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Decomposition and Meta-DRL based
Multi-Objective Optimization for Asynchronous

Federated Learning in 6G-Satellite Systems
Yu Zhou, Lei Lei, Member, IEEE, Xiaohui Zhao, Lei You, Member, IEEE, Yaohua Sun, Symeon Chatzinotas,

Fellow, IEEE

Abstract—Wireless-based federated learning (FL), as an
emerging distributed learning approach, has been widely studied
for 6G systems. When the paradigm shifts from terrestrial to non-
terrestrial networks (NTN), FL may need to address several open
challenges, e.g., the limited service time of low earth orbit (LEO)
satellites, the straggler issue in synchronous FL, and time-efficient
uploading and aggregation for massive devices. In this work, we
exploit the synergy of LEO and FL for future integrated 6G-
satellite systems by taking advantage of ubiquitous wireless access
provided by LEO and appealing characteristics of collaborative
training and data privacy preservation in FL. The studied LEO-
FL framework may need to improve multi-metric performance
in practice. Different from most FL works, we simultaneously
improve the communication-training efficiency and local training
accuracy from a multi-objective optimization (MOO) perspective.
To solve the problem, we propose a decomposition and meta-deep
reinforcement learning based MOO algorithm for FL (DMMA-
FL), aiming at adapting to the dynamic satellite-terrestrial
environments, achieving efficient uploading and aggregation, and
approaching Pareto optimal sets. Compared to single-objective
optimization, heuristics-based, and learning-based MOO algo-
rithms, the effectiveness and advantages of the proposed LEO-
FL framework and DMMA-FL algorithm are assessed on MNIST
and CIFAR-10 datasets.

Index Terms—LEO satellite, asynchronous federated learning,
multi-objective optimization, meta-reinforcement learning

I. INTRODUCTION

In 5G and 6G systems, emerging intelligent devices and
applications generate unprecedented amounts of data at the
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edge network every day [1]. This, in turn, stimulated the need
for on-device data processing and accurate-efficient inference
at the edge. Due to limited computing capabilities, it is imprac-
tical for edge devices to train a powerful learning model by
collecting a huge amount of training data [2]. In addition, the
concerns of data privacy prevent data sharing among devices
and third-party institutions. To address these issues, federated
learning (FL) is introduced to complete training and inference
without sharing sensitive raw data among edge devices [3]. By
leveraging on-device training and local model aggregation, FL
has exhibited great potential to train a common high-quality
learning model and received considerable attention from both
academia and industry [4]–[6]. However, previous wireless-
based FL studies have primarily focused on terrestrial systems
within a limited coverage area, where the potential of FL in
integrating fragmented computing resources from edge devices
have not been fully demonstrated.

When the 6G paradigm shifts from terrestrial to non-
terrestrial networks (NTN), low earth orbit (LEO) satellites
have become an important component in 6G NTN [7]. Relying
on wide coverage and seamless connectivity, LEO can act as
a central server in FL to aggregate parameters of local models
and update the global model. The LEO-FL system has recently
received early-stage studies. For instance, Razmi et al. [8]
proposed a ground-assisted LEO-FL system and considered
a global model convergence problem. Chen et al. [9] studied
a satellite FL system and analyzed four methods of com-
bining machine learning with satellite networks. Matthiesen
et al. [10] investigated a classification of satellite FL systems
based on the communication capabilities of the satellites, the
constellation design, and the location of the parameter server.
From another line of studies, general terrestrial-based wireless
FL approaches are widely investigated. Device selection and
resource allocation are crucial for accelerating FL conver-
gence and improving system performance. Several studies
have focused on these aspects. Chen et al. [11] proposed a
probabilistic device selection scheme to accelerate the global
model convergence in FL systems. Chen et al. [12] designed
an FL scheme called SDEFL to reduce the communication-
computing time via efficiently allocating computing resources
in the FL training process across heterogeneous devices. Ad-
ditionally, researchers have also addressed the challenge of the
straggler issue, where the central server needs to wait for the
slowest device’s training before aggregating the local models.
For instance, Chen et al. [13] proposed a fully asynchronous
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FL framework in which devices perform online model training
with continuous streaming of local data while a parameter
server aggregates global model parameters from the devices.
Hu et al. [14] introduced an asynchronous strategy with pe-
riodic aggregation, aiming to achieve fast convergence while
avoiding excessive model updating typically encountered in
fully asynchronous FL settings. Nguyen et al. [15] proposed
FedBuffer, a novel buffered asynchronous aggregation method
that addresses scalability and privacy concerns through secure
aggregation and differential privacy techniques.

