
  

Abstract— Running gait assessment and running shoe recommendation is important for the injury prevention of runners 
who exhibit different skill-levels and running styles. Traditionally, running gait assessment for shoe recommendation relies 
upon a combination of trained professionals (e.g., sports-therapists, physiotherapists) and complex equipment such as 
motion or pressure sensors, often incurring a high-cost to the consumer. Despite this, assessments are still prone to 
subjectivity, and may differ between assessors. Alternatively, methods to provide low-cost, reproduceable gait 
assessment has become a necessity, especially within a habitual (low-resource) context, with many traditional methods 
generally unavailable due to the need of professional assistance and more recently the COVID-19 pandemic. Fuzzy logic 
has shown to be an effective tool in the assessment and identification of gait by providing the potential for a high-accuracy 
methodology, while retaining a low computational cost; ideal for applications within embedded systems. Here, we present 
a novel shoe recommendation fuzzy inference system from the classification of two key running gait parameters, foot 
strike and pronation from a single foot mounted internet of thing (IoT) enabled wearable inertial measurement unit. The 
fuzzy approach provides excellent (ICC > 0.9) accuracy, while significantly increasing the resolution of the gait assessment 
technique, providing a more detailed running gait analysis. 

 
Index Terms— Fuzzy logic, embedded systems, gait assessment, wearable, IMU, running, sports therapy 

I. Introduction 

URING running, an individual’s feet and legs are susceptible to impact forces upon ground contact [1]. As the foot makes 

contact with a surface, a runner will experience some degree of pronation, i.e., the roll of the foot upon impact [2]. 

Furthermore, runners will exhibit a foot-strike location, measured as the point the foot initially makes contact with the ground 

during  a stride (between heel-strike and fore strike) [3]. 

 Typically, a runner naturally exhibits a unique gait pattern [4] as a result of their biomechanical construction and unique bone 

architecture [5]. As such, a wide range of injuries can be experienced during participation in running-based activities if the correct 

running shoe is not worn; most prevalently the likes of Achilles tendon injury [6], plantar fasciitis [7] and shin splints [8]. That can 

be exacerbated as a result of over-pronation and inadequate running styles. Injuries experienced during running contribute towards 

significant socio-economic concerns including absence from work and healthcare utilization levels, alluding to a loss of personal 

income [9, 10]. 

Support-cushioned assisted running shoes have been shown to reduce strain and minimize damage-potential observed over 

extensive periods of running exercise [2, 11]. Therefore, it is essential that a suitable running shoe is chosen. In general, running 

shoes are categorized into pronation assisted and neutral support footwear; with pronation assistance often utilizing cushioning 

around the heel to reduce roll for over-pronating runners [12]. In turn, understanding these gait features can lead to a reduction in 

injury risk. 

Traditionally, assessment of running gait has several digital approaches but they suffer from lack of availability, high-costs and 

may only be available in controlled and/or bespoke environments [13, 14]. Techniques exist for real-world/habitual running gait 

assessment. For example, observing the wear location of well-used running shoes can denote the foot strike location and pronation 

severity an individual is exerting [15]. Such techniques are highly disputed as runners often exhibit different kinematics when 

barefoot, compared to when wearing a shoe [16, 17], and results may not be reproduceable, dependent upon the individual 

performing the assessment. Currently, wearable inertial measurement units (IMU’s) are gaining traction as a useful objective means 
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to quantify habitual gait activities. Yet, there is a need for real-world inspired analytical methods to provide robust interpretation 

of IMU data. Here we demonstrate how fuzzy logic can provide robust and more insightful, generalizable running gait assessment, 

from a low-cost wearable between varying running gait patterns.  

II. BACKGROUND 

A. Assessing running gait with an IMU 

IMU’s have shown to be highly useful in the understanding of an individual’s gait through the combination of inertial sensors  

(accelerometers and/or gyroscopes); providing low-cost, high-resolution, deployable devices to better understand human 

movement [18]. Accelerating the prevalence of IMU-based gait analysis, their ubiquity and inclusion in wearable devices [19, 20] 

has seen an increasingly large use in everyday life, cementing the sensor’s place in industry and research [21-23]. 

