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Multi-cell Edge Coverage Enhancement Using
Mobile UAV-Relay

Yukuan Ji, Student Member, IEEE, Zhaohui Yang, Member, IEEE, Hong Shen, Member, IEEE,
Wei Xu, Senior Member, IEEE, Kezhi Wang, Member, IEEE, and Xiaodai Dong, Senior Member, IEEE

Abstract—Unmanned aerial vehicle (UAV)-assisted communi-
cation is a promising technology in future wireless communica-
tion networks. UAVs can not only help offload data traffic from
ground base stations (GBSs), but also improve the quality of
service of cell-edge users (CEUs). In this paper, we consider the
enhancement of cell-edge communications through a mobile relay,
i.e., UAV, in multi-cell networks. During each transmission period,
GBSs first send data to the UAV, and then the UAV forwards its
received data to CEUs according to a certain association strategy.
In order to maximize the sum rate of all CEUs, we jointly
optimize the UAV mobility management, including trajectory,
velocity, and acceleration, and association strategy of CEUs to the
UAV, subject to minimum rate requirements of CEUs, mobility
constraints of the UAV and causal buffer constraints in practice.
To address the mixed-integer nonconvex problem, we transform
it into two convex subproblems by applying tight bounds and
relaxations. An iterative algorithm was proposed to solve the
two subproblems in an alternating manner. Numerical results
show that the proposed algorithm achieves higher rates of CEUs
as compared with existing benchmark schemes.

Index Terms—Unmanned aerial vehicle (UAV), mobility man-
agement, trajectory optimization, user association, mobile relay.

I. INTRODUCTION

Owing to high mobility and agility, unmanned aerial vehi-
cle (UAV)-assisted communications have been acknowledged
promising in enhancing future wireless networks [1]–[5]. Nu-
merous UAV-assisted applications have emerged during the
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past decade, such as cargo delivery, surveillance and moni-
toring, with UAVs acting as different types of communication
platforms including aerial base stations (BSs), aerial relays,
or aerial terminals [6]–[9]. As aerial BSs, UAVs can provide
reliable communication links for ground devices. As an aerial
terminal, UAV has the degree of freedom of completing special
tasks [10]. In particular, UAV, acting as an aerial relay, can
enlarge communication coverage and improve communication
quality. Actually, the relaying technology has been widely
investigated in terrestrial communications. However, most of
these relays are fixed with limited mobility. Different from
the static relays, UAV-enabled mobile relays offer new oppor-
tunities for performance improvement by tuning the location
of UAV-relay dynamically to best suit various specific envi-
ronments, especially for latency-tolerant applications [11] and
scenarios with harsh conditions [12]. Because the receivers are
generally location-dispersive with mobility, the best relaying
position for the receivers can vary from one to another and
also from time to time. For UAV-relays with the ability of
moving around, the UAV can dynamically fly near to the
best position for the communication node pair [2]. Moreover,
hovering UAVs at a high altitude provide a high probability of
establishing line-of-sight (LoS) links between the UAVs and
ground devices [13], which further leads to improved data rate
and reduced latency.

Furthermore, the distinctive characteristics of UAV make
it an important technology in Internet of Things (IoT) [14].
Therefore, UAV-assisted communications for 5G IoT have
recently been of wide research interest. In some applications,
such as agricultural surveillance, IoT devices may be deployed
remotely in rural areas far from base stations. It is expensive
and inconvenient to build terrestrial communication facilities
to achieve the information exchange and collection for these
IoT devices [14], [15]. UAV-enabled relays help IoT devices
communicate with the base station whenever necessary, which
in fact expands the effective coverage of base stations. Besides,
IoT devices are usually energy-limited and thus they lack
the ability to communicate over a wide range. By leveraging
the mobility of UAV, it is possible to fly close to the IoT
devices to communicate with them, including collecting data
from devices and transmitting signals to them. In this way,
the IoT devices can communicate with access points with
less energy [15], [16]. At the same time, the UAV can also
transmit energy to energy-constrained IoT devices through
radio frequency signals, which can further extend their work-
ing life [17]. In addition, another typical application is post-
disaster rescue. When cellular infrastructure is destroyed and
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the communication is disrupted in a sudden disaster, UAVs can
be dispatched to establish temporary communication and send
rescue information for IoT devices [18]. The IoT devices can
be all kinds of human portable machine type devices, guiding
humans to evacuate, avoid danger, and get rescued as soon as
possible based on the rescue information.

These potential benefits of UAV relay however comes with
the new challenge of three-dimensional (3D) deployment and
trajectory design of UAV specifically for the communication
pairs to be served [19], [20]. This is location based opti-
mization in communication which is of current interest for
UAV-relays [21], [22] and is most related to our current
work. In particular, in order to achieve efficient and high-
capacity communication, the optimal relay trajectory design
of UAV requires a balance between the source-relay and
relay-destination throughput. Besides, the trajectory design can
greatly affect the energy efficiency of UAVs, which is a key
metric especially for battery-limited UAVs [23], [24]. The
authors of [24] proposed an iterative algorithm to minimize
the sum uplink power by jointly optimizing the UAV’s flight
altitude, antenna beamwidth, location, transmission bandwidth
and power. In [25], the deployment of multiple UAVs was
optimized for collecting data from geometrically distributed
IoT devices. Further considering a propulsion power consump-
tion model, the authors of [26] optimized the trajectory of
UAVs aiming at maximizing energy efficiency, or equivalently
lengthening the working life-time of UAVs.

Besides the above new challenges compared to traditional
relays in terms of coverage, the deployment of UAV also
brings other new opportunities and technique challenges, in-
cluding channel modeling [27], energy efficiency [28], and
interference management [29]. In UAV-aided communication
networks, there exist both UAV-to-ground and UAV-to-UAV
channels, which are quite different from well-studied tra-
ditional ground communication channels. Though the UAV-
to-ground channels are usually expected as LoS links, they
may also be blocked by obstacles making the reliability of
communication challenging. As for UAV-to-UAV channels,
they are dominated by LoS links suffering from possibly high
Doppler frequency shifts. Therefore, it is necessary to measure
and model these two kinds of channels more systematically
[2]. Besides, UAVs suffer from limitations of size, weight, and
power (SWaP), which makes the deployment and operation
of energy-efficient UAVs essential for smart energy use. In
the UAV-aided communication networks, there is a lack of
fixed backhaul links and centralized control due to UAV’s
high mobility, which makes interference management more
challenging than that in terrestrial communication networks.
Therefore, interference management technologies especially
designed for UAV communications are necessary [30].