For LEO-FL systems, the previous works were studied to a
limited extent. Some key issues need to be addressed. Firstly,
tailored schemes of device selection and resource optimization
for LEO-FL systems need to be investigated. Specifically,
LEOs’ high mobility results in time-varying environments
and limited training time. Only a part of the devices in the
service area can participate in FL local training. Different
participating devices may affect the performance of the global
model. In addition, edge devices typically have limited com-
puting resources and energy. Thus, efficient optimization of
computation-communication resources is of importance.

Secondly, the LEO-FL system needs to address the straggler
issue caused by conventional synchronous FL. Since the
mobility of LEOs could lead to the heterogeneity of com-
munication channel conditions and the computing resources
of devices are limited, the studied system could suffer from
the straggler issue if utilizing traditional synchronous global
model aggregation, as it would be difficult for the LEO to wait
for all the participated devices to complete the model training
before executing global model aggregation. To address this
challenge, efficient schemes for asynchronous uploading and
aggregation are needed.

Thirdly, since the service time of the LEO is limited, it
is necessary to reduce the communication-computation time
throughout the whole FL process while keeping good accuracy.
In practice, it often occurs that multiple performance metrics
are in conflict with each other. Most studies simplify the
optimization process by summarizing various metrics with
predefined weights and solving a single-objective optimization
problem (SOP). However, SOP in this context may have sev-
eral issues, e.g., non-unified units among different metrics, in-
accuracies of weight allocation due to ill-conditioned matrixes,
and difficulties in approaching the Pareto front in large-scale
optimization. Therefore, multi-objective optimization (MOO)
is worth considering. The aim of this paper is to overcome
these challenges in LEO-FL systems. The main contributions
are summarized as follows:

• We study an LEO-FL system and formulate a multi-
objective optimization problem (MOP) to minimize
the global model convergence and the communication-
computing time in the FL training process by jointly
determining device selection, transmit power, and com-
puting resource allocation. To our best knowledge, this is
the first attempt to investigate high-quality and efficient
MOO solutions for LEO-FL systems.

• We propose a decomposition and meta-deep rein-
forcement learning (meta-DRL) based MOO algorithm
(DMMA-FL) to solve the MOP in LEO-FL systems.

TABLE I
THE LIST OF MAIN MATHEMATICAL NOTATIONS

Notation Description
xxxm,n The input feature output label for the n-th data sample in Dm

ym,n The output label for the n-th data sample in Dm

Dm The number of data samples in Dm

wwwt The parameters of the global model in the t-th round
wwwt

m The parameters of the local model of device m in the t-th round
Fm(wwwt

m) The loss function of the local model of device m
fn(xxxm,n, ym,n;wwwt

m) The loss function on the n-th sample data of device m
τl The learning rate of the local model

F (wwwt∗) The loss function of the global model
τg The learning rate of the global model
ht
m The channel state between the LEO and device m in the t round

GT The transmitting antenna gain
GR The receiving antenna gain
GC The channel loss
rtm,u The achievable transmission rate in the uplink for device m in the t-th round
btm The bandwidth and transmit power in the uplink for device m in the t-th round
ptm The transmit power in the uplink for device m in the t-th round

Lt,com
m,u The communication time in the uplink for device m in the t-th round
X The size of the global model

Et,com
m,u The energy consumption in the uplink for device m in the t-th round
rtm,d the achievable transmission rate in the downlink for device m in the t-th round
Lt,com
m,d The communication time in the downlink for device m in the t-th round

Et,com
m,d The communication energy consumption in the downlink for device m in the t-th round

Lt,cmp
m The computing time for device m in the t-th round
κ The number of local rounds
gtm The CPU frequency of device m in the t-th round
βg The number of frequency levels
αm The capacitance constant of device m