IMUs have been found to be effective in identifying temporal gait characteristics through identifying phases of gait cycle, 

denoted by stance and swing times, often located through points of impact and acceleration [24]. 

 

B. Fuzzy logic in gait assessment 

Fuzzy logic, first introduced by Zadeh [25] denotes a subsection of computing, where rather than Boolean logic (i.e., something is 

true or false), a degree of membership is given, providing an approximation, rather than an exact. 

Fuzzy logic has previously been used to detect and measure gait. Ahamed et al. [26] developed a fuzzy inference system for the 

detection of speed from runners utilizing a single tri-axial accelerometer. In their work, a simple rule-based fuzzy inference system 

is deployed based upon the impact severity of acceleration; such that, if acceleration is low then speed is low and conversely with 

other speeds (medium, fast).  

Fuzzy logic has also been shown to address complex gait assessment tasks utilizing embedded wearable devices such as habitual 

gait event recognition [27]. In the approach, clinically relevant gait phases are identified through a fuzzy inference system. Firstly, 

fuzzy memberships are defined within a train/test configuration, informing a fuzzy rule set (e.g., a large vertical acceleration may 

denote a point of contact) to provide a meaningful output of gait characteristics.  

Additionally, fuzzy logic has exhibited significant success within embedded domains with IMUs due to the low-computational 

cost in comparison to approaches such as deep neural networks [28]. In doing so, the maturity of gait assessment with fuzzy logic 

has extended into a clinically relevant context, utilizing an array of sensors to assess pathological gait [29] and rehabilitation 

applications [30]. 

 
C. Improving running gait assessment with fuzzy logic 

In previous work [31], we presented an application of running gait assessment utilizing a commercial system, an Internet of Things 

(IoT) foot-mounted wearable IMU. By extracting features through a series of zero-crossing gradient maxima algorithms, the 

approach informed a neural network to recommend running shoes. In a feature extraction layer approach (Algorithm 1), foot strike 

and pronation were quantified by manual thresholding, Figure 1. A major limitation with the previous methodology was the use 

of manually selected thresholds for foot strike and pronation, chosen by the visual observation of the distribution of participant 

data. Especially considering how unique and widely varied gait patterns can be among individuals [32], a fixed threshold-based 

approach will not necessarily fit all gait types. Additionally, the running gait feature classifications lacked resolution, giving only 

“Heel”, “Mid”, “Fore” and “Neutral”, “Pronated”, “Severely Pronated” for foot strike and pronation, respectively. Those 

classifications are limited due to the wide variation of contact locations the foot can make during running [3]. Consequently, use 

of a more flexible and real-world approach is warranted. Particularly, fuzzy logic could enable a ‘one size does not fit all’ gait 

assessment approach, utilizing degrees of membership to enable more generalizable outcomes. 

 Fuzzy logic has also demonstrated utility in understanding signals with extraneous noise [33], of which are particularly prevalent 

 
Figure 1 Example of how foot strike location is determined from 

identification of the foots initial contact (IC) and manual 

thresholding (fore/mid/heel) of the points around IC within the 

vertical rotation plane 



and can be heterogeneous in IMU signals, Figure 1, Figure 2. Additionally, fuzzy logic provides a mechanism for reasoning 

between unclear linguistic variables through assessing the granular output of fuzzy systems [34], effectively increasing the 

resolution and real-world output of a binary system. This especially applies to the domain of running gait assessment. For example, 

as a runner strikes the ground, they may ‘slightly’ pronate in comparison to other runners while exerting a mid/heel strike ( i.e., 

opposed to simply heel striking, they may in fact be subjectively closer to a mid-strike than other heel strikers, warranting a degree 

of belonging). 

Here, we propose a fuzzy inference feature extraction layer to overcome limitations of subjective thresholding for a more 

nuanced and real-world approach to running assessment, particularly in low-resource settings. The novel design and development 

of a fuzzy extraction layer aims to increase the resolution and generalizability (and more real-world approach through better 

interpretation) of running gait assessment. This will provide runners with a better understanding of their running style within an 

embedded IoT-based IMU. 