Recently, researches have shown the potential of UAVs
in expanding communication coverage or improving quality
of service (QoS) of cell-edge users (CEUs). The authors
of [31] maximized the sum rate of a multiuser network by
jointly optimizing UAV trajectory and offloading schedule
among multiple cells with the UAV acting as a mobile BS.
In the hybrid cellular network, the UAV-enabled BSs and
ground base stations (GBSs) jointly served the ground users. In

[12], the authors investigated a point-to-point communication
system where a UAV relayed information from source to
destination. Also for a point-to-point system, the authors of
[20] proposed an algorithm to minimize the decoding error
probability by jointly optimizing the time length allocation and
UAV locations. Considering a layered network where a swarm
of UAV was deployed to provide high QoS for IoT devices
and enlarge the coverage area, the authors of [32] optimized
the number of UAVs and proposed a low latency routing
algorithm. In [33], a location-based beamforming scheme was
proposed to enhance the security in a UAV-enabled relaying
system. However, practical causal cache constraint of the UAV
was not considered. In fact, the relayed information has to be
buffered at the UAV before being forwarded to destinations in
practice [34], which results in the causal constraint.

In this paper, we consider cell-edge performance enhance-
ment in a multi-cell network in IoT applications by using a
UAV relay, where the UAV equipping with a cache acts as the
decoding forward mobile relay to forward information from
adjacent GBSs to CEUs. Main contributions of this paper are
summarized as follows:

• We consider the scenario where a UAV-enabled mobile
relay helps forward data to CEUs distributed in the joint
edge coverage of multiple cells. To maximize the sum
rate of all CEUs, we formulate an optimization problem
by jointly optimizing the UAV mobility management,
including trajectory, velocity, and acceleration, and UAV-
CEU association strategy, subject to minimum rate re-
quirements of CEUs, mobility constraints of the UAV and
causal buffer constraints in practice.

• The cache induces an information causality constraint
in practice which has rarely been considered in existing
works. The UAV can only forward the data which has
been successfully received during the previous time slots.
This causal constraint has a very complicated form and
we successfully transform it into a convex constraint by
resorting to tight bounds and relaxations.

• The original problem is a mixed-integer nonconvex prob-
lem, whose optimal solution is generally hard to be
obtained. We devise an iterative algorithm to solve the
original problem in an alternating manner. For the UAV
mobility management optimization subproblem, we trans-
form it into a convex problem and solve it by the well-
established interior-point method. Then, we use the dual
decomposition method to solve the UAV-CEU association
optimization subproblem.

The rest of this paper is organized as follows. System model
and problem formulation are presented in Section II. In Section
III, we decompose the original problem into two subproblems
and solve them separately. An iterative mobility management
and user association (IMMUA) algorithm is proposed. The
convergence and complexity are also discussed in this section.
In Section IV, numerical results are presented to show the
effectiveness of our proposed algorithm. Finally, concluding
remarks are drawn in Section V.
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Fig. 1. System model of a UAV-enabled mobile relaying network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider that a mobile relay, i.e., UAV, helps serve
ground CEUs distributed within the overlapped edge coverage
of NB adjacent GBSs, as depicted in Fig. 1. In practice, it
is necessary to select the appropriate type of UAV according
to different application scenarios, including QoS, operating
conditions, and laws [35]. In general, UAVs can be roughly
classified into fixed-wing and rotary-wing UAVs. The advan-
tage of rotary-wing UAVs is that they can hover over fixed
positions and fly in arbitrary direction while the disadvantages
are poor mobility and limited load. In contrast, fixed-wing
UAVs support higher flight speed and heavier load but need
to keep flying in the air [2]. In this paper, we consider the
rotary-wing UAV as a mobile relay, allowing the UAV to hover
above the optimal positions and rotate by an arbitrary angle
[36]. Under this consideration, the constraint on the rotation
of UAV can be released. The system model of UAV-assisted
communication is considered in IoT applications. The CEUs
can be all kinds of IoT devices, such as sensors or actuators
in smart agriculture and robots in machine-to-machine (M2M)
scenarios. The system model can also be applied to other
scenarios via slight modifications, such as a post-disaster
communication scenario.

In this paper, we focus on cell-edge users rather than cell-
center users to emphasize the great potential of UAVs in
improving QoS of edge users. We assume that each GBS is
equipped with L antennas, and the UAV as well as each user
respectively has a single antenna. Denote K = {1, · · · ,K} as
the set of CEUs. Each CEU is served via the UAV relay in
order to enhance the cell-edge performance under a minimum
rate constraint. During each transmission period of T seconds,
the adjacent GBSs first send data to UAV, and then the UAV
forwards the data to CEUs. The period length can be selected
according to the application scenario and mission type of
the UAV. The UAV receives and forwards data in frequency
division duplexing (FDD) mode.

3D Cartesian coordinate system is considered, in which all
GBSs as well as CEUs have zero altitude and the UAV flies at

a fixed altitude H in meters. The GBSs and CEUs have fixed
horizontal locations denoted respectively by bm = (xm, ym)
for the mth GBS and ek = (xk, yk) for CEU k ∈ K.
The locations of GBSs and CEUs are assumed known to the
UAV. Without loss of generality, each transmission period T is
splitted into N equal-length time slots, with δt = T

n denoting
the elementary slot length. N can be chosen sufficiently
large in order to guarantee an approximately constant UAV
location within each time slot, resulting in a sufficiently small
value of δt. At each time slot n ∈ {1, · · · , N} , N , the
horizontal coordinate of the UAV is expressed as u[n] =
(x[n], y[n]). Therefore, the UAV’s trajectory can be expressed
approximately by the N -length sequence {(x[n], y[n])}Nn=1.
Similarly, the UAV’s velocity and acceleration can be denoted
as {v[n]}Nn=1 and {a[n]}Nn=1, respectively.