Et,cmp
m The computing energy consumption for device m in the t-th round
Lt The communication-computing time in the t-th round
stm The device selection variable for device m in the t-th round
Et The communication-computing energy consumption in the t-th round

E(wwwt
m) The packet error rate of each device m in the t-th round

U(wwwt
m) The determination for whether to perform retransmission of device m

βp The number of power levels
Ct The global model convergence reference function
λi The i-th weight vector
zzz∗ The Pareto optimal solution for each subproblem
θθθh The parameters of the actor network for the sampled weight vector h
ϕϕϕh The parameters of critic networks for the sampled weight vector h
ρ The learning rate of the actor and critic networks

θθθmeta The parameters of the meta-actor network
ϕϕϕmeta The parameters of the meta-critic network

η The learning rate of meta-learning
Tft The number of fine-tuning episodes

Compared to conventional MOO methods, the combined
optimization and learning design in DMMA-FL acceler-
ates the decision-making process in each iteration and
improves the capabilities of approaching the Pareto op-
timum and enhances solutions’ dynamic adaptation. Ad-
ditionally, meta-DRL can efficiently handle decomposed
sequence optimization subproblems with Markov proper-
ties compared with conventional and heuristic methods.

• To overcome the effect of the straggler issue in LEO-
FL systems, we design an asynchronous uploading and
weighted aggregation (AUWA) scheme for time-efficient
FL training and transmission.

• The effectiveness and performance gains of the consid-
ered LEO-FL system and the proposed DMMA-FL are
validated on MNIST and CIFAR-10 datasets in both
independent and identically distributed (IID) and Non-
IID settings.

The paper is structured as follows: Section II introduces the
system model. Section III formulates the MOP. In Section IV,
we provide a detailed explanation of our proposed method.
The experimental results are discussed in Section V. Finally,
Section VI concludes the paper. Additionally, for the ease of
illustration, all main mathematical notations are summarized
in Table I.
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II. SYSTEM MODEL

A. LEO-FL Systems

As depicted in Fig. 1, we consider an LEO-FL system,
which includes an LEO equipped with multiple antennas for
global model sharing and aggregation, and a set of M single-
antenna devices with limited communication and computing
resources for local model update and uploading. We denote the
set of all devices as M = {1, · · · ,M}. For each device m, it
updates its local model by utilizing its own unique local dataset
Dm, which consists of Dm data samples (xxxm,n, ym,n), n =
1, · · · , Dm. Here, xxxm,n and ym,n represent the input feature
and the corresponding output label for the n-th data sample,
respectively, and Dm denotes the number of data samples.
Own to the LEO’s dynamic position and limited bandwidth,
only a portion of devices are selected to participate in the FL
training process. We denote the set of the selected devices as
M′.

Server

Devices

Local model 

uploading

Global model

sharingGateway

LEO

Global model 

aggregation and 

update

Local model 

updating

Applications

Industrial IoTs

Environment 

monitoring

Autonomous 

driving

Resource 

exploration

Disaster 

monitoring

Intelligent 

maintenance

Fig. 1. An LEO-FL system.

The detailed FL training process, consisting of T rounds, is
provided as follows:

Step 1: Global model initialization and sharing. In the
first round, the LEO determines the training task and initializes
the parameters of the global model denoted as wwwt. In each
round t (t ∈ T = {1, · · · , T}), the LEO selects devices within
its service area and shares the global model with them.

Step 2: Local model update and uploading.Step 2: Local model update and uploading.Step 2: Local model update and uploading. Upon receiving
the global model, each selected device m (m ∈ M′)
uses its own Dm to update its local model, whose param-
eters are denoted as wwwt

m = wwwt. The objective of updat-
ing the local model is to find the optimal wwwt∗

m by min-
imizing the loss function of the local model of device
m, denoted as Fm(wwwt

m) := 1
Dm

∑Dm
n=1 fn(xxxm,n, ym,n;www

t
m),

where fn(xxxm,n, ym,n;www
t
m) denotes the loss function on

the n-th sample data of device m. In this paper,
since FL is used for performing classification tasks,
fn(xxxm,n, ym,n;www

t
m) is defined as the standard cross-entropy

loss function, which is given as fn(xxxm,n, ym,n;www
t
m) =∑Class

cl=0 P (ym,n = i)Exxxm,n|ym,n=i[log ŷm,n] [6]. Here, Class
is the number of classes in datasets (i.e., MNIST and CIFAR-
10), P (ym,n = i) is the probability of ym,n belonging to i-th
class and ŷm,n is the predicted label for the n-th data sample.

