Behavior prediction at multiple time-scales in inner-city scenarios
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Abstract—We present a flexible and scalable architecture a system able to predict possible future driver behaviors
that can learn to predict the future behavior of a vehicle in depending on the current situation representation.
inner-city traffic. While behavior prediction studies have mainly Predicting driver behavior is an attractive concept: such

been focusing on lane change events on highways, we apply o - .
our approach to a simple inner-city scenario: approaching a predictions can be used to warn the driver in case of

traffic light. Our system employs dynamic information about ~deviations from expected behavior, or to inform sensory
the current ego-vehicle state as well as static informatiombout  processing which can thus focus on situation propertiets tha
the scene, in this case position and state of nearby trafficdhts.  are relevant for future driver actions. Since our focus is on

Our approach differs from previous work in several aspects. inner-city traffic, we use learning techniques to ensur¢ tha

First of all, we hold that predicting the precise sequence of . . . .
physical and actuator states of a car driving in dynamic inne- our system can easily scale to a high number of situations

city traffic is both challenging and unnecessary. We thereie ~ and possible driver actions. In this study, we focus on the
represent predicted behavior as a sequence of few elemenyar Simple scenario “approaching a traffic light” in order to gjiv
states, termedbehavior primitives. As a second aspect, behavior proof-of-concept of the learning and evaluation methods.
prediction is treated as a multi-class learning problem sige We concentrated our recent work sgstem-level learn-

there are multiple behavior primitives. Rather than causing . . . R .
problems, we show that this fact can be exploited for com- ing in (semi-)autonomous agents [3]: this kind of learning

puting information-theoretic measures of prediction confilence, OPerates on low-dimensional, invariant and near-symbolic
thereby allowing to identify and reject unreliable predictions.  quantities obtained from dedicated processing subsystems
We show that the horizon of predictions can be extended this contribution, we build on this concept, trying to pretdi
up to 6s, and that uncertain predictions can be detected and |ow-dimensional representations of driver behavior from-
eliminated efficiently. We consider this a significant resulsince dimensional representations of the environment. In doing

typical prediction horizons are usually in the range of 1 to 2. . . . . .
The main message of this paper is that simple learning this, we argue that a prediction of precise, physical beiravi

methods can achieve excellent prediction quality at long e and actuator states is neither very easy nor, indeed, estjuir
horizons by operating purely on the “system-level”, i.e., sing for driver assistance.

an abstract, low-dimensional situation representation. #ice the

learning approach greatly reduces the design effort, and sice Il. RELATED WORK

we show that the prediction of multiple behavior classes is .
feasible, we expect our architecture to be scalable to more Recent developments in the area of ADAS show that more

complex scenarios in inner-city traffic. and more approaches go in the direction of using learning
techniques ([4], [5] and [6]). One reason for this is the
|. INTRODUCTION achieved reduction of design effort, especially when agali

systems to inherently complex scenarios such as inner-city
As the performance of computing hardware systems inraffic. The price to pay for this is an increase in initial

creases, intelligent vehicles are more and more able #esign effort for setting of learning methods and collegtin
construct reliable situation representations even in dexp training data. In the context of driver behavior prediction
scenarios. Such representations can include location afiére exist several systems circumventing the learninggiss
dynamic state of traffic participants, as well as inform@tio by using hand-designed mathematical models and heuristics
about specific objects (like, e.g., traffic signs) or eventg estimate the trajectory of the ego-vehicle ([7], [8] a8} |
(traffic light turning red). Since such systems are now cépabwe believe that for behavior prediction, learning appresch
of real-time performance, complex architectures can blelbuimust be used at some point because the number of situations
upon these detection systems, notably Advanced Drivingr behaviors in complex environments will become too big
Assistant Systems (ADAS) such as lane keeping [1] ab cope. It is our conviction that learning will cope with the
Adaptive Cruise Control [2]. The aims range from improvingcomplexity of the task, and also greatly reduce the overall
safety to reducing energy consumption by assisting thedrivdesign effort. There are numerous possible strategies for
or controlling the vehicle. In this contribution, we pretenjearning relationships between a set of features extracted