We assume that the UAV must return to the pre-specified
starting point after each transmission period, which is denoted
as u0 = (x0, y0). For sufficiently small δt, the mobility
constrains of the UAV, including starting point, terminal point,
speed constraint, and acceleration constraint can be expressed
as

u[1] = u[N ] = u0, (1)
‖u[n+ 1]− u[n]‖ ≤ Vmaxδt, n = 1, · · · , N − 1, (2)
v[n+ 1] = v[n] + a[n]δt, n = 1, · · · , N − 1, (3)

u[n+ 1]=u[n]+v[n]δt+
1

2
a[n]δ2t , n = 1, · · · , N − 1, (4)

‖v[n]‖ ≤ Vmax, n = 1, · · · , N, (5)
‖a[n]‖ ≤ amax, n = 1, · · · , N, (6)

where ‖·‖ represents the Euclidean norm of a vector, Vmax and
amax denote the maximum speed and maximum acceleration,
respectively, and Vmaxδt is the maximum displacement in each
time slot. (3) and (4) are obtained according to kinematics
formulas.

According to the above coordinate representation, the link
distance between the GBS m and the UAV at the nth time
slot can be expressed as

dmu[n] =
√
H2 + ‖u[n]− bm‖2. (7)

Similarly, the link distance between the CEU k and the UAV
at the nth time slot can be expressed as

duk[n] =
√
H2 + ‖u[n]− ek‖2. (8)

Considering high altitude of UAV, air-to-ground channels
between the UAV and GBSs are dominated by line-of-sight
(LoS) links. By applying the free-space path-loss model [37],
the channel power gain from GBS m to the UAV during time
slot n is

hmu[n] = α0d
−2
mu[n] =

α0

H2 + ‖u[n]− bm‖2
, (9)

where α0 denotes the reference channel power at 1 m. Simi-
larly, the channel power gain from the UAV to CEU k during
time slot n is

huk[n] = α0d
−2
uk [n] =

α0

H2 + ‖u[n]− ek‖2
. (10)
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The NB adjacent GBSs use the maximum ratio transmission
(MRT) strategy to transmit data to the UAV. The MRT pre-
codes the transmitted signal by using the weights proportional
to the corresponding channel coefficients, which can maximize
the signal-to-noise ratio (SNR) of the received signal. In the
nth time slot, the signal received by the UAV from NB GBSs
is

y[n] =

NB∑
m=1

√
hmu[n]PBg

H
mwms+z, m = 1, · · · , NB , (11)

where PB represents the transmitting power of GBS, gm
accounts for the small-scale channel fading from GBS m to
the UAV, wm is the beamforming vector, s is the transmit
signal with unit power, and z is the additive white Gaussian
noise (AWGN) with variance σ2. Assume that full channel
state information is known to the GBSs.

Considering the NB GBSs as a large GBS with NBL
antennas in total, the overall channel can be modeled as

g =
(√

h1ug1, · · · ,
√
hmugm, · · · ,

√
hNBugNB

)T
. (12)

By applying the MRT beamforming w = g
‖g‖ , the signal

received by the UAV in (11) can be rewritten as

y[n] =
√
PB‖g‖s+ z. (13)

In this way, the received SNR can be maximized as

SNR =
PB‖g‖2

σ2
=

NB∑
m=1

PBhmu‖gm‖2

σ2
. (14)

By using the Shannon formula, the data rate of the UAV in
the nth time slot can be evaluated as

RUr
[n] = log2

(
1 +

NB∑
m=1

PBhmu[n]‖gm‖2

σ2

)
. (15)

Then, the UAV forwards the received data to its associated
CEU in each time slot. Assume that the UAV serves at most
one CEU during each time slot. Let ρk,n = 1 indicate that
the kth CEU associates with the UAV for reception in the nth
time slot and otherwise ρk,n = 0. As a result, the average rate
of CEU k within T equals

RE [k] =
1

N

N∑
n=1

ρk,n log2

(
1 +

PUhuk[n]

σ2

)
, (16)

where PU is the transmitting power of the UAV.
From the perspective of UAV, the transmission rate from

the UAV to its associated CEUs in the nth time slot can be
obtained as

RUt [n] =
K∑
k=1

ρk,n log2

(
1 +

PUhuk[n]

σ2

)
. (17)

For the UAV with a sufficiently large buffer, without loss of
generality, the processing time at the UAV is set as one time
slot. The data received in the nth time slot can be forwarded
in the next time slot. So the UAV has no data to forward in the
first time slot and the GBSs should not transmit any data to the
UAV in the last time slot. Therefore, for n = 1 and n = N ,

we have RUt
[1] = RUr

[N ] = 0 and ρk,1 = 0. Considering
causality in practice and from (15) and (17), we can express
the causal buffer constraint as

n∑
i=2

RUt [i] ≤
n−1∑
i=1

RUr [i], n = 2, · · · , N. (18)

It guarantees that the UAV in each time slot n can only forward
the data that has been successfully received during the previous
time slots.

B. Problem Formulation

We define the UAV’s trajectoryU , {u[n], n = 2, · · · , N−
1}, the velocity V , {v[n], n = 1, · · · , N}, the acceleration
A , {a[n], n = 1, · · · , N}, and the UAV-CEU association
strategy P , {ρk,n,∀k ∈ K, n = 2, · · · , N}. Our objective is
to maximize the sum rate of all the CEUs by jointly optimizing
U , V , A, and P in the transmission period T , subject to the
minimum rate requirements of CEUs, mobility constraints of
the UAV and causal buffer constraints in practice. Then, we
can formulate the joint optimization problem as

max
U ,V ,A,P

∑
k∈K

RE [k] (19a)

s.t. RE [k] ≥ R0, ∀k ∈ K, (19b)∑
k∈K

ρk,n ≤ 1, n = 2, · · · , N, (19c)