Subsequently, the stochastic gradient descent (SGD) algorithm
is employed to minimize Fm(wwwt

m), and wwwt
m is updated as

wwwt∗
m = wwwt

m − τl∇Fm(wwwt
m), (1)

where τl is the learning rate of the local model and ∇Fm(wwwt
m)

represents the gradient of the local model of device m. Finally,
each device m can upload wwwt∗

m to the LEO.
Step 3: Global model aggregation and update.Step 3: Global model aggregation and update.Step 3: Global model aggregation and update. After

receiving local models, the LEO performs global model aggre-
gation based on wwwt∗

m using F (wwwt∗) =
∑

m∈M′
Dm
D Fm(wwwt∗

m),
where F (wwwt∗) is the loss function of the global model and
D =

∑
m∈M′ Dm denotes the total number of the data

samples of the selected devices. Afterwards, the LEO updates
wwwt by minimizing F (wwwt∗) using the SGD algorithm:

wwwt+1 = wwwt − τg∇F (wwwt∗), (2)

where τg is the learning rate of the global model and ∇F (wwwt∗)
represents the gradient of the global model. Then, the LEO
proceeds to devices in the next round and shares the updated
global model with them.

Step 2 and Step 3 repeat until the maximum number of
rounds is reached or the global model achieves convergence.

Devices on the ground

1t =
2t =

A single LEO

t T=Service area

(a) First scenario

Devices on the ground

0t T T= 
1t =

2t =

LEO 1

LEO 2

0t T=

0T
w

Service area

(b) Second scenario

Fig. 2. Two scenarios in the LEO-FL system

Remark: We consider two scenarios in the studied system.
In Fig. 2(a), the FL training process can be completed within
the service time of a single LEO. In Fig. 2(b), the FL training
process cannot be completed in time, where the global model
may not converge or have lower accuracy when the LEO leaves
the service area. Moreover, the incoming LEO would need to
restart the FL training process from scratch. In the system,
we consider collaborations among LEOs. The current global
model can be transferred from one LEO to the next, either via
inter-satellite links or the gateway.

B. Communication Model

1) Uplink Communication: In the uplink, the parameters
of local models are transmitted from the participating devices
to the LEO. We assume that the Doppler shift effect caused
by high-mobility LEOs can be effectively compensated at the
gateway by using information about device locations, satellite
orbits, and speeds [16]. In the t-th round, the channel state
htm between the LEO and device m can be modeled as:

htm = GT ·GC ·GR, (3)

where GT and GR represent the transmitting and receiving
antenna gain, respectively, and GC represents the channel loss.
In the paper, GC is assumed a Rician fading channel [17],
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denoted as GC =
(

c
4πdfc

)2
·GH ·A(d)·δ, where c is the speed

of light, d = dtm represents the distance between the LEO and
device m in the t-th round, fc is the carrier frequency, GH

represents pitch angle fading, and δ is the Rician fading factor.
Here, A(d) represents atmospheric loss, denoted as A(d) =

10(
3ψd
10ν ), where ψ in dB/km represents attenuation caused by

clouds and rain, and ν is the altitude of the LEO.
In each round, selected device m is assigned one subchannel

with htm. Then, the achievable transmission rate in the uplink
for device m in the t-th round can be denoted as

rtm,u = btm log2

(
1 +

ptm (htm)
2

σ2

)
, (4)

where btm and ptm represent the bandwidth and transmit power
in the uplink for device m in the t-th round, respectively, and
σ2 represents Gaussian noise.

The communication time in the uplink for device m in the
t-th round, which is expressed as

Lt,com
m,u =

X

rtm,u

=
X

btm log2

(
1 +

ptm(htm)2

σ2

) , (5)

where X is the size of the global model (i.e., wwwt) in bits and it
can be premeasured [18] after the training task is determined
and the parameters of the global model are initialized in Step
1. Then, the energy consumption in the uplink for device m
in the t-th round is given by Et,com

m,u = Lt,com
m,u ptm.