 

III. METHODS 

A. IMU data collection and labelling 

Adult and adolescent runners (n=203, 91M:112F) exhibiting a range of abilities (amateur to club runner) were recruited from low-

resource, community-based locations within the North East of England. Ethical approval was granted by the Northumbria 

University Research Ethics Committee (Ref: 21603). Inclusion criteria for participants included the ability to run for 1-minute on 

a treadmill. No participants reported any condition(s) that would adversely affect their running ability and gave informed consent 

before conducting a short treadmill-based run. 

Participants were fitted with a commercial IoT-based IMU wearable system (www.mymo.co.uk) on the foot, mounting the 

sensor to the Talus joint, as per the manufacturer’s guidelines, Figure 2. No participants reported any gait affecting injuries. 

Participants ran for 2 minutes (1 minute per foot) on a treadmill at a standardized speed of 5mph/8kmph and were video recorded 

from three angles (front/side/rear) at a frame rate of 240 frames/second (FPS), permitting high-resolution analysis of the runner’s 

gait and manual labelling. During tests, the IMU sensor polls tri-axial accelerometer and tri-axial gyroscope data at 60Hz to a 

Bluetooth receiver, providing a large dataset of 7200 data points for each inertial axis. 

 

 

Algorithm 1 Feature extraction layer [30] 

 

Require: Vertical acceleration plane (AX), horizontal 

rotational plane (GH), Butterworth filter (polling rate=60Hz, 

sampling period=3Hz, cut-off frequency=5Hz) 

 

Ensure: Quantify foot strike and pronation of running 

signal 

   1: for i=0:length of AX 

   2:    if AX[i] is a peak exceeding dynamic threshold 

   3:         AX[i] is a point of initial contact (IC), thus 

   4:         append AX[i] to list of ICs 

   5: for all points of IC 

   6:     if IC > 20Hz of last IC      

   7:         foot strike location = GH[IC] 

   8:         pronation = AX[IC] 

 

   return average foot strike and pronation experienced for 

every stride in the signal 

 

 

 
Figure 2 demonstrates (A) Placement of wearable device (talus 

joint) and IMU configuration with stages of (B) raw data output 

informing gait outcomes through (C) filtered, cleaned data. 

 

http://www.mymo.co.uk/


A team of sports-therapists, physiotherapists, and trained researchers manually labelled and cross-validated participants’ 

pronation and foot strike into angular and severity classes such that pronation and foot strike conform to [‘Neutral’, ‘Slight 

Pronation’, ‘Pronation’ and ‘Severe Pronation’]; and [‘Heel Strike’, ‘Heel/Mid Strike’, ‘Mid Strike’, ‘Mid/Fore Strike’ and ‘Fore 

Strike’], providing a ground truth for each respective class, Figure 3. In line with common techniques for the measurement of 

pronation and foot strike [15, 35], multi-angle video data were classified through the observation of angular change of the lower-

kinematics surrounding a point-of-impact, Figure 2.  

 

 

B. Fuzzy membership design and optimization 

It is paramount that optimization of fuzzy membership functions (MF) takes place during the design of a fuzzy system due to how 

MFs can influence output [36]. Accordingly, an ensemble of fuzzy MFs were benchmarked on the test dataset, including use of 

(A) triangular, (B) trapezoidal, (C) D-sigmoidal (D-sig) and (D) Pi membership functions; selected in line with research within 

the fuzzy logic-based gait assessment domain [37, 38]: 

 
A = triangular membership function 

𝑚𝑓 =  {

𝑥 <  𝑠̅, ∇[𝑚𝑖𝑛𝑠: 𝑠̅]𝑥 +   𝑚𝑖𝑛𝑠
𝑥 =  𝑠̅,                                              1
𝑥 >  𝑠̅, ∇[𝑠̅: 𝑚𝑎𝑥𝑠]𝑥 +  𝑚𝑖𝑛𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
B = trapezoidal function 

𝑚𝑓 =  𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,
𝑑 − 𝑥

𝑑 − 𝑐
) , 0) 

where a=starting value of class, b = 25th percentile, c=75th percentile, d=maximum value of class 

 
C = D-sig membership function 

𝑚𝑓 =  
1

1 + 𝑒−𝑎𝑘(𝑥−𝑐𝑘)
 

comparing two fuzzy sigmoid functions 

 
D = Pi membership function 
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Figure 3 Visual pronation and foot strike labelling method 

 



where a = starting value climbing from 0, b =25th percentile, c=75th percentile, d = maximum value of class. 

 

The MF characteristics were assigned based upon MF characteristics that are common among similar research [26, 39] in 

conjunction with preset definitions within Python’s sk-fuzzy package, utilizing (i) mean (ii) upper/lower quartiles, (iii) 

minimum/maximum values of the fuzzy sets for MF A, B and D respectively. Visualizations of the observed of MFs and their 

application within a fuzzy set of pronation severity labels can be seen in Figure 4. 

 

 
 

C. Benchmarking fuzzy designs 

Trialing a range of fuzzy designs is paramount to ensure optimal throughput performance between the feature extraction and fuzzy 

logic system. Membership functions (A, B, C and D) were benchmarked to assess accuracy and execution time of the system 

design compared with our existing, dynamic thresholding approach. Benchmarks were performed on a cloud instance, with 16GB 

DDR4 RAM, Nvidia Tesla K80 GPU (4992 CUDA cores, 24GB GDDR5 vRAM) and Intel Xeon (2.2Ghz, 56Mb cache). 

 

D. Fuzzy set design 

Similar to previous methodology [31], Algorithm 1, foot  strike and pronation are quantified through a series of feature extracting, 

zero-crossing gradient-maxima methodologies to assess the acceleration and rotational inertia of each participants feet, capturing 

concurrently with their respective video data. 

Training and test sets were randomly constructed in a pragmatic 75/25% train/test split ratio in line with studies conducted within 

similar domains [40, 41]. In doing so, our fuzzy membership system is tested upon 51 runners exhibiting a full range of gait 

patterns, including foot strike (heel to fore) and pronation (neutral to severely pronated) labels. Using the output of each feature 

extraction system upon each training data, symmetric triangular fuzzy sets are constructed containing IMU data, segmented by 

each corresponding gait feature, foot strike and pronation.  

 

E. Raw data to fuzzy interpretation 

The flow of creating a fuzzy set is shown in Figure 5. The IMU sensor streams 1-minute of accelerometer and gyroscope data to 

a smartphone application. Data is then transferred to a feature extraction layer: 

1) Extraneous noise within the inertial signal is filtered using a Butterworth filter, configured at 60Hz with a sampling period of 

3Hz and a cut-off frequency of 5Hz 

2) Strides within the inertial signal are segmented using zero-crossing gradient maxima informed dynamic signal segmentation 

method, such that: 

(𝐼𝐶𝑝 < 𝐼𝐶𝑝+1 −
𝑥̅

2
→ 𝐼𝐶𝑝,𝑣𝑎𝑙𝑖𝑑) 

where IC denotes a potential point of impact with the ground (initial contact), identified through a gradient change, and 𝑥̅ is 

the average stride length of the runner. In doing this, we ensure false positives are ignored for identification of strides within 

the signal. 

3) Pronation is calculated as the severity of roll within the longitudinal rotation axis (value between 0 – 300). 

4) Foot strike is calculated as the angle of the foot during impact, quantified by observing the vertical rotation during IC (value 

between -400 – 100) [31]. 

 

 
Figure 4 Visualization of membership functions and their 

corresponding pronation fuzzy sets A – triangular MF, B - 

trapezoidal MF, C – D-sig MF and D – Pi MF 

 



 
 

The output of the feature extraction layers are then added to a triangular membership function, corresponding with their label, 

visualized in Figure 6.  

 

F. Fuzzy membership inference throughput 

With fuzzy sets defined in accordance with training data labels, running gait fuzzy membership inference is similar to previous 

work [31]. Previously, the IMU-based wearable streams data to a smartphone where feature extraction occurs through zero-crossing 

gradient maxima algorithms, returning pronation and foot strike. Here, throughput of features is fed to a fuzzy membership 

inference system, where degree of membership of foot strike and pronation is calculated Algorithm 2.  

 

 

 
Figure 5 Flow of creating a fuzzy set from A: IMU data 

stream to phone and feature extraction from raw data to B: 

fuzzy set construction. 

 
Figure 6 Fuzzy memberships for foot strike and 

pronation, constructed from 203 participants 

 



 
 

G. Data analysis 

Test data underwent statistical analysis as outlined previously [31], where membership function optimization was examined to the 

existing IoT IMU system utilizing intraclass correlation coefficients (ICC’s) and Pearson’s correlation to compare results between 

methods and optimize the performance of the new fuzzy approach. Equally, ICC’s and Pearson’s were used to examine the 

efficiency of the novel fuzzy inference compared to the previous dynamic threshold approach for benchmarked. Analysis were 

performed for left and right feet based upon pronation and foot strike pattern of each. 

In performing analysis, we provide a metric for comparison between our fuzzy approach and existing work utilizing dynamic 

thresholds. Shapiro-Wilk tests were conducted upon our dataset, with a significant output (p > 0.087) indicating a normal 

distribution of data; therefore, validation of the proposed system implemented ICC2,1 and Pearson’s correlation coefficients for 

parametric testing. Use of ICC2,1,  provides a reliability index for test-retest, intra-rater and inter-rater reliability analytics [42], 

providing an assessment of system performance between raters, i.e., manual labels and fuzzy logic output. 

A 10-fold cross validation data split has been applied to explore the performance of the approach with minimal bias. Through 

conducting a 10-fold cross validation, we can ensure that outputs are more representative and reproduceable across wider and 

varied datasets [43, 44]. This notion is fundamental for use in an accurate commercial product due to the potential of widespread 

use by the general public that could exhibit a highly varied and unique gait pattern [4]. Additionally, analysis of the resulting tests 

were conducted through observation of confusion matrices, standard deviation and variance to ensure a robust assessment of 

performance. In line with ICC performance defined by Koo & Li [42], accuracy can be defined such that it satisfies either a poor 

(< 0.5), moderate (0.5-0.75), good (0.75-0.9), or excellent (>0.9) accuracy.  

 

IV. RESULTS 

A. Fuzzy optimization 

Through the use of a triangular membership function within the fuzzy system design, we experience optimal accuracy in both 

ICC(2,1) and Pearson’s correlation tests, with comparatively low execution times (within 0.03s of fastest execution), Table 1. 

 
Table 1 Results of fuzzy optimization experiment 

Membership function ICC(2,1) p ExT(s) 

A - Triangular 0.923 0.915 0.081 

B - Trapezoidal 0.911 0.913 0.080 

C - D-Sig 0.834 0.829 0.083 

D - Pi-MF 0.912 0.910 0.078 
MF  = Membership functions. 

ExT = Execution times measured for entire throughput of system  

 

B. Fuzzy performance 

Results were collected through the application of the fuzzy membership inference system upon the test dataset containing 51 

runners, of which no dropout or invalid results were obtained. Each participant provided 1 minute of running per foot, with each 

foot producing a unique foot strike and pronation, granting a total test dataset size of 204 features.  

Analyzing the output of our fuzzy membership inference system (Table 2B) in comparison to manual labelling and previous 

algorithmic approach (Table 2A) demonstrated excellent accuracy, with ICC2,1, ranging from 0.916 to 0.933. Pearson’s correlation 

coefficient was calculated as a reliability measure, and report equally high performances, ranging from 0.892 to 0.933. Confusion 

matrices visualizing the accuracy can be seen in Figure 7. Time benchmarks are measured to assess the execution time between 

the original threshold-based gait feature classifier and the proposed fuzzy logic system. As shown, inclusion of a fuzzy logic gait 

Algorithm 2 Fuzzy inference throughput using 

triangular membership function 
 

Input: Gait feature, GF, value from feature extraction layer 

(either pronation or foot strike) 

Output: Gait feature degree of membership for each fuzzy 

set, DoM 

   1: for each membership class, M, within the fuzzy set 

   2:    if GF not in bounds M 

   3:         DoM = 0 

   4:         end 

   5:    DoM = M[GF]     

return set containing degree of membership (DoM) for each 

fuzzy set 

 



feature assessment performs on average 0.01s slower (~12.7%), across an average system throughput, Table 1. Crucially, the 

presented fuzzy logic approach to running gait assessment performs near-equally to the manual thresholding approach, but with a 

significantly higher gait assessment resolution (i.e., specific pronation severities including slight and severe pronation). 

 
Table 2 Results of original and fuzzy approach compared with the manual labelling reference and general execution times. 

Manual thresholding approach (A) 

  Left Foot Right Foot 

Feature ICC2,1 p ExT (s) ICC2,1 p ExT (s) 

Pronation 0.941 0.938 0.068 0.929 0.915 0.071 

F. Strike 0.919 0.927 0.074 0.938 0.937 0.070 

Fuzzy logic approach (B) 

  Left Foot Right Foot 

Feature ICC2,1 p ExT (s) ICC2,1 p ExT (s) 

Pronation 0.916 0.918 0.078 0.924 0.892 0.082 

F. Strike 0.919 0.915 0.085 0.933 0.933 0.079 

ExT = Execution times measured for entire throughput of system with 

original/fuzzy classification layers interchanged.  

F. Strike = Foot strike. 

 

 

C. 10-fold cross validation 

Train and test data were randomly split and benchmarked ten times to assess the reliability of the proposed system in a more-

generalizable cohort, Table 3.  

 
Table 3 10-fold cross validation results obtained through randomly splitting train and test sets 10 times to minimize data bias 

Gait Feature ICC(2,1) p 

Pronation 0.897 0.836 

Foot Strike 0.919 0.877 

 

The approach performs well under a 10-fold cross validation, demonstrating good (0.75 – 0.9) and excellent (> 0.9) intraclass 

correlation scores for pronation and foot strike respectively between ground truth and the fuzzy logic approach. Furthermore,  

Pearson’s correlation coefficient shows good reliability for the approach with respect to ground truth data (p ≥ 0.836). 

 

 
Figure 7 Performance of the fuzzy system classifying foot strike 

and pronation 

 



V. DISCUSSION 

The presented work utilizes novel fuzzy sets constructed by a large cohort of runners to provide an accurate degree of membership 

for foot strike and pronation, useful real-world gait features for objective running gait assessment. Our optimal fuzzy results cohere 

to an excellent standard defined by Koo & Li (ICC > 0.9), with little variance from the expected results, demonstrated by Pearson’s 

correlation and visual assessment of confusion matrices, Table 2. Additionally, through performing a 10-fold cross validation data 

split, Table 3, the fuzzy approach demonstrates robustness in a varied testing cohort (ICC(2,1)  ≥ 0.897; p ≥ 0.836). To the authors 

knowledge the fuzzy method proposed here is developed on the largest cohort in the field of running gait assessment (n>200), 

which provides a suitably heterogeneous dataset due to the variation in raw gait signals. In comparison, previous studies have 

utilized smaller cohorts which may negatively impact generalizability [26, 39,40], 

Our novel approach utilizing fuzzy logic is comparable with studies within running and walking gait assessment domains [26, 

39, 45], while using a low-cost, single wearable device. Through the application of fuzzy gait assessment with the IoT device, a 

single, foot-mounted wearable IMU; runners, sports-therapists and related parties can remove over-reliance upon expensive 

equipment such as high-speed cameras [46], 3D-motion capture [47] and pressure sensitive technologies [48]. Additionally, it 

removes the previous subjective approaches of manual thresholding [31], consequently, the use of fuzzy logic can provide a more 

generalizable, dynamic gait assessment that can be flexibly applied to a range of running styles and abilities. 

In performing the proposed work, the use of the inertial device and fuzzy approach limits the requirement of professional 

supervision for operation (i) reducing high-cost and barrier of entry associated with running gait assessment while (ii) providing 

pragmatic and improved running gait feature classification [20]. Furthermore, this was achieved in a low-resource (community-

based) setting which demonstrates the pragmatic implication of accurate running analysis with a low-cost, IoT enabled wearable 

with a fuzzy analysis. Indeed, the implications of COVID-19 have extended to gait assessment, often inhibiting in-store (or in lab) 

analysis, prompting the need for research into the application of habitual gait assessment [49]. As such, through using an IoT 

enabled device with fuzzy logic, we can contribute towards the need for such methods. 

Previous work [31] was limited by relying upon manual observation to implement subjective and fixed thresholds for the degree 

of pronation and foot strike location. Although useful, the approach could quantify if a runner was a neutral or pronated, as well 

as a heel/mid/fore striker. However, the approach was limited in many ways. Firstly, the approach lacked resolution. For example, 

although the previous method could correctly classify a runner as a mid-foot striker; it gave no insight to the accurate location of 

impact (i.e., they may initially strike heel/mid or mid/fore). Secondly, gait assessment of pronation and foot strike is highly 

subjective between runners and raters alike [50]. As such, use of a fixed-threshold based approach is not necessarily indicative of 

the wider running population due to the wide variation and subjectivity of running styles or within runner variation due to subtle 

changes in running environment or between strides [51]. For example, runners may exhibit a varied foot strike angle upon every 

stride beyond the tolerance of a fixed threshold, Figure 8. 

 

 
 

  Critically, by providing a fuzzy set of gait features, the resolution of IMU-based running gait assessment is drastically 

increased, and we can more accurately quantify the degree of membership of foot strike and pronation a runner may exhibit, thus, 

providing a more dynamic, generalizable assessment based upon real data. In comparison to the statistical output of previous work, 

as shown in Table 2, our approach utilizing fuzzy inference performs within a 4% margin of error while providing a significantly 

higher resolution gait assessment tool.  

Fuzzy logic is highly suitable in embedded systems due to its low computational complexity and ability to perform potentially 

complex computations [52, 53]. Table 1, illustrates that executions took place within 0.01s of the original threshold based 

approach, pertaining an extremely light computational load. In  line with previous work [28], the light computational load 

 
Figure 8 Illustration of slight variance of where initial contact 

may occur between strides. In real world data capture, the foot 

strike location may slightly deviate above or below a subjective 

fixed “mid” strike threshold from stride to stride. Use of fuzzy 

degree of memberships better understands the degree of 

belonging (e.g., fore/mid strike). Th = threshold. 

 



experienced during execution of running gait assessment with fuzzy logic ensures the approaches suitability of use within an 

embedded IMU application.  

VI. LIMITATIONS AND FUTURE WORK 

During data capture, amateur and club runners were asked to run at a standardized pace of 5mph/8kmph for a period of 1 minute 

per foot. It should be noted, however, that running styles are susceptible to change with respect to speed and contact forces [54-

56]. As such, further validation of running cohorts exhibiting a varied range of speed, abilities and running styles is required to 

ensure the accurate quantification of foot strike and pronation to accurately inform a running gait assessment. 

Optimization of the system required implementation of Python’s scikit-fuzzy toolkit. Unfortunately, the framework does not 

include the full variety of membership functions for testing. Further work is required to include a wider range of fuzzy membership 

functions to ensure the most optimal performance setting which may have use in high performance running. 

As discussed, there are running features other than pronation and foot strike that can be relevant within a running performance 

and rehabilitation context. Therefore, considering the accuracy of the presented system, further testing will be conducted to increase 

the feature-count a fuzzy system can provide to further optimize the IMU-based running tool. 

Video data capture sessions took place in low-resource settings with varied lighting conditions. Although the approach enabled the 

relatively low-cost, low-resource development of a habitual running gait assessment tool, some video data sessions lacked clarity; 

and as such may not exhibit true accuracy. In resolve, future data capture sessions require extraneous lighting apparatus to ensure 

an accurate assessment. 

 

VII. CONCLUSION 

Here, we have developed a novel fuzzy logic application for the classification of key parameters within running gait assessment 

(for recommended shoe type). The presented method provides a more real-world assessment of running gait, as captured in a low-

resource setting with an IoT enabled wearable. In doing so, runners are provided with a (near real time and) significantly higher 

resolution gait feature fuzzy extraction layer (pronation and foot strike), with a mean average error within 4% of previous work 

utilizing manual thresholds with lower resolution. Through the use of fuzzy inference, the IoT IMU-based tool performance as an 

embedded system is largely unaffected, with similar execution times for the throughput of the entire system within 12.7% of 

previous methods. Future work will extend the current fuzzy approach to enable the assessment of a wider variety of useful running 

gait assessment metrics such as cadence, contact time and vertical impact. 
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