ρk,n = {0, 1}, ∀k ∈ K, n = 2, · · · , N, (19d)
n∑
i=2

RUt [i] ≤
n−1∑
i=1

RUr [i], n = 2, · · · , N, (19e)

u[1] = u[N ] = u0, (19f)
‖u[n+1]−u[n]‖≤Vmaxδt, n=1,· · ·, N−1, (19g)
v[n+1]=v[n]+a[n]δt, n = 1, · · · , N−1, (19h)

u[n+1]=u[n]+v[n]δt+
1

2
a[n]δ2t , n=1,· · ·, N−1,

(19i)
‖v[n]‖ ≤ Vmax, n = 1, · · · , N, (19j)
‖a[n]‖ ≤ amax, n = 1, · · · , N, (19k)

where R0 is the minimum rate requirement of each CEU,
which guarantees the QoS of CEUs. Constraints (19c) and
(19d) ensure that the UAV serves at most one CEU in
each time slot. Constraint (19e) is the information causality
constraint in practice. Constraints (19f)-(19k) are mobility
constraints of the UAV in terms of initial location, terminal
location, speed constraint, and acceleration constraint.

III. JOINT MOBILITY MANAGEMENT AND ASSOCIATION
OPTIMIZATION

We observe that the optimization problem in (19) is a mixed-
integer nonconvex problem which is generally NP-hard. It is
extremely challenging to obtain its optimal solution efficiently.
As can be seen from (19), the UAV’s trajectory U , the velocity
V , and the acceleration A are coupled with each other, which
can be collectively referred to as mobility management. We
thus decompose the original problem into two subproblems,
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i.e., UAV mobility management and UAV-CEU association
optimization. In order to make each subproblem tractable,
we resort to employing bounding and relaxation to tackle the
nonconvex objective function and constraints. In this way, the
original nonconvex problem can be transformed into two con-
vex subproblems and a procedure of alternating optimization
is then applied.

It is worth mentioning that the most difficult constraint of
the original problem is (19e), i.e., the information causality
constraints, because the denominators on both sides of the
inequality contain optimization variables. As far as we know,
no methods in the existing literature has tried to deal with the
constraint of this kind.

A. UAV Mobility Management

In order to solve the optimization problem (19), we first
optimize the UAV mobility strategy, including UAV trajectory
U , the velocity V , and the acceleration A, with temporarily
fixed UAV-CEU association strategy P . This subproblem can
be expressed as

max
U ,V ,A

∑
k∈K

RE [k] (20a)

s.t. RE [k] ≥ R0, ∀k ∈ K, (20b)
n∑
i=2

RUt
[i] ≤

n−1∑
i=1

RUr
[i], n = 2, · · · , N, (20c)

u[1] = u[N ] = u0, (20d)
‖u[n+ 1]−u[n]‖≤Vmaxδt, n=1, · · ·, N−1, (20e)
v[n+ 1] = v[n] + a[n]δt, n = 1, · · · , N − 1, (20f)

u[n+1]=u[n]+v[n]δt+
1

2
a[n]δ2t , n=1,· · ·, N−1,

(20g)
‖v[n]‖ ≤ Vmax, n = 1, · · · , N, (20h)
‖a[n]‖ ≤ amax, n = 1, · · · , N. (20i)

Problem (20) is, however, still nonconvex due to its non-
convex objective function and constraints (20b) and (20c).
The remaining constraints are relatively easy to solve. In
particular, (20d), (20f), and (20g) are linear functions of the
variables u[n], v[n], and a[n]. (20e), (20h), and (20i) are
convex with respect to u[n], v[n], and a[n], respectively.
We try to transform the nonconvex objective function and
constraints into convex objective function and constraints via
relaxation. As mentioned above, the major challenge is to deal
with the causality constraints (20c). To obtain a tractable form
of (20c), we need to determine a convex upper bound of the
left hand side (LHS) of (20c) and a concave lower bound of the
right hand side (RHS) of (20c). Without loss of generality, we
consider the (l+1)th iteration, given the UAV-CEU association
strategy obtained at the lth iteration as P (l).
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Fig. 2. Exact receiving rate RUr and its lower bound RUr
with N = 60

and σ2 = −114 dBm.

Firstly, RUr
[n] can be bounded by

RUr [n] = log2

(
1 +

NB∑
m=1

PBhmu[n]‖gm‖2

σ2

)
(a)

≥ 1

NB

NB∑
m=1

log2

(
1 +

NBPBα0‖gm‖2

σ2(H2 + ‖u[n]− bm‖2)

)
(b)

≥
NB∑
m=1

(
−a(l)r [n](‖u[n]−bm‖2−‖u(l)[n]−bm‖2)+b(l)r [n]

)
, RUr

[n], (21)

where inequality (a) follows from the Jensen’s Inequality,
inequality (b) is due to the facts that f(x) = log

(
1 + 1

x

)
is convex with respect to x and the first-order Taylor approx-
imation is a global under-estimator of convex functions [38],
and

a(l)r [n] =

PBα0σ
2‖gm‖2

[σ2(H2+‖u(l)[n]−bm‖2)]2
log2 e

1 + NBPBα0‖gm‖2
σ2(H2+‖u(l)[n]−bm‖2)

≥ 0, (22)

b(l)r [n] =
1

NB
log2

(
1+

NBPBα0‖gm‖2

σ2(H2 + ‖u(l)[n]− bm‖2)

)
. (23)

Since the coefficient a(l)r [n] is a nonnegative value, the lower
bound of RUr [n], i.e., RUr

[n], in (21) is concave with respect
to u[n]. Thus far, we obtain a concave lower bound of the
RHS of (20c).

To exemplify the tightness of this bound, we here plot in
Fig. 2 the exact receiving rate RUr

and its lower bound RUr

for comparison. To make the figure more visible, the Y-axis
represents the cumulative sum rate over time slots. From this
figure, we can see that the adopted lower bound is rather tight,
which can imply that we can get a near-optimal solution by
exploiting this bound.