2) Downlink Communication: In the downlink, the global
model is transmitted from LEO to edge devices. Similar to
[17], [19], [20], we consider a block fading channel and the
channel state htm remains within a round. Thus, the achievable
transmission rate in the downlink for device m in the t-th
round can be defined as rtm,d = btleo log2

(
1 +

pleo(htm)
2

σ2

)
,

where btleo and pleo are the bandwidth and transmit power of
the LEO in the t-th round, respectively.

Hence, the communication time in the downlink for device
m in the t-th round can be given as

Lt,com
m,d =

X

rtm,d

=
X

btleo log2

(
1 +

pleo(htm)2

σ2

) . (6)

Similarly, the communication energy consumption in the
downlink for device m in the t-th round can be expressed as
Et,com

m,d = Lt,com
m,d ptm.

C. Computation Model

In the system, each device has limited computing ability to
update its local model. Specifically, the CPU cycles required to
process one data sample (xxxm,n, ym,n) of device m is denoted
as cm [21]. Consequently, the total number of CPU cycles
required for device m to perform one local round is cmDm.
Thus, the computing time for device m in the t-th round can
be expressed as

Lt,cmp
m =

κcmDm

gtm
, (7)

where κ is the number of local rounds and gtm denotes
the CPU frequency of device m in the t-th round. Here,

gtm ∈ {gm,1, · · · , gm,βg} is divided into βg frequency levels
based on their magnitudes. Furthermore, the computing energy
consumption for device m in the t-th round can be expressed
as Et,cmp

m = καmcmDm(gtm)2 = QmDm(gtm)2, where αm is
the capacitance constant of device m.

D. Communication-Computation Time Model

Since there are two manners (i.e., synchronous and asyn-
chronous) [22] for devices to upload local models in the
uplink, the communication-computing time in the t-th round
for two manners can be calculated as:

L̄t = max{stmL
t,com
m,d }+max{stmLt,cmp

m }+max{stmLt,com
m,u },

(8)
Lt = max{stm(Lt,com

m,d + Lt,cmp
m + Lt,com

m,u )}, (9)

where stm represents the device selection variable for device
m in the t-th round. Specifically, stm = 1 indicates that device
m is selected and assigned a subchannel, while stm = 0 means
device m is not selected.

Similarly, the communication-computing energy consump-
tion in the t-th round can be expressed as Et =∑M

m=1 s
t
m

(
Et,com

m,d + Et,cmp
m + Et,com

m,u

)
.

E. Packet Error and Retransmision Model

Since this is an early attempt for FL in 6G-satellite system,
we utilize the mainly used error model in FL systems [23]–
[25]. Specifically, we make the assumption that the local model
of each device is transmitted as a single packet in the uplink,
and then employ a cyclic redundancy check mechanism to
verify data integrity in the received local models. Then, the
packet error rate of the local model of each device m in the
t-th round is calculated as

E(wwwt
m) = 1− e

− ε(I+btmσ
2)

ptmh
t
m (10)

where ε is a waterfall threshold and I is the interference. Based
on (10), we design the retransmission model, where U(wwwt

m) is
defined to determine whether perform retransmission of device
m:

U(wwwt
m) =

{
1,with probability 1− E(wwwt

m),

0,with probability E(wwwt
m).

(11)

Thus, when receivingwwwt
m, the LEO could check the value of

U(wwwt
m) from (11). If U(wwwt

m) = 1, there is no error in the local
model of device m, and the LEO stores wwwt

m for the following
global model update. If U(wwwt

m) = 0, it means an error is
detected in wwwt

m, and the LEO would send a retransmission
request to device m. Then, device m will resend wwwt

m, and
the LEO will check the local model again. This process could
continue until the LEO stores wwwt

m.