from sensory processing and the behavior of the driver:
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and compute the coarse spatial layout of the different scemee segment the behavior space. Finally, the classification
elements, their horizontal and vertical distribution ire th and evaluation methods used for behavior prediction are not
image, and edge orientation histograms of the lane markingsesented, whereas they are the main objective of this study
and curbs. The approach uses these features to learn a fine-
grained prediction of the actuator states, as well as the I1l. M ETHODS
appropriate velocity. Both works show the feasibility oéth
approach on real data. Our work differs by the fact that we
use low-dimensional representations of current situadioch status and scene properties
predicted behavior and by the fact that we predict the future '
behavior (as opp(_)s_ed to_mstantaneous behaV|_or) of therdnvA' Segmentation into behavior primitives
Instead of deriving pixel-level features, object-levedfe
tures are used in [12]. The system is tested on a simulatedAs explained previously, we consider that raw actuator
car-following scenario, using distance and relative viiyoc states or even trajectories of the ego-vehicle are notyeasil
to the preceding car to predict free-ride, following, sheerpredictable. They depend on multiple factors that are not
out and overtake behaviors (and their associated trajesjor always determinable (like, e.g., the characteristics & th
Symbolic (behaviors) and sub-symbolic (trajectoriesyeep car or the stress level of the driver). Two different drivers
sentations are combined in order to predict future postiorperforming the same behavior can have different trajeesori
of the traffic participants. This approach has a lot in commofAs an example, two drivers approaching a red traffic light
with the one we propose, but they predict the trajectoryill both brake, but their exact trajectories will differh&re-
and positions of the car, whereas we aim at predicting lowjore, we describe the driver behavior using a set of standard
dimensional behavior primitives. Moreover, the approach ielementary behaviors, that we chtthavior primitives
evaluated on simulated data, whereas we are using real datal he decomposition of the stream in a sequence of behavior
Similar to our approach, a segmentation of the complegrimitives is done using heuristics, segmenting portiohs o
behavior into a sequence of basic elements is presentédjectories over time with data coming from the CAN-bus.
in [5]. The information about the car dynamics (speedince this contribution focuses on the braking behavior on
or steering angle from CAN-bus and GPS data) is usegiraight roads, the heuristics only use speed, gas pedal and
in order to classify the current maneuver. However, thbreak pedal information, and we limit the behavior primgtv
classification of the observed maneuver is performed withoto the longitudinal dimension: “braking”, “stopped” and
any knowledge about the traffic scene, whereas we aim tother”. We first detect the parts of the streams where the
predict the future behavior primitives including staticdan driver has the behavior “stopped”: when the speed is below
dynamic scene properties as well. 2km/h. We extract each “braking” behavior leading to a
In [13], a sparse Bayesian learning (SBL) method i$stopped” behavior. We define the beginning of the “braking”
applied to derive an estimate of driver intent, which ameuntoehavior as the moment when the driver stops accelerating
to predicting the probability of an imminent lane change. Irfthen the acceleration pedal is not used). Indeed, in initgr-
contrast to our approach, inputs to the learning algorithnigaffic, the car starts slowing down as soon as the drivertis no
are high-dimensional since presearid past positions and using the gas pedal. The end of the “braking” behavior is of
speeds of the ego-vehicle are included. To remedy this, tiseurse the beginning of the “stopped” behavior. The samples
authors use the SBL method which is expected to selectthat are not labeled as “braking” behavior or “stopped”
subset of relevant features from its high-dimensional inpubehavior are then labeled as “keep speed” behavior. One can
Furthermore, an explicit measure of driver state is takém inrefer to Fig. 1 for an illustration of the behavior segmenta-
account which is not done in the present study. Results shdion.
that lane changes on highways can be predicted at least
2.5s in advance with good accuracy. A similar approach is i
presented in [14], concerning the braking behavior preatict |
in a car-following scenario. The authors predict the need
for braking depending on the scene observation as well as
the intention of braking depending on the observation of the
driver. They can then estimate the probability of a crucial
situation, in order to derive a warning signal.
Of course, segmenting the behavior space is not the only

We predict the future behavior primitives ahead in time, on
ifferent time scales, depending on the current ego-vehicl
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Aspects is presented in [15]. The observation of the traffic
scene with a Scenario Based Random Forest algorithm Ag. 1.  Example of a traffic light approach scene: evolutidntie
used to classify the situation. Our work differs in the sensgctivations depending on the time.