Then we need to deal with RUt
[n] in (20c) and obtain an
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Fig. 3. Comparison of RUt and its upper bound RUt .

upper bound. To simplify the notations, we define

r[n] , log2

(
1 +

PUhuk[n]

σ2

)
= log2

(
1 +

PUα0

σ2(H2 + ‖u[n]− ek‖2)

)
, (24)

by replacing u[n] and ek with their horizontal coordinates

with respect to x and y, r[n] can be rewritten as

r[n] = log2

(
1 +

PUα0

σ2(H2 + ‖u[n]− ek‖2)

)
= log2

(
1+

PUα0

σ2 [H2+(x[n]−xk)2+(y[n]−yk)2]

)

≤
log2

(
1 + PUα0

3σ2H2

)
3

+
log2

(
1 + PUα0

3σ2(x[n]−xk)2

)
3

+
log2

(
1 + PUα0

3σ2(y[n]−yk)2

)
3

, r[n], (25)

where we use the Jensen’s Inequality for the convex function
log
(
1 + A

x

)
for any A > 0. We can verify that the second

term of r[n] in (25) is convex with respect to x[n] and the
third term is convex with respect to y[n] by checking their
second-order derivatives. Then from the definition of r[n] in
(24), we have

RUt
[n] =

K∑
k=1

ρk,nr[n]

≤
K∑
k=1

ρk,nr[n]

, RUt
[n]. (26)

Thus, we obtain an upper bound of RUt [n], i.e., RUt [n], and
it is convex with respect to u[n]. Namely, RUt [n] is a convex
upper bound of the LHS of (20c).
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Fig. 4. Comparison of RE and its lower bound RE .

Similarly, we compare the exact transmitting rate RUt
and

its upper bound RUt in Fig. 3 to show the tightness of RUt .
It is observed that the derived bound is fairly tight.

Then, as for the nonconvex objective function (20a) and
constraint (20b), we need to determine a concave lower bound
of RE [k]. r[n] defined in (24) is convex with respect to ‖u[n]−
ek‖2. Considering that the first-order Taylor approximation is
a global under-estimator of convex functions, we have

r[n] ≥ −c(l)k [n](‖u[n]−ek‖2−‖u(l)[n]−ek‖2) + d
(l)
k [n],

, r[n], (27)

where

c
(l)
k [n] =

PUα0σ
2

[σ2(H2+‖u(l)[n]−ek‖2)]2
log2 e

1 + PUα0

σ2(H2+‖u(l)[n]−ek‖2)
≥ 0, (28)

d
(l)
k [n] = log2

(
1 +

PUα0

σ2(H2 + ‖u(l)[n]− ek‖2)

)
. (29)

It is easy to check that r[n] is concave with respect to u[n]
because the coefficient c(l)k [n] is a nonnegative value.

Further from (16) and (27), the lower bound RE [k] is
directly obtained as

RE [k] =
1

N

N∑
n=1

ρk,nr[n]. (30)

which is concave with respect to u[n]. The comparison of
RE and its lower bound RE is plotted in Fig. 4.

By introducing the lower bounds RE [k] and RUr
[n] of

RE [k] and RUr [n] respectively and the upper bound, RUt [n],
of RUt [n], we successfully transform problem (20) into the
following problem:
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max
U ,V ,A

K∑
k=1

RE [k] (31a)

s.t. RE [k] ≥ R0, ∀k ∈ K, (31b)
n∑
i=2

RUt
[i] ≤

n−1∑
i=1

RUr
[i], n = 2, · · · , N, (31c)

u[1] = u[N ] = u0, (31d)
‖u[n+ 1]−u[n]‖≤Vmaxδt, n=1, · · · , N−1, (31e)
v[n+ 1] = v[n] + a[n]δt, n = 1, · · · , N − 1, (31f)

u[n+1]=u[n]+v[n]δt+
1

2
a[n]δ2t , n=1,· · ·, N−1,

(31g)
‖v[n]‖ ≤ Vmax, n = 1, · · · , N, (31h)
‖a[n]‖ ≤ amax, n = 1, · · · , N. (31i)

Theorem 1. Problem (31) is a convex problem.

Proof. According to the above analysis, since RE [k] is con-
cave with respect to u[n], (31a) is a convex objective function
and (31b) is a convex constraint. Similarly, since RUt

[n] is
convex with respect to u[n] and RUr

[n] is concave with
respect to u[n], thus (31c) is a convex constraint. Furthermore,
(31d), (31f), and (31g) are linear constraints. (31e), (31h),
and (31i) are convex constraints. Therefore, problem (31) is a
convex problem.

This convex problem can then be efficiently solved by using
the well-established standard convex optimization method such
as the interior-point method [38].

B. UAV-CEU Association Optimization

Given a mobility management strategy of the UAV, the sub-
problem of optimizing the UAV-CEU association is rewritten
from problem (19) as follows:

max
P

∑
k∈K

RE [k] (32a)

s.t. RE [k] ≥ R0, ∀k ∈ K, (32b)∑
k∈K

ρk,n ≤ 1, n = 2, · · · , N, (32c)

ρk,n = {0, 1}, ∀k ∈ K, n = 2, · · · , N, (32d)
n∑
i=2

RUt [i] ≤
n−1∑
i=1

RUr [i], n = 2, · · · , N. (32e)

It is difficult to solve problem (32) because of the integer
variable ρk,n. By relaxing (32d) to the continuous constraint
ρk,n ∈ [0, 1], problem (32) reduces to a standard linear pro-
gramming because the objective function and the constraints
are linear combinations of P . The linear programming is

max
P

∑
k∈K

RE [k] (33a)

s.t. 0 ≤ ρk,n ≤ 1, ∀k ∈ K, n = 2, · · · , N, (33b)
(32b), (32c), (32e). (33c)

Naturally, this linear programming is a convex optimization
problem. Typically, like in [31], the relaxed problem was

solved by classical optimization methods, and then the solution
of the relaxed problem was rounded to get the desired integer
results. However, in this way, the optimality of the solution can
not be guaranteed in theory and the feasibility of the solution
may not hold due to the operation of rounding. This motivates
us to adopt the Lagrangian dual decomposition method to
obtain a low-complexity solution.

In the following, we show that it fortunately returns integer
solutions, which preserves both optimality and feasibility of
the original problem if the variable relaxation is also deployed
temporarily but using the dual decomposition approach.