III. PROBLEM FORMULATION

A. MOP Formulation

In the optimization problem, we aim to simultaneously
optimize device selection and communication-computation re-
source allocation to achieve global model training convergence
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and reduce the time consumed in FL. MOP is formulated in
P1. C1 specifies if device m is selected to participate in the
FL training process, stm = 1; otherwise, stm = 0; C2 defines
the bounds of frequency for device m; C3 indicates the lower
and upper bounds of ptm; C4 ensures that no more than K
devices could participate in each round; C5 illustrates that the
total bandwidth in the t-th round cannot exceed the maximal
bandwidth Btot; C6 indicates the total transmission rate in the
uplink should not exceed the uplink capacity Rcap; C7 states
the computing energy consumption for all the participated
devices should be less than a limit value Ec

0; C8 illustrates
the final test accuracy of the global model cannot be smaller
than ϵg; and C9 states the communication-computing energy
consumption in each round needs to adhere to a predefined
limitation Et

0.

P1 : min
stm,gtm,ptm

F = (F1,F2) = (F
(
wwwt), Lt

)
,∀m ∈ M, t ∈ T ,

(12a)
s.t. C1 :stm ∈ {0, 1},∀m ∈ M, t ∈ T , (12b)

C2 :gtm ∈ {gm,1, · · · , gm,βg},∀m ∈ M, t ∈ T ,
(12c)

C3 :pmin ≤ ptm ≤ pmax,∀m ∈ M, t ∈ T , (12d)

C4 :

M∑
m=1

stm ≤ K,∀m ∈ M, t ∈ T , (12e)

C5 :

M∑
m=1

stmb
t
m ≤ Btot,∀m ∈ M, t ∈ T , (12f)

C6 :

M∑
m=1

stmr
t
m,u ≤ Rcal,∀m ∈ M, t ∈ T , (12g)

C7 :

M∑
m=1

stmQmDm(gtm)2 ≤ Ec
0,∀m ∈ M, t ∈ T ,

(12h)
C8 :Accglobal ≥ ϵg, (12i)
C9 :Et ≤ Et

0. (12j)

B. Problem Transformation
In P1, calculating and optimizing the value of F (wwwt) is

a challenging task [18]. Furthermore, establishing the rela-
tionship between stm and wwwt is complex due to the dynamic
changes of wwwt during the FL training process. To overcome
these challenges, we adopt a combination of age of update and
training loss methods to measure global model convergence.

Age of update method utilizes the number of times the
model has been trained to describe convergence, represented
as Ot+1

m = (Ot
m + 1) (1− stm) [26]. Additionally, the training

loss method tracks the loss for all devices, with the training
loss for device m in the t-th round denoted as Lt

m = Fm(wwwt).
By incorporating these methods, F (wwwt) is transformed into a
global model convergence reference function, which can be
expressed as:

Ct = −

(∑M
m=1 s

t
mDmLt

mO
t
m

)1−ϱ

1− ϱ
, (13)

where ϱ ∈ (0, 1) is a constant to adjust the sensitivity to the
value change of

∑M
m=1 s

t
mDmLt

mO
t
m.

Additionally, in practical scenarios, the transmit power
of devices are usually categorized. Therefore, ptm can be
discretized into an integer variable represented as ptm ∈
{pm,1, · · · , pm,βp}, where βp denotes the number of power
levels.

Consequently, P1 can be transformed as follows:

P2 : min
stm,gtm,ptm

F = (F1,F2) = (Ct, Lt),∀m ∈ M, t ∈ T ,

(14a)
s.t. C1− C2, (14b)

C3 : ptm ∈ {pm,1, · · · , pm,βp},∀m ∈ M, t ∈ T ,
(14c)

C4− C9. (14d)

IV. THE PROPOSED ALGORITHM

A. Motivations and the Core Idea of DMMA-FL
To solve P2 and obtain an appropriate FL solution, the

following issues need to be addressed. Firstly, conventional ap-
proaches for handling P2 typically transform P2 into SOP by
assigning weights to each objective. However, the predefined
weights may not be able to adapt to practical problems when
the complex environment varies, and then redesigned weights
are required, which is inefficient. To this end, P2 needs to be
directly solved to obtain a Pareto optimal set. Most iterative
solutions for MOP rely on population-based MOO methods,
whose performance heavily depends on the population size. If
the population size is large, this can lead to excessive iteration
times. Secondly, stm, gtm and ptm are discrete variables, leading
to P2 classified as a combinatorial optimization problem
(COP). Additionally, P2 is also a sequential optimization
problem with Markov properties, in which we need to de-
termine the device selection, transmit power, and computing
resource allocation in each round. Thus, when the problem
scale increases, obtaining optimal or near-optimal solutions
can become computationally intensive, which is inefficient and
time-consuming. Thirdly, both synchronous and asynchronous
schemes need to be assessed for LEO-FL. In the synchronous
scheme, the time of one round is significantly constrained
by the slowest device, which could lead to the straggler
issue. To address this challenge, one approach is to transform
the synchronous procedure into an asynchronous one. In
asynchronous methods, LEO no longer needs to wait for all
devices to finish the local model training before conducting
update aggregation. However, the fully asynchronous strategy
may result in substantial communication costs due to frequent
model parameter exchanges.

