with synthetic cases placed in limits of 
original real class. 

 

 As expected, the actual results are approximately the same 
with the synthetic data as with the original real data. Figures 12, 
13 show balancing test process visualized and results with Table 
3 show the comparison for Figure 13 of case study 1. We deleted 
30 Setosa cases, then rebalanced the data with synthetic cases. 

Table 4. Iris results without 30 deleted cases.  

 

Table 5. Results for 30 synthetic cases placed in bounds.  

 

D. Case Study IV: Out-of-Class Limits Strategy 

In this case study, we place generated synthetic cases outside 
of the class limits of the real data class. Figures 14 shows two 
placement versions in PC on coordinate X3.  

  
(a) Case Study IV Version 1  (b) Case Study IV Version 2 
Figure 14. Iris with synthetic red (Setosa) cases placed out-of-limits in PC. 

Table 6. Results of worsened performance in two tests, first experiment. 

 
Table 7. Results of worsened performance in two tests, second experiment. 

Putting cases outside of the original bounds of the class resulted 
in lower accuracies relative to the results of case studies II and 
III, but not significantly deteriorated. While there is a drop in the 
accuracies, this is to be expected, since the synthetic data 
generated are outside of the bounds of the red (Setosa) class in 
X3, but not in overlap areas of other classes as Figure 14 shows. 

Table 7. Results of worsened performance in two tests, second experiment. 
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E. Case Study V: Proportional Randomization Strategy 

Here we generated synthetic cases by placing them in 

random locations: (1) proportionally, or (2) without regard to 

proportionality or n-D distributions.  Results for (1) and (2) are 

shown in Figures 15, 16, and Figures 17, 18, respectively with 

mostly improved accuracy in (1), degraded in (2).  

     Tables 8, 9 show the results of the proportionally randomized 
case study tests repeated for verification of randomization 
capabilities. This had positive performance for Iris data due to 
the n-D distribution consistency between real and synthetic data. 

Table 8. Proportional randomization evaluation, first test from figure 15. 

 
 

 

  
(a) Randomized data in PC. (b) Randomized data in SPC. 

  
(c) Randomized data in SCC. (d) Randomized data in SCC. 

Figure 15: Proportionally Randomized Iris data in GLCs, first test. 
 

  
(a)  Randomized data in PC. (b)   Randomized data in SPC. 

  
(c) Randomized data in SCC. (d) Randomized data in DCC. 

Figure 16: Proportionally Randomized Iris data in GLCs, second test.   

Table 9. Proportional randomization evaluation, second test from figure 16. 

 
 

    Figure 17 shows visualizes the results of the out-of-limits 

out-of-class-limits case study tests repeated twice for 

verification of randomization strategy capabilities with Table 

10 and 11 shows the results of this case study. 

  
(a) Randomized Iris data in PC. (b) Randomized Iris data in SPC. 

  
(c) Randomized Iris data in SCC. (d) Randomized Iris data in DCC. 

Figure 17. Unporportionaly Randomized Iris data in GLCs. 
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Table 10. Performance worsened for unproportional randomization, test one. 

 
Table 11. Performance worsened for unproportional randomization, test two. 

 

IV. DCVIS TOOL FUNCTIONALITY 

DCVis, the Dynamic Coordinates Visualization System, was 
originally built from DSCVis, the Dynamic Scaffold 
Coordinates Visualization System [11]. DCVis visualizes n-D 
data in interchangeable GLCs. The software supports GLCs of 
PC, SPC, Dynamic Scaffold Coordinates 1 & 2 (DSC1 & 
DSC2), SCC, and DCC. DCVis visualizes tabular data loaded 
from a .txt or .csv file containing ML data where one column 
contains labels with the the header of ‘class’. Use of GLCs 
benefits the SDG-ADL aglorithm by accentuating different data 
properties by each GLC, enabling enhanced discoverability of 
classifiable features. Visualized properties can be tuned in any 
GLC with attributes and class orders or by inverting attributes, 
toggling the ranges of [0,1] and [1, 0]. SCC allows conflicting 
points to be replotted for further classification, DCC plotted 
function coefficients can be scaled, defaults by LDA. 

Options for visuals are in the UI for attribute transparency, 
background, axes, and class colors, with visibility of lines, 
points, and CC sectors. Clipping regions can be drawn to select 
cases with the mouse, left-click selects directly under the mouse, 
two right-clicks draws a selection region, middle-click grows the 
selection region, selected cases are highlighted. Q, E keyboard 
keys select the previous and next cases in the dataset, W, A move 
the selected cases up and down in real-time, C clones them, and 
D deletes them. Selecting cases allows for analyzing for purity 
with UI buttons or to form associative classification rules, which 
can be chain together outlined areas. Rule assignment sets colors 
regions by the class color if pure or off-white otherwise. A trace 
mode button shows n-D cases in unique colors.Transformed 
models can be saved into a .csv file for visualization or classifier 
testing. 

DCVis is freely available for personal and commercial use 
under the MIT license at github.com/CWU-VKD-LAB/DCVis. 
How to use the software is documented in the project readme. 

 

V. CONCLUSIONS 

Synthetic n-D data for ML/AI is of critical importance, 

however, SDG must be evaluated for assurance of quality 

synthetic data and resultant models trained on that synthetic 

data. Therefore, we proposed the unified SDG-ADL algorithm 

combining tasks of data generation and labeling in an 

automatable process with the tool of GLCs. We demonstrated 

this approach, and it shows that SDG can improve resultant 

ML/AI models. Future work should explore scaling to larger 

dimensionality of data including applied use cases such as using 

SDG for recommendation system tuning with user preferences. 
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