After relaxing the binary constraints with respect to P ,
problem (32) becomes a standard linear program. By intro-
ducing dual variables λ = {λn}Nn=2 and η = {ηk}Kk=1, we
can write the Lagrangian function of problem (33) as

L(P ,λ,η) =
K∑
k=1

RE [k]−
N∑
n=2

λn

(
n∑
i=2

RUt
[i]−

n−1∑
i=1

RUr
[i]

)

−
K∑
k=1

ηk(R0 −RE [k]), (34)

where the dual variables λ = {λn}Nn=2 and η = {ηk}Kk=1 are
all nonnegative.

Equivalently, we solve its dual problem

min
λ≥0,η≥0

max
P

L(P ,λ,η) (35a)

s.t. 0 ≤ ρk,n ≤ 1, ∀k ∈ K, n = 2, · · · , N, (35b)∑
k∈K

ρk,n ≤ 1, n = 2, · · · , N. (35c)

By defining

mk,n , log2

(
1 +

PUhuk[n]

σ2

)
, (36)

the inner maximization in (35) is rewritten as

max
P

1

N

K∑
k=1

N∑
n=2

ρk,nmk,n(1 + ηk)−
K∑
k=1

N∑
n=2

(
λn

n∑
i=2

ρk,imk,i

)
(37a)

s.t. 0 ≤ ρk,n ≤ 1, ∀k ∈ K, n = 2, · · · , N, (37b)∑
k∈K

ρk,n ≤ 1, n = 2, · · · , N. (37c)

We simplify the objective function in (37a) further and
rewrite it as

max
P

K∑
k=1

N∑
n=2

Ak,nρk,n, (38)

which is a linear combination of ρk,n and the coefficient
Ak,n =

(
mk,n(1+ηk)

N −
∑N
i=n λimk,n

)
. To obtain the max-

imum value of (38), we should let ρk,n with the largest
coefficient be 1 and the others be 0 for any n due to the
constraints (37b) and (37c). Thus, it implies the optimal
solution as

ρ∗k,n =

{
1, if k=k(n)

0, if k 6=k(n),
(39)
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Algorithm 1: IMMUA Algorithm for Problem (19)

1 Initialize P and let l = 0;
2 repeat
3 Given P (l), find the optimal U (l+1), V (l+1), and

A(l+1) by solving problem (31);
4 Given U (l+1), V (l+1), and A(l+1), find the

optimal P (l+1) by solving problem (32);
5 Update l = l + 1;
6 until convergence;
7 Return the UAV mobility management U∗ = U (l),
V ∗ = V (l), A∗ = A(l), and the corresponding
UAV-CEU association strategy P ∗ = P (l).

where k(n) = arg max
q∈K

(
mq,n(1+ηq)

N −
∑N
i=n λimq,n

)
.

Notice that the optimal ρ∗k,n is proven in (39) to be either
0 or 1 which satisfies the integer constraint (32d) in problem
(32), even though we temporarily relaxed ρk,n as a continuous
variable. Therefore, the optimal solution to problem (37) is
exactly given by (39).

Then, we need to solve the outer minimization in (35) using
the integer solution of ρ∗k,n in (39). In each iteration, we exploit
the subgradient based method [38] to update the dual variables
as

λ(t+1)n =

[
λ(t)n −δ(t)

(
−

n∑
i=2

K∑
k=1

ρ
(t)
k,im

(t)
k,i+

n−1∑
i=1

R
(t)
Ur
[i]

)]+
,

(40)

η
(t+1)
k =

[
η
(t)
k − δ

(t)

(
−R0 +

1

N

N∑
n=2

ρ
(t)
k,nm

(t)
k,n

)]+
, (41)

where δ(t) is the step size and

[x]+ =

{
x, if x ≥ 0

0, if x < 0.
(42)

We update dual variables λ = {λn}Nn=2 and η = {ηk}Kk=1 and
association indicators P = {ρk,n,∀k ∈ K, n = 2, · · · , N}
iteratively until the objective function in (35) converges. In
this way, the UAV-CEU association optimization problem in
(33) is solved.

To this end, we are able to solve the original problem by
tackling the two subproblems, i.e., UAV mobility management
and UAV-CEU association optimization, in an alternating
manner. We summarize the iterative mobility management and
user association (IMMUA) algorithm in Algorithm 1, which
can obtain a suboptimal solution with low complexity. The
convergence and complexity of IMMUA algorithm is analyzed
in the following subsection. Even though we first decompose
the original problem into two subproblems and then solve them
separately in two steps, we obtain optimal or near-optimal
solution in both steps. This guarantees good performance of
our proposed IMMUA algorithm which will be demonstrated
by numerical results in Section IV.

Discussion 1. In addition to the objective function formulated
in problem (19), our proposed IMMUA algorithm can also

handle some other forms of objective functions if the traffic
patterns are considered. For instance, we can maximize the
weighted sum rate of CEUs which is expressed as

max
U ,V ,A,P

∑
k∈K

wkRE [k], (43)

where wk denotes the constant weight of CEU k. Note that
the values of wk can be determined by the traffic patterns,
e.g., Poisson distribution, for different users [39]. Since the
weights are constant, they do not affect the application of our
proposed algorithm to solve the problem.

Considering more directly the traffic arrival patterns for
different users, we can add minimum rate requirement of each
user individually. That is to change (19b) in problem (19) into
the following constraint:

RE [k] ≥ Rk, ∀k ∈ K, (44)

where Rk is the minimum rate requirement of user k. In
particular, Rk can be determined according to user types,
mission types, and traffic arrival patterns. In this way, the
new problem imposes different QoS requirements on different
users. This new constraint can be handled by using the similar
bounding techniques for (19b).

C. Convergence and Complexity Analysis

With our proposed IMMUA algorithm, the resulting objec-
tive function value of problem (19) is non-decreasing after
each iteration. Furthermore, it has a finite upper bound. There-
fore, the overall IMMUA algorithm is guaranteed to converge.