that these authors focus on segmenting the situation wherea



B. Encoding of the situation and behavior representations

Past Future
For the simple scenario considered in this study, input Lean
. .. . K earning
data to the behavior prediction are restricted to ego-¥ehic m
speed as well as the status and the distance of nearby traffic
. . : S Behavi
lights. _As we have not yet implemented robust algorithms for repre‘s";‘faﬁon -
detecting traffic lights, we manually annotated the presenc % } —
and the status (green, yellow, or red) of traffic lights based I8 K Tk
the image data. In order to estimate the distance to thectraffi Prediction
light, we extract the moment when the ego-vehicle crosses @
the traffic light and compute previous distances to the traffi .. . Behavior
light by integrating the speed of the ego-vehicle. The ego- ‘ I 'tion  Primitive
vehicle speed is obtained from the CAN bus. We compute Tk A Tk

the behavior primitive for each sample of this dataset in
an offline fashion according to the procedure described in

Sec. llI-A. It is encoded as a 3-element binary array, ong9- 2. Visualization of the learning paradigm: The leaghimechanism
maps the past situation representation (at time 73) and the present

element for each possible behavior primitive. behavior primitive (at timet). Then it predicts the the future behavior
We also compute the distance to the traffic light and thgimitive (at timet + T3,) using the present situation representation (at

status of the traffic light for each sample of the dataset. TH&™ %)

distance is encoded by a single real number, whereas the

status of the traffic light is encoded into a 3'd'mens'on_afjepresented. For network training, we employ the back-

binary array, each element corresponding to one possi ¢ ti lqorith ith weight-d d t
status of the traffic light (green, yellow, red). bFB opagation a'gorithh witn weignt-aecay and a mormenim

term (see, e.g., [17]). We configure the MLP to produce
The distance and status of the traffic light, together Wittﬂhree (real—valuged E)ut]gum o Elb winoand Ag, Féor-
stoppea raking other

the speed of the ego-vehicle, form a 5-dimensional inpl‘ilEsponding to the predicted behavior primitives. In oraer t

vector for each sample in the dataset. The 3-element behavb%mpensate the different frequencies of the three betgvior

prlml'qve associated with each sample corresponds to tm\?e normalize these activations over time to have the same
learning target. mean and same variance for the evaluation of the quality
of the prediction. As we are using offline learning and
prediction on recorded data, this operation does not \@olat
The behavior prediction system performs a mapping b&ausality. In an online learning scenario, normalizatiouis
tween the situation representation (see Sec. l1I-B) at time have to be performed using a fixed time window.
and the future behavior primitive, predicted on severaktim \We used the pyBrain-library [18] for all described MLP
scales for timeg+71,t+T5,...,t+T,. Our mid-term goal experiments. The MLP training algorithm depends on the
is to perform learning and prediction in a running systemearning rate parameteM-" and the momentum parameter
This would imply that we train a learning algorithm, for a,M.? The choice of the learning technique is based on
given timet and a time scalé, to represent the relationship a study of different learning techniques in [3]. MLP is a
between the situation d@t— 7}, and the behavior primitive generic and simple method, which can scale to a wide range
att since we cannot look into the future. After convergencesf problems, and can be adapted for online learning.
trained algorithm is used to predict the behavior primite o )
time ¢ + Ty, using the situation representation at timghis E- Prediction confidence assessment
process is illustrated in Fig. 2. As detailed in Sec. IlI-D, the result of behavior prediction
For our current evaluation, we perform the learning and th@re three normalized activations of neurafis In order to
prediction in an offline fashion where data are stored priderevent the use of unreliable predictions, we derive an esti
to training and evaluation. As “looking into the future” is mate of the confidence of this predicti6ti°" by measuring
thus possible, the learning and prediction steps are diegpli its variance:
while the performance of the learning is not affected. ceonf _ var(A;) 1)