To overcome these challenges, we propose a novel de-
composition and meta-DRL based MOO algorithm for the
LEO-FL system, i.e., DMMA-FL. In Fig. 3, the core idea
of DMMA-FL consists of three phases: decomposition, meta-
DRL, and FL execution. In the decomposition phase, DMMA-
FL divides the MOP into single-objective subproblems using
a decomposition method based on weight vectors and aims
to optimize these subproblems simultaneously. In the meta-
DRL phase, each subproblem is modeled as a Markov decision
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Fig. 3. The three core components of DMMA-FL: decomposition, meta-DRL
and FL execution.

process (MDP) and encoded using an LSTM-CNN-based
actor-critic framework. DMMA-FL utilizes meta-DRL to learn
meta-actor and meta-critic networks by solving subproblems
corresponding to all sampled weight vectors. With the well-
trained meta-actor and meta-critic networks, we perform small
fine-tuning episodes for each subproblem to obtain its Pareto
optimal solution. Consequently, by alternating weight vectors,
we obtain the Pareto optimal solution set. Based on this
set, we proceed to the FL execution phase, where AUWA
scheme is introduced to address the straggler issue and reduce
communication costs. Finally, DMMA-FL obtains the Pareto
optimal solution set and the corresponding objective function
values of the MOP (i.e., C and L).

We provide a general framework of DMMA-FL in Al-
gorithm. 1. First, the MOP is divided into single-objective
subproblems via Decomposition Phase given in IV-B (line
1). For each subproblem, its Pareto optimal solution zzz∗ =
{st∗m, gt∗m , pt∗m|∀m ∈ M, t ∈ T } is obtained via Meta-DRL
Phase provided in IV-C (line 3). Then, www is initialized by the
LEO (line 4). Then, we perform FL execution phase in the
main loop (lines 5-17). Within the main loop, for each round
t, the LEO sends wwwt to the selected devices based on st∗m
and then Lt,com

m,d is calculated via (6) (line 6). When receiving
wwwt, the selected device m trains and uploads its local model,
and calculates Lt,cmp

m and Lt,com
m,u based on zzz∗ via (7) and (5)

(lines 9-10). Afterwards, AUWA Scheme, introduced by IV-D,
is performed to achieve asynchronous uploading and weighted
aggregation. Consequently, Ct and Lt are calculated by (13)
and (9). Then, the LEO could perform Collaboration Scheme,
given in II-A, to ensure achieving global model convergence
when a large number of devices are involved (line 15). When
the main loop ends, C and L are obtained (line 17). Then,
DMMA-FL alternates the weight vector to solve the next
subproblem. Finally, zzz∗ and its corresponding C and L for
each subproblem are output.

Algorithm 1 General framework of DMMA-FL
1: Decompose the MOP into several single-objective sub-

problems via Decomposition Phase;
2: for each subproblem corresponding to λ do
3: Obtain zzz∗ for λ via Meta-DRL Phase;
4: Initialize www for the LEO;
5: for t = 1 : T do
6: The LEO sends the global model to devices based on

st∗m|m∈M and calculates Lt,com
m,d via (6);

7: for m = 1 :M do
8: if stm = 1 then
9: Device m trains its local model based on wwwt and

calculates Lt,cmp
m based on zzz∗ via (7);

10: Device m uploads its local model and calculates
Lt,com
m,u based on zzz∗ via (5);

11: end if
12: end for
13: AUWA Scheme
14: Calculate Ct and Lt via (13) and (9);
15: Collaboration Scheme;
16: end for
17: Calculate C and L by C =

∑T
t=1 C

t and L =
∑T

t=1 L
t;

18: end for
Output: zzz∗ and corresponding C and L for each subproblem.