The complexity of the IMMUA algorithm lies in solving
the UAV mobility management problem and the UAV-CEU
association optimization problem. Considering that we solve
the UAV mobility management problem via the standard
interior-point method and the number of optimization variables
is 6N , the complexity of solving this problem isO(LiN3) [10,
Pages 487, 569], where Li denotes the number of iterations
required by the interior-point method. As for the UAV-CEU
association optimization problem, we solve it via the dual
decomposition method, whose complexity is O(Ld(N +K)),
where Ld denotes the number of iterations needed by the dual
method. Therefore, the total complexity of ITUA algorithm is
O(Lo(LiN3+Ld(N+K))), where Lo represents the number
of outer iterations.

IV. NUMERICAL RESULTS

In this section, numerical results are presented to validate
the effectiveness of our proposed algorithm. We consider a
UAV-assisted communication network in IoT applications. As
depicted in Fig. 5, the network consists of one UAV, three
adjacent GBSs, and four CEUs. Specifically, these CEUs are
any type of IoT devices, which are randomly deployed in the
overlapped coverage of GBSs to perform specific tasks. Due
to the long distance from GBSs, the channel quality between
CEUs and GBSs is poor and the QoS of CEUs cannot be
guaranteed. Under this circumstance, a UAV acts as a mobile
relay to forward data from GBSs to CEUs when data transmis-
sion is needed, which is a convenient and cost-efficient way
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TABLE I
SIMULATION PARAMETERS

Parameter Description Value
amax Maximum UAV acceleration 5 m/s2

α0 Reference channel power at d0 = 1 m -60 dB
H Flight altitude of UAV 100 m
L Number of antennas at GBSs 8
PB Transmit power of GBSs 10 W
PU Transmit power of UAV 1 W
r Radius of the cell 1000 m
rc Radius of the circular trajectory 500 m
R0 Minimum rate requirement of CEU 0.5 bps/Hz
Vmax Maximum UAV speed 50 m/s
σ2 Noise power -114 dBm

TABLE II
UAV-CEU ASSOCIATION STRATEGY OBTAINED BY IMMUA ALGORITHM

WITH THE MAXIMUM SPEED OF Vmax = 40 M/S

Time slot 1 2 3 4 5 6 7 8 9 10
Associated CEU Null 2 4 4 4 4 4 4 4 4

Time slot 11 12 13 14 15 16 17 18 19 20
Associated CEU 4 4 4 4 1 1 1 1 1 1

Time slot 21 22 23 24 25 26 27 28 29 30
Associated CEU 1 1 4 4 2 2 2 2 2 2

Time slot 31 32 33 34 35 36 37 38 39 40
Associated CEU 2 2 4 4 4 4 3 3 3 3

Time slot 41 42 43 44 45 46 47 48 49 50
Associated CEU 4 4 4 4 4 4 4 4 4 3

Time slot 51 52 53 54 55 56 57 58 59 60
Associated CEU 4 3 3 3 4 4 4 4 4 2

TABLE III
UAV-CEU ASSOCIATION STRATEGY OBTAINED BY IMMUA ALGORITHM

WITH THE MAXIMUM SPEED OF Vmax = 50 M/S

Time slot 1 2 3 4 5 6 7 8 9 10
Associated CEU Null 2 4 4 4 4 4 4 4 4

Time slot 11 12 13 14 15 16 17 18 19 20
Associated CEU 4 4 4 4 1 1 1 1 1 1

Time slot 21 22 23 24 25 26 27 28 29 30
Associated CEU 1 1 4 4 4 4 2 2 2 2

Time slot 31 32 33 34 35 36 37 38 39 40
Associated CEU 2 2 2 4 4 4 3 3 3 3

Time slot 41 42 43 44 45 46 47 48 49 50
Associated CEU 4 4 4 4 4 4 4 4 4 4

Time slot 51 52 53 54 55 56 57 58 59 60
Associated CEU 4 4 4 4 3 4 4 4 4 2

to improve the QoS of CEUs without increasing infrastructure
construction. We need to note that the above simulation setup
also applies to a post-disaster communication scenario where a
sudden disaster damaged the cellular infrastructure in the area
affected by the disaster [41]. By leveraging a UAV, rescue
information can be sent from the GBSs in the area unaffected
by the disaster to the IoT devices in the disaster area. Each
GBS is equipped with L = 8 antennas. The radius of each
cell is set to r = 1000 m and the horizontal locations of three
GBSs are (0, r), (

√
3r, r), and (

√
3
2 r,−

1
2r) respectively. Other

important simulation parameters are listed in Table I unless
otherwise specified.

Firstly, we show the UAV trajectory and UAV-CEU associ-
ation strategy obtained by IMMUA algorithm intuitively. Fig.
5(a) and Fig. 5(b) illustrate the optimized UAV trajectories
with the maximum UAV speeds of 40 m/s and 50 m/s,
respectively. The pre-specified initial location of the UAV is set
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Fig. 5. Optimized UAV trajectories obtained by IMMUA algorithm with the
maximum speed of Vmax = 40 m/s and Vmax = 50 m/s, respectively.

to the intersection point of the three cells, i.e., (
√
3
2 r,

1
2r). The

UAV has to return to the initial location after each transmission
period. As shown in Fig. 5, the UAV flies in the following
way: firstly, the UAV flies from the initial location to CEU4.
Secondly, it flies to CEU1, and then flies to CEU2. After that,
it flies through CEU4 to CEU3 and stays there for a while.
Finally, it returns to the initial location.

For the cases of Vmax = 40 m/s and Vmax = 50 m/s, the
corresponding UAV-CEU association strategies are presented
in Table II and Table III, respectively. In the first time slot,
no CEU is associated with the UAV due to the information
causality constraint. According to the association strategy, we
find that the UAV in fact associates with the nearest CEU in
each time slot during its flight to maximize the sum rate of
all CEUs. Based on the UAV mobility management strategy
and UAV-CEU association strategy obtained by IMMUA al-
gorithm, the data rates of the four CEUs are calculated and
presented in Fig. 6, respectively. CEU4 has the highest data
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Fig. 6. The rate of each CEU with the optimized mobility management and
association strategy.
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Fig. 7. The speed of the UAV over time with Vmax = 50 m/s.

rate since it has the most time slots associated to the UAV.
Fig. 7 illustrates the effect of acceleration constraint on

UAV’s speed verus the flying time slot. We can see that when
the acceleration constraint is not taken into account, the speed
changes very quickly, even close to infinity, which is not
practical. On the contrary, when the acceleration constraint
is considered and the maximum acceleration is set to amax =
5 m/s2, the change of speed is much gentler. The acceleration
of the UAV over time slot is plotted in Fig. 8, which shows
that the acceleration cannot exceed amax = 5 m/s2.

Then, we verify the convergence behaviour of our proposed
IMMUA algorithm. In Fig. 9, we show the sum rate of all the
CEUs versus the number of iterations with different values of
UAV’s transmit power PU , flight altitude H , and maximum
acceleration amax. It indicates that our proposed algorithm
converges in a few iterations as expected. From the figure
results, we can conclude that, for most cases, 7 to 8 iterations
can be sufficient for the algorithm to converge. While in
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Fig. 8. The acceleration of the UAV over time with amax = 5 m/s2.
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Fig. 9. Sum rate of all CEUs versus the number of iterations with different
PU , H , and amax.

practice use, 5 iterations in most cases achieve a 99% of the
rate upon convergence. From the figure, the sum rate improves
as the UAV’s transmit power increases. This is intuitively true
since an increase of transmit power could lead to a higher
SINR, which implies higher data rate. On the other hand, the
sum rate decreases as the UAV flies higher. This is because
higher flight induces weak channel power gains resulting in
lower rates. In theory, the lower UAV flies, the higher rate of
CEUs. However, this is based on the assumption that the flight
altitude of UAV is at least 100 m. When the flight altitude
of UAV is much lower, the air-to-ground communication links
will be blocked and scattered by buildings and other obstacles.
The channel model used in this paper will no longer be
applicable and the data rate will decrease. Therefore, the flight
altitude of UAV cannot be too high or too low. Moreover, as
can be seen from Fig. 9, a smaller maximum acceleration leads
to a lower sum rate, which is intuitively true since the feasible
set is reduced.

For the purpose of comparison, we consider two types of
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Fig. 10. Benchmark trajectories: (a) static UAV, (b) circular trajectories with
different radius.
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Fig. 11. Sum rate of CEUs with different trajectories: static UAV, circle
trajectories and optimized trajectory.

benchmark UAV trajectories as shown in Fig. 10: (a) static
UAV, where the UAV stays at the intersection point in the
whole transmission period; (b) circle trajectories, where the
UAV flies at the maximum speed with different circle radii,
200 m, 500 m, and 800 m, respectively. All the circle trajec-
tories are centered at the intersection point. For different UAV
trajectories, the UAV-CEU association strategy is optimized
using our proposed algorithm as stated in Section III-B. Fig.
11 compares the sum rate of our proposed algorithm with
those of the benchmark trajectories. It is observed that our
proposed algorithm outperforms the benchmark schemes at
different values of Vmax, which demonstrates the efficiency
of our proposed algorithm. The static UAV corresponds to a
traditional relay, which has no degree of freedom. Therefore,
the sum rate of CEUs does not vary with Vmax. As for
circle trajectories with different radii, the performance is quite
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Fig. 12. The data rate of each CEU with different UAV-CEU association
strategies.
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Fig. 13. Performance comparison of IMMUA algorithm and close-to-optimal
algorithm.

different in terms of sum rate of CEUs. Specifically, the circle
trajectory with rc = 500 m has the highest sum rate among
the three circle trajectories due to the fact that this trajectory
is close to the locations of CEUs. On the contrary, the circle
trajectory with rc = 800 m performs worst since it is too
far from CEUs. The performance of the circle trajectory with
rc = 200 m is between the two. Besides, we observe that our
proposed algorithm achieve 18.6%, 13.4% and 35.8% sum rate
gain over circle trajectories with rc = 200 m, 500 m and 800
m, respectively.

Then we consider the scenario where the UAV-CEU associ-
ation strategy is fixed. The UAV trajectory is optimized using
our proposed algorithm as stated in Section III-A. We consider
random association strategy and clockwise association strategy
as benchmarks. As for the random association strategy, the
UAV associates with one CEU randomly in each time slot.
According to the locations of CEUs, clockwise association
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strategy means the UAV associates with CEU1, CEU2, CEU4
and CEU3 in a clockwise manner. Fig. 12 shows the data rate
of each CEU with different association strategies. It shows
that the optimized association strategy improves sum rate
performance over benchmark association strategies at the cost
of fairness.

As stated in Section III, the original problem is a mixed
integer program and the causality constraint is particularly
hard to solve. It is challenging to obtain an optimal solution of
such problem due to extremely high complexity. Even for the
subproblem of mobility management, it is still nonconvex and
tough to solve. Therefore, we compare the performance of our
proposed algorithm with a close-to-optimal method that ran-
domly selects 100 initial points for the proposed algorithm and
returns the solution corresponding to the maximum objective
value. Note that this method has been popular in approaching
the optimal solution in literature [24], [40]. From Fig. 13, it
can be seen that the performance of our proposed IMMUA
algorithm quite approaches the close-to-optimal performance,
which indicates the effectiveness of our proposed algorithm.
Under different parameter settings, the proposed algorithm
only causes less than 3% performance loss.

V. CONCLUSION

In this paper, we have studied a new mobile relaying
technique with a cache-enabled UAV in a multi-cell network.
We jointly optimized the UAV-CEU association strategy and
UAV mobility management strategy to maximize the sum rate
of all CEUs, subject to the minimum rate requirements of
CEUs, mobility constraints and casual buffer constraints. We
formulate an optimization problem and the original mixed-
integer nonconvex problem is successfully transformed into
two convex subproblems. Accordingly, an efficient iterative
algorithm was developed to solve the two subproblems in an
alternating manner, which is guaranteed to converge with low
complexity. According to simulation results, the mobility of
UAV induces rate improvement compared with static relay.
Furthermore, our proposed algorithm performs well and out-
performs the traditional trajectories and association strategies
significantly. In our future work, we will extend the results
obtained in this paper by taking into account the optimization
of UAV’s altitude, mobile CEUs, more UAVs as well as the
energy efficiency of UAV.
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