C. Learning and Prediction strategy

D. Multilayer Perceptron for Behavior Prediction Theoretically, the entropy would be a more attractive measu

In order to learn the mapping between the current situatio§nich is however inapplicable here becadsg A; = 1 does

representation and the future behavior primitives, we use ¥t thId in general. We can now set a confidence threshold
multi-layer perceptron (MLP). The MLP model [16] is a7°°“ and determine whether the prediction is reliable or not:

standard nonparametric regression method using gradient- it coonf -, rconf: the prediction is confident
based learning. It is a rather simple neural model, the only
free parameters being the number and size of hidden layers.
The hidden layer may be viewed as an abstract intern@he variance of thg A;} is highest when there is a single
representation where it is however unclear what is beingominantA;-, which means that the result of the classifi-

else : the prediction is not confident



cation is reliable. In contrast, variance is lowest when all000 successive samples. We train the system using 15 sub-
activations are similar; as behavior primitives usuallg arsets and we present the samples from the remaining subset
mutually exclusive, this signals high prediction uncemtai to the trained prediction system. We obtain a sequence of
This measurement of prediction confidence is a vergctivations for the three output neurons which we normalize
important step, especially (as we plan to do in the futureggccording to Sec. IlI-D.
when concurrently predicting a large number of behavior We then use the 16 evaluation subsets from the 16 possible
primitives. We consider that recognizing uncertain prediccombinations of training and evaluation subsets in order to
tions and taking no decisions is preferable to taking wrongvaluate the quality of the prediction over the whole ddtase

decisions.
IV. EXPERIMENTAL SETUP

F. Decision making and error measures We created a dataset containing 16000 samples of traffic

The classification value for any output neurids obtained light approach scenes (see Fig. 3), extracted from video
by computingCéass= 4; —3,i Aj. When focusing on the streams recorded in inner-city environment. As the videes a

braking behavior, as we do |n th|s study, this becomes recorded at 20Hz, this correspond to 13 minutes of driving

| in inner- Clty.
Cgraai?ng = Abrakznq Astopped - Aother (2)

We can set a classification threshotd?sS and make a
classification decision for each prediction which of course
also depends on the prediction confidence measif&’
described in Sec. IlI-E:

if C;:Iass> Tclass and Cconf > 7_conf:
behavior primitive is predicted
if C;:Iassg Tclass and Cconf > 7_conf .

absence of behavior primitive is predicted
if ¢cont < eonf. Fig. 3. Example of inner-city traffic light approach scene.

unreliable prediction is rejected - o
In order to learn the prediction from the situation repre-

®3) sentation at time and the behavior primitive at time+ Ty,

For each value pair of the threshold€ass ¢ass and for W€ train our system using as input the input learning vector

each output neurof) we compute the detection ratgmet at timet and the corresponding output target at titne7}.
the false positive rate/™°™t and the rejection ratere]ect Our MLP has a linear input layer of size 5, one hidden

which are defined as Iayer_of si;e 100 gnd 3 output neurons, applying a sigmqid
non-linearity for hidden layer and output neurons and a bias

correct_ 7(r€liable correct classifications neuron for the hidden layer and the output layer. Standard

%

#(reliable positive examplgs training of the MLP requires funds(gradient steps) before
incorrect _ #(reliable incorrect classifications early-stopping [17] occurs (one round is one iteration over
! ~ #(reliable negative examples the whole dataset). We work with'-? = 0.01.
reject_ #(rejected examplgs Once trained using 15 subsets, we present the samples
i 7 #(all exampley from the remaining subset to the MLP. We obtain a sequence

of activations for the three output neurons which we normal-
By varying the classification threshold®®sS a receiver- jze according to Sec. 11I-D.

operator-characteristic (ROC) can be generated. Thioperf
mance measure is a standard tool in machine learning and has V. EXPERIMENTS AND RESULTS
been previously used to evaluate behavior predictionsyste  In this study, we focus on evaluating the possibilities
see [13]. In the presented ROCs, we plot the detection rag¢ learning methods for behavior prediction, and especiall
against the false positive rate; as the rejection rate is gn learning in the presence of multiple timescales and
function of 7" which is not varied, we display the rejectionbehavior classes. We will first analyze the effect of our
rate along with each plotted ROC. Omitting this informatiomovel prediction confidence measure on prediction accuracy
could be misleading since a ROC may be of very high qualitlgy evaluating instantaneous prediction of braking behravio
while accounting only for a small part of test examples, i.g(j.e., we “predict” the present). We then go on to present the
those who were not rejected. results of braking behavior prediction at several time exal
ranging from 0.5s to 6s, again demonstrating the value of
prediction confidence estimation as described in Sec..lll-E
We employ N-fold cross-validation to assess predictio®ne can see on Fig 4 the activation of the MLP over time,
results, splitting the dataset into 16 subsets, each gontai for 4s prediction, while approaching a red traffic-light.

G. Evaluation procedure



samples corresponding to the least reliable predictions.
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Fig. 6. Instantaneous prediction of current behavior. Shasvthe false
positive rate plotted against the amount of rejected sanpleich varies
due to the variation of the confidence threshefd™. The value ofr®assis

fixed to produce (for each distinct value 8f°™) a detection rate of 85%.

Fig. 4. Activations of the MLP over time, for a prediction 4sead of
time, in a red traffic-light approach scene.

A. Effects of the rejection of non-confident predictions

For this experiment, we train our system to learn th@. Prediction of future behavior at multiple time scales
mapping between the current situation representation andWe now compare the prediction of the future braking
the current behavior primitive. This serves to demonstrat&eh(,jwior at different time scales. We set the confidence
the importance of the confidence threshafd" which is  hrcholdreont as determined in the previous experiment

set to different constant values while ROCs are obtained t?%scarding 10% of samples. As can be observed in Fig. 7, it

. I . .
varying 7°%%% In this way, a number of ROCs at different; ,ssiple to predict the future behavior primitive for the

rejection rates is obtained which can be viewed in Fig 5. Wiferent time scales presented. Of course, the quality of

is apparent that, up to a point, the removal of less Conf'dEEHe prediction decreases when the timescale of prediction

predictions increases overall prediction quality. Beyoinid increases. As expected, the quality of braking behavior
point, if we set the confidence threshold too high, the overal

quality of the prediction will decrease again. Therefore, N
an optimal value has to be determined in order to reach
good performance while avoiding the rejection of too many o8 |
predictions. Another way of visualizing this effect is used
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3@2:{3:3 ggmplgg. égefu threshold. As can be seen, the system is able to perform ioetprediction
S i 0 25% v .
J discarded samgles: 50% up to 6s into the future.
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Fig. 5. Instantaneous prediction of current behavior. Share ROCs with increasing predIC'qun horizon. This is a_n ad_dltlonal

obtained by variation of the clas?ification thresheffSS For each ROC, a cross-check for the validity of the approach, since it sséand

different confidence threshote™ is applied. to reason that larger prediction horizons leads to higher
uncertainty. We also verified that the quality of the praditt

in Fig. 6, where we analyze in more detail the influencgiecreases strongly to reach roughly chance level at 10s.
of 7°°" on the quality of the prediction. Here, we plot the

false positive rate against the amount of samples discarded VI. DiscussION

by the confidence evaluation, where the valuer##ss has In this contribution, we showed that is it possible for a
been always chosen such that the detection rate is at 85 &gystem to learn the prediction of present and future behavio
As one can observe from Fig. 6, there is a clear optimalrimitives at multiple timescales. We also showed that a
setting for the confidence threshold. We therefore decide fsimple learning algorithm operating on low-dimensiongkre
future experiments to set® such as to remove 10% of resentations of situation and behavior is sufficient to joted

False positive rate



braking behavior with very good accuracy at time scales ugs road geometry and traffic signs. To cope with the increased
to 3s. As expected, the quality of the prediction decreasesmplexity, situation-specific learning subsystems wil b
with the timescales, and becomes almost meaningless fatroduced, along with a method to fuse the predictionsryive
timescales larger than 6s. We also presented a measure of iyedifferent learning subsystems.

prediction confidence in case of multiple behavior classes, Concerning the applications of such a behavior prediction
allowing to disregard uncertain predictions. We showed thaystem, several possibilities are available. The knowdedg
it is possible to increase the quality of the prediction bings about the predicted future behavior of the driver can be used
a moderate threshold on prediction uncertainty, thus disréo detect a dangerous behavior, as presented in [14]. Anothe
garding approximately 10% of predictions. The evaluatiopossible application is the use of this prediction to aptité

of prediction confidence is a key element toward building and start an early braking of the car. We expect such a system
large-scale behavior prediction system with a higher numbéo reduce the energy consumption, especially in inner-city

of behavior primitives as it may be expected in complexnvironment where braking behavior occurs often.

inner-city traffic.
It could certainly be argued that the learning problem
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