B. Phase 1: Decomposition

DMMA-FL first utilizes the decomposition strategy to di-
vide P2 into scalar single-objective subproblems based on
weight vectors, where each weight vector represents a single-
objective subproblem. The detail of generating weight vectors
is given as follows. A set of N uniformly distributed weight
vectors denoted as λi,∀i ∈ {1, · · · , N} is generated by the
simplex method. Here, the number of weight vectors N is
expressed as N = Cl−1

Q+l−1, where l is the number of objectives
(l = 2 in this paper), Q is a pre-defined parameter to control
the number of weight vectors, and for each weight vector λi,
it satisfies the constraint

∑l
q=1 λ

i
q = 1. Then, these weight

vectors correspond to N single-objective subproblems.
In this paper, a commonly used decomposition approach

named the weighted sum approach is considered, where the
i-th subproblem is defined as:

min gws(zzz|λi) =
l∑

q=1

λiqFq(zzz) = λi1F1(zzz) + λi2F2(zzz), (15)

where zzz = {stm, gtm, ptm|∀m ∈ M, t ∈ T }.

C. Phase 2: Meta-DRL

After performing Phase 1, we only need to optimize these
decomposed subproblems of (15) simultaneously to obtain
the Pareto optimal solution set. Since stm, gtm, and ptm are
discrete variables, each subproblem can be considered a COP,
known as NP-hard. Additionally, each subproblem like (15) is
a sequential decision-making problem which aims to minimize
the objective function in all the FL rounds instead of a single
round. To solve this COP with sequential characteristics, cur-
rent approaches, such as deterministic and heuristic methods,
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are inefficient and time-consuming. Employing a heuristic
search approach needs to create a population for all rounds
of FL, which substantially increases the dimensionality and
poses a large-scale optimization problem. DRL is well-suited
for sequential problems, as it makes decisions for the current
round to minimize a long-term objective function and limits
the search space. Recently, DRL has been utilized to deal with
COPs with sequential characteristics such as TSP [27] and
VRP [28] efficiently. To this end, we covert each subproblem
into a MDP and employ DRL to solve it. The key components
of the MDP for each subproblem i are defined as follows:

1) State: The state in the t-th step is defined as

St = {btleo, btm, htm, Ot
m,Lt

m, Dm, E
t},∀m ∈ M. (16)

2) Action: We define stm, gtm and ptm in the t-th round as
the action in the t-th step:

At = {stm, gtm, ptm},∀m ∈ M. (17)

3) Reward: The reward in the t-th step is defined as:

Rt = −gws(zzz|λi) = −λi1F1(zzz)− λi2F2(zzz). (18)

To solve the MDP converted by a subproblem, DRL is
employed to acquire a policy and, based on the observed
states, select a sequence of optimal actions (i.e., st∗m, gt∗m and
pt∗m), which construct the Pareto optimal solution zzz∗ of the
subproblem. Among various DRL approaches, we utilize the
actor-critic method, which combines the advantages of both
value function and policy gradient methods. In the actor-critic
method, an actor network with π(At|St), generates stochastic
policies and selects At based on St, and a critic network with
Q(St,At), evaluates the performance of At. Specifically, the
policy gradient of the actor network can be denoted as:

∇θθθJ(θθθ) ≈ E[∇θθθQ(s, a|ϕϕϕ)|s = St, a = π(St|θθθ)]
= E[∇aQ(s, a|ϕϕϕ)|s = St, a = π(St)∇θθθπ(s|θθθ)|s=St ],

(19)
where θθθ is the parameters of the actor network. Similarly, the
loss function of the critic network can be provided as follows:

L(ϕϕϕ) = E[
(
Rt + γQ(St+1,At+1|ϕϕϕ)−Q(St,At|ϕϕϕ)

)2
],
(20)

where ϕϕϕ is the parameters of the critic network and γ is a
discount factor.

To enhance dynamic adaptation in the changing environ-
ment of different subproblems, similar to [29], we introduce
a hybrid neural network structure for each subproblem, as
depicted in Fig. 4. This structure combines a CNