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Invariant Set Based Vehicle Handling Improvement at Tire Saturation 
using Fuzzy Output Feedback

Na¨ıma Ait Oufroukh, Andr´e Benine-Neto, Zedjiga Yacine, Sa¨ıd Mammar, S´ebastien Glaser

Abstract— This paper firstly reviews of the analysis of the
nonlinear behavior of the vehicle lateral dynamics. The (α f , α̇ f )
phase plane is used in order to quantify the stability region of
the vehicle under different forward speed, steering angle and
road adhesion. The tire-road interaction forces are modeled
using Pacejka’s magic formula. In a second step, the exact
linear sectors procedure is used for representation of nonlinear
functions in order to derive a Takagi-Sugeno (TS) fuzzy model.
This model copes the behavior of the lateral tire forces including
the linear, decreasing and saturated regions. Thereafter, a
Takagi-Sugeno fuzzy output feedback is designed for yaw
motion control. The controller acts through the steering of the
front wheels and the differential braking torque generation.
The computation of the controller is performed in such a
way that the trajectories of the controlled vehicle remain
inside an invariant set even when it is under disturbance
input. This is achieved using quadratic boundedness theory and
Lyapunov stability. Simulation tests show that the controlled car
is able to satisfactorily perform standard maneuvers such as the
ISO3888-2 transient maneuver and the roundabout maneuver.

Index Terms— Vehicle handling, Fuzzy control, Output feed-
back, LMI, BMI.

I. INTRODUCTION

Helping the driver maintain control of a vehicle in extreme

lateral dynamics and even prevent that the vehicle reaches

these situations is still an active research area. Electronic sta-

bility control systems (ESC) use independent wheel braking

as an additional control input in order to conform the lateral

dynamics, mainly the yaw rate value, to the driver intended

set point which is sensed from the steering angle [4], [15]. In

fact, bifurcation analysis has shown that the stability region is

limited. The region could be quantified in the sideslip angle -

yaw rate phase plane or in the sideslip angle rate and sideslip

angle phase plane [14]. The extent of the stability region is

function of the driver input on the steering wheel, the road

adhesion and the longitudinal speed.

In parallel, vehicle handling has been also investigated

through front and rear active steering [3], [6]. Using an

additional steering angle of limited value solutions have been

implemented in some series production [5]. However, action

of steering will be really effective when x-by-wire systems
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will be spread in series vehicles. In fact, additional freedom

factors in controller design architecture will be available [9].

Assuming the availability of such a technology, this paper

proposes a dynamic fuzzy output feedback which uses both

steering angle rate and differential braking. The dynamic

output feedback formulation considered in this paper presents

three main advantages: the use of only the yaw rate and

the steering angle as measured variables, better flexibility

to formulate the stabilization conditions and the ability to

handle input or state constraints and bounded disturbances.

This controller uses the property of quadratic boundedness

and invariant set [2] which guarantees that each trajectory

of the controlled vehicle that starts in the invariant set will

not exceed it, hence the trajectories will be bounded inside

it [8].

The paper is structured as follows: in Section 2 the vehicle

model is presented, starting from the classical nonlinear

bicycle model and some bifurcation properties associated

with parameters variations and input values are reviewed.

Thus, a Takagi-Sugeno fuzzy model is obtained, which

allows an exact representation of the nonlinear behavior. In

Section 3, the controller design is presented while simulation

results are illustrated in Section 4. The conclusions wrap up

the paper.

II. VEHICLE LATERAL DYNAMICS T-S MODEL

As lateral control is concerned, a simple nonlinear model

of a vehicle is obtained by neglecting the roll and pitch

motions. This model includes the lateral translational motion

and the yaw motion (Fig. 1). The two wheels of each axle

are lumped into one located at its center. This leads to the

vehicle bicycle model. The lateral forces between each tire

and the road surface are added at each axle leading to two

resulting forces f f

(

α f

)

= fy1 + fy2 and fr (αr) = fy3 + fy4 at

the front and rear wheels of the bicycle model respectively.

These forces, which will be detailed below, are function of

the front and rear tires sideslip angle, denoted α f and αr

respectively.

The lateral translation and rotational yaw motion equations

written in the vehicle fixed frame take the following form:

[

mv
(

β̇ + r
)

Jṙ

]

=

[

1 1 0

l f −lr 1

]





f f

(

α f

)

fr (αr)
Tz



 (1)

where β is the vehicle side slip angle, ψ̇ = r is the yaw

rate and Tz is the yaw moment input applied by differential

wheel braking. m is the vehicle mass and J is the vehicle

moment of inertia. The vehicle center of gravity is located
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Fig. 1. Vehicle model.

at a distance l f from the front axle and a distance lr from the

rear axle, as shown in Fig. 1. The vehicle parameters values

are listed in Table I in the Appendix.

Assuming that the angles remain small, the front and the

rear sideslip angles are given by:

α f = δ f −
(

β +
l f

v
r
)

αr =−β + lr
v

r
(2)

A. Lateral tire forces model

−20 −15 −10 −5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Front tire sideslip angle α
f
 (deg)

L
a

te
ra

l 
fo

rc
e

 f
f (

k
N

)

C
f1

 α
f

C
f2

 α
f

f
f

Fig. 2. Tire lateral force given by the pacejka model and sector based
approximation.

Here, the well known Pacejka’s formula [10] is used to

represent the efforts exerted on each tire (Fig. 2). Lateral

forces of front and rear tires are function of the side slip angle

αi at the tire-road contact location. The road adhesion µ ,

the normal force fni and the slip ratio which are considered

constant. Here, the index j stands for f (front) or r (rear):

f j(α j) =
d j sin

(

c j · tan−1(b j(1− e j)α j + e j · tan−1(b jα j))
) (3)

The adhesion coefficient and the normal force acting on

each tire are embedded inside the parameters b j, c j, d j and

e j. See [6] for further details. The definition and the value

of the above parameters are described in the appendix at the

end of the paper.

The shape of the lateral force is as follows: A first linear

domain for small sideslip angle allows to define a slope factor

called the tire cornering stiffness coefficient. As the sideslip

angle increases, the tire enters a nonlinear operating zone

where the lateral force saturates.

B. Bifurcation analysis

The vehicle trajectories are simulated in different con-

ditions in order to quantify the extent of stability region.

The front tires sideslip angle and rate are chosen as the

phase plane for the plot of the trajectories. Results shown in

Fig. 3 are obtained for zero steering angle and maximum road

adhesion (µ = 1). The stability region is symmetric around

the origin. When the steering angle is set to 0.02rad/s, the

equilibrium points move towards a positive value, which

leads to a decrease of the stability margin (Fig. 4). Returning

to a zero steering angle while decreasing the road adhesion

to (µ = 0.3). The shrinkage of the original stability region

is obvious in Fig. 5. Finally, when the steering angle is set

again to 1.15deg while maintaining the same road adhesion

the stability region vanishes (Fig. 6).
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Fig. 3. (α f , α̇ f ), plane for δ f = 0.0deg, v = 30m/s and µ = 1.
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Fig. 4. (α f , α̇ f ), plane for δ f = 1.15deg, v = 30m/s and µ = 1.
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Fig. 5. (α f , α̇ f ), plane for δ f = 0deg, v = 30m/s and µ = 0.3.
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Fig. 6. (α f , α̇ f ), plane for δ f = 1.15deg, v = 30m/s and µ = 0.3.

The goal now is to achieve a Takagi-Sugeno fuzzy model

which covers the entire operating domain (linear and non-

linear) of the forces [12].

C. Four rules Takagi-Sugeno vehicle fuzzy model

The nonlinear vehicle model is transformed into a four

rules Takagi-Sugeno (T-S) fuzzy model according to the

values of the front and rear cornering stiffnesses:

• if
∣

∣α f

∣

∣ is m1 and |αr| is n1 then

{

f f = c f1α f

fr = cr1
αr

• if
∣

∣α f

∣

∣ is m2 and |αr| is n1 then

{

f f = c f2α f

fr = cr1
αr

• if
∣

∣α f

∣

∣ is m1 and |αr| is n2 then

{

f f = c f1α f

fr = cr2
αr

• if
∣

∣α f

∣

∣ is m2 and |αr| is n2 then

{

f f = c f2α f

fr = cr2
αr

The membership functions m i and ni (i = 1,2) are deter-

mined by the approximation method of nonlinear function

by linear sectors. Coefficients c fi and cri
(i = 1,2) represent

the tire cornering stiffnesses associated to each sector. In

fact they also represent the slope of the limits of the sectors

which include the tire forces (Fig. 2). For example, given two

coefficients c f1 and c f2 , chosen according to the expected

road adhesion and driving conditions, one can determine the

membership functions m1

(

α f

)

and m2

(

α f

)

. The evolution

of the two functions m1 and m2 as functions of the sideslip

angle are shown in Fig. 7. They are obtained with numerical

values: c f1 = 1.2c f and c f2 = 0.6c f . It is important to outline

that this sector representation is an exact approximation of

the nonlinear system.
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Fig. 7. Membership functions m1 and m2 associated to the front tire contact
forces.

The membership functions n1 and n2 for the rear tire forces

are obtained by the same procedure. Finally, one can write:
{

f f =
[

(h1 + h3)c f1 +(h2 + h4)c f2

]

α f

fr = [(h1 + h2)cr1
+(h3 + h4)cr2

]αr
(4)

with h1 = m1 × n1, h2 = m2 × n1, h3 = m1 × n2 and h4 =
m2 × n2.

In order to have the front and the rear sideslip angle

as state vector components, let us define the state x̄ =
[α f ,αr,δ f ]

T and the control input u = [δ̇ f ,Tz]
T , the fuzzy

system takes the form:

˙̄x =
4

∑
i=1

hi

(

α f ,αr

)

Āix̄+ B̄u (5)

where

Āi =





a11i a12i a13

a21i a22i a23

0 0 0



 , B̄ =





1 −
l f

Jv

0 lr
Jv

1 0



 (6)

where 

















































a11i =− v
l f +lr

− 1
v

(

1
m
+

lr l f

J

)

c′f i,

a12i =
v

l f +lr
− 1

v

(

1
m
−

l f lr
J

)

c′ri
,

a21i =− v
l f +lr

− 1
v

(

1
m
− l2

r
J

)

c′f i,

a22i =
v

l f +lr
− 1

v

(

1
m
+ l2

r
J

)

c′ri
,

a13 =
v

l f +lr
,

a23 =
v

l f +lr
.

where c′f i = c f 1 for i = 1,3 and c′f i = c f 2 for i = 2,4.

Similarly, c′ri = cr1 for i = 1,2 and c′ri = cr2 for i = 3,4.
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D. Reference yaw rate tracking

Ideally, the vehicle should respond to driver’s steering

angle δd as a speed depended yaw rate reference steady

state value with almost constant settling time. A desired

transfer function between δd and r, is then sought. In order

to ensure at nominal speed, the same steady state value for

the controlled and the conventional car, the reference model

is chosen as a first order transfer function with the same

steady state gain as the conventional car. It is of the form

rd =
Kd(v)
τs+1

δd . The speed dependent steady state gain is Kd(v),
derived from the nominal linear bicycle model, and τ = 0.2
sec.

In order to ensure that the yaw rate reference value is

achieved in steady state, the integral z of the yaw rate

tracking error is added as state a variable:

ż = r− rd =
δ f +αr −α f

l f + lr
v− rd (7)

This variable is thus added to the previous third order

model (5) while the desired yaw rate is considered as a

disturbance. The fuzzy model is finally discretized at a

sample time of T = 0.005sec. The final fuzzy model is of

the form:

x(t + 1) = ∑4
i=1 hi

(

α f ,αr

)

Aix(t)+Bu(t)+Ew(t)
y(t) =Cx(t)+Dw(t)

(8)

where x = [α f ,αr,δ f ,z]
T and y(t) = [r,z]T . The disturbance

w(t) = rd(t) ∈ εQ =
{

w ∈ R/wT Qw ≤ 1
}

is bounded. Ma-

trices Ai and B can be easily derived from equations (6)

and (7). This discrete time fuzzy system is characterized

by common B, E and C matrices. This property simplifies

drastically the stability and performance conditions as only

simple summations are involved.

III. DYNAMIC OUTPUT FEEDBACK FUZZY CONTROLLER

In the following, a dynamic output feedback fuzzy con-

troller is sought. It has the form:

xc(t + 1) = ∑4
i=1 hi

(

α f ,αr

)

Ai
cxc(t)+Bcy(t)

u(t) =Ccxc(t)+Dcy(t)
(9)

where xc ∈ R4 is the controller state; {Ai
c,Bc,Cc,Dc} are

matrices to be designed.

This controller uses the parallel distributed compensation

(PDC) concept of the fuzzy system control. In this concept,

each control rule is distributively designed for the corre-

sponding rule of a T-S fuzzy model. Linear control theory can

then be used to design controllers for each of the consequent

part of the fuzzy system while ensuring the same properties

for the fuzzy system.

As pointed out in [2], Dc is an important parameter for

stabilization, and the controller structure is able to handle

constraints on the input and the state. By combining (8) and

(9), the augmented closed-loop fuzzy model is given by

x̃(t + 1) =
4

∑
i=1

hi

(

α f ,αr

)

Φix̃(t)+Γw(t). (10)

where x̃ =

[

x

xc

]

, Φi =

[

Ai +BDcC BCc

BcC Ai
c

]

and

Γ =

[

BDcD+E

BcD

]

.

Let Φz = ∑4
i=1 hi

(

α f ,αr

)

Φi, the closed loop system takes

the form: x̃(t + 1) = Φzx̃(t)+Γw(t).

A. Invariant set and output feedback PDC control

Assume that there exists a quadratic function V (x̃) = x̃T Px̃,

where P is a symmetric, positive definite matrix that satisfies,

for all x̃, w satisfying (10), wT Qw ≤ 1, V (x̃) ≥ 1, the

condition [1]:

V (x̃(t + 1))≤V (x̃(t)) (11)

Consider the reachable set Λ defined by:

Λ � {x̃(T )| x̃, w satisfying (10),
x̃(0) = 0, wT Qw ≤ 1, T ≥ 0}

(12)

The set εP defined by:

εP = {x̃(t) ∈ R
8|x̃(t)T Px̃(t)≤ 1}, (13)

is an invariant set for the system (10) with w∈R, wT Qw≤ 1.

This means that every trajectory that starts inside εP remains

inside it for t → ∞.

The existence of such a function V (x̃) means that the set

εP is an outer approximation of the reachable set Λ.

εP is also an outer approximation of the reachable set

Λ∗ � {x̃(T )| x̃, w satisfying equation (10),
x̃(0) ∈ εP, wT Qw ≤ 1, T ≥ 0}

(14)

B. Invariant set - quadratic boundedness

According to the previous considerations, the closed loop

linear system x̃(t + 1) = Φzx̃(t)+Γw(t) is strictly quadrati-

cally bounded with a common Lyapunov matrix P > 0 for

all allowable w(t) ∈ εQ, for t > 0, if x̃(t)T Px̃(t)> 1 implies

(Φzx̃(t)+Γw(t))T
P(Φzx̃(t)+Γw(t)) < x̃T Px̃, for any w ∈

εQ.

C. Constraints on state and control input

In addition, it is possible to handle constraints on the

control signal and the state:

−ū ≤ u(t)≤ ū, −Ψ̄ ≤ Ψx(t + 1)≤ Ψ̄, ∀t ≥ 0 (15)

where ū = [ū1, ū2]
T with ū1 > 0, ū2 > 0 and Ψ̄ :=

[Ψ̄1, . . . ,Ψ̄q]
T with Ψ̄ j > 0, j = 1, . . . ,q, Ψ ∈ Rq×4 and

q is the number of imposed constraints. Notice that the

bounds are provided separately on each state variables or

a combination of state variables.

D. Controller synthesis

The controller is derived form BMI (Bilinear Matrix

Inequalities) conditions obtained using the S−procedure and

invoking the Schur complement. Further details are provided

in [2] and [7]. The closed loop system without the dis-

turbance is ensured to be asymptotically stable and at the

same time, the reachable set for initial state values inside

the invariant set is contained in this invariant set.
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Under the proposed modeling approach, the desired yaw

rate could be seen as an input disturbance under which

the closed-loop system should remain stable with bounded

values for the state vector components. More generally, the

state variables should not exceed the bounds of a “safety

zone”, namely
∣

∣α f

∣

∣≤ αM
f , |αr| ≤ αM

r and
∣

∣δ f

∣

∣≤ δ M
f . Thus,

the state vector x has to be confined to a hypercube L(Z M)
defined by the above bounds. Finally, the control input, the

steering angle rate and the yaw moment, have to be bounded
∣

∣

∣
δ̇ f

∣

∣

∣
≤ δ̇ M

f and |Tz| ≤ T M
z .

According to the equation (15), control limitation is given

by ū = [δ̇ M
f ,T M

z ], while state limitation is given by Ψ̄ =

[αM
f ,αM

r ,δ M
f ]T and Ψ =

[

I3 0
]

.

The PDC output feedback controller was synthesized with

the following numerical values:

δ M
f = 6deg, δ̇ M

f = 100deg/s,

T M
z = 10KN αM

f = αM
r = 13deg,

The selected values ensure that the uncontrolled vehicle

saddle points are inside the invariant set. These design

parameters could be adjusted to handle the trade-off between

safety constraints and comfort specifications.

The achieved Q is 5, which ensures that the constraints

are verified for a disturbance of a magnitude less than

0.447rad/s at the considered longitudinal speed of 20m/s.

In fact, the maximum value is constrained by [11]:

rdmax
= 0.85

g

v
(16)

IV. SIMULATION TESTS

In order to prove the assistance ability to maintain the

dynamic vehicle stability in extreme conditions, several types

of maneuvers have been defined to test the ESC systems.

Among them, double lane-change manoeuvre defined in ISO

3888-2 standard and the roundabout maneuver are tested.

A. Testing for the roundabout maneuver

The vehicle speed is set 80km/h while the steering angle

at the front tires is chosen at 3deg. Fig. 8 shows that the

controlled vehicle trajectory is very close to that of the

reference vehicle. The uncontrolled vehicle experiences a

higher offset. This simulation demonstrated the ability of the

proposed controller to make the controlled vehicle follow a

reference yaw rate.

B. Testing for the ISO 3888-2 maneuver

The ISO 3888-2 double lane-change maneuver setup is

depicted in Fig. 9-a. The maneuver is carried out with and

without the controller at the same speed of 80km/h. During

the maneuver, the throttle is released. The driver initiates the

maneuver by applying the steering angle shown in dashed

line in Fig. 9-b. The dashed plot of Fig. 9-a highlights that

the uncontrolled vehicle fails to perform the maneuver, as

it exits the track, the controlled vehicle is able to perform

it (solid line). In this situation the driver applied steering

angle is too high (dashed line in Fig. 9-b) while the steering

angle of the controlled vehicle is limited to the admissible
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Fig. 8. Vehicle trajectory for the roundabout maneuver. Dashed line for
the uncontrolled vehicle and solid line for the controlled one. Reference
vehicle in dash-dot line

(a) (b)

(c) (d)

Fig. 9. ISO3888-2 maneuver: Trajectory, steering angle, steering angle rate,
yaw moment and Yaw rate for the uncontrolled and the controlled vehicles.

safety value, as shown by the solid line in Fig. 9-b. The

steering angle rate is depicted in the top plot of Fig. 9-c

and is limited for the controlled car. Fig. 9-c shows also

that the controller shares the effort on the steering angle rate

and the yaw moment, respectively. Fig. 9-d shows that the

controlled car yaw rate is closer to the reference one than

the yaw rate of the uncontrolled vehicle (dashed line). The

contribution of each sub-controller according to the actual

vehicle dynamics is shown in Fig. 10. Finally, Fig. 11-a and

11-b provide the developed sideslip angles at the front and

rear tires. The corresponding front and rear forces are shown

in Fig. 11-c and 11-d.
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Fig. 10. ISO3888-2 maneuver: Coefficients hi reflecting the contribution
of each sub-controller for the controlled vehicles.

(a) (b)

(c) (d)

Fig. 11. ISO3888-2 maneuver: Front and rear tire sideslip angle and
corresponding lateral forces for the uncontrolled (dash-dot) and the con-
trolled vehicles (solid), with vertical offset for the uncontrolled one for
better display.

It is clear that the saturation zones are reached by the

uncontrolled and the controlled vehicles. However, the incur-

sions into the saturation zones are more limited and vehicle

control is ensured there.

V. CONCLUSION

In this paper the nonlinear behavior of the vehicle lateral

dynamics has been highlighted. The stability regions are

simply depicted in the (α f , α̇ f ) phase plane. The design and

the test of an integrated steering and differential braking

control for yaw moment generation have been described.

Controlled vehicle trajectories are confined inside an invari-

ant set under bounded disturbance input. An output feedback

fuzzy controller constituted by four sub-controllers handles

constraints on the state variables and the control inputs.

Simulation tests have shown that the controlled vehicle is

able to achieve the roundabout and the ISO 3888-2 transient

maneuvers where the uncontrolled vehicle fails. Future works

will address controller activation strategies according vehicle

state location in the (α f , α̇ f ) plane.

APPENDIX

TABLE I

VEHICLE PARAMETERS.

m Vehicle total mass 1600 kg.
c f Front cornering stiffness 40000 N/rad.
cr Rear cornering stiffness 35000 N/rad.

J Vehicle yaw moment of inertia 2454 kg·m2 .
l f Distance form CG to front axle 1.22m.
lr Distance from CG to rear axle 1.44m.
v Longitudinal velocity.

TABLE II

TIRE MODEL PARAMETERS.

Tire bi ci di ei

Front ( j = f ) 8.3278 1.1009 4536.0 -1.661
Rear ( j = r) 11.6590 1.1009 3671.6 -1.542

ACKNOWLEGMENT

This work has been partially financed by the French FUI

project E-MOTIVE.

REFERENCES

[1] A. Alessandri, M. Baglietto, G. Battistelli, Design of state estimators
for uncertain linear systems using quadratic boundedness. Automatica,
42, 497-502, 2006.

[2] B. Ding, Quadratic boundedness via dynamic output feedback for
constrained nonlinear systems in Takagi–Sugeno’s form, Automatica,
vol. 45, N◦ 9, pp. 2093-2098, 2009.

[3] J. C. Gerdes et E. J. Rossetter A Unified Approach to Driver Assistance
Systems Based on Artificial Potential Fields Authors. Journal of
Dynamic Systems, Measurement and Control, Vol. 123, No. 3, pp.
431-438, 2001.

[4] M.J. Hancock, R.A. Williams, T.J. Gordon, M.C. Best, A compari-
son of braking and differential control of road vehicle yaw-sideslip
dynamics, Proceedings of IMechE., Part D: Automobile Engineering,
V.219, pp. 309-327, 2005.

[5] P. Kohen and M. Ecrick, Active Steering - The BMW Approach
Towards Modern Steering Technology, SAE Technical Paper No.
2004-01-1105, 2004.

[6] S. Mammar and D. Koenig, Vehicle Handling improvement by Active
Steering, Vehicle Sys. Dyn. Journal, vol 38, No3, pp. 211-242, 2002.

[7] S. Mammar, A. Benine Neto, S. Glaser, N. Aı̈t Oufroukh, Vehicle
Handling Improvement by Fuzzy Explicit Nonlinear Tire Forces
Parametrization, Chinise Control and Decision Conference, 2011.

[8] N. Minoiu, M. Netto, S. Mammar, B. Lusetti, Driver steering assis-
tance for lane departure avoidance, Control Engineering Practice, Vol.
17, No 6, pp. 642-651, 2009.

[9] E. Ono, Y. Hattori, Y. Muragishi, K. Koibushi, Vehicle Dynamics
Integrated Control for Four-Wheel-Distributed Steering and Four-
Wheel-Distributed Traction/Braking Systems, Vehicle System Dynam-
ics, V.44, No.2, pp. 139-151, 2006.

[10] H. B. Pacejka, Tyre and Vehicle Dynamics, p 511- 562 , Delft
University of Technology, 2002.

[11] Rajamani R., Vehicle Dynamics and Control, Springer, New-York,
2006.

[12] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applica-
tion to modeling and control, IEEE Trans. Systems Man Cybern. 15,
pp. 116-132, 1985.

[13] J. Tjoennas and T. A. Johansen, Adaptive Optimizing Dynamic Control
Allocation Algorithm for Yaw Stabilization of an Automotive Vehicle
using Brakes, in Control and Automation, 2006. MED ’06. 14th
Mediterranean Conference on, 2006, pp. 1-6.

[14] H.D. Tuan, E. Ono, S. Hosoe, S. Doi, Bifurcation in Vehicle Dynamics
and Robust Front Wheel Steering Control. IEEE Transactions on
Control Systems Technology, 6, pp. 412-421, 1998.

[15] A.T.V. Zanten, Bosch ESP Systems: 5 Years of Experience, SAE
Technical Paper No. 2000-01-1633, 2000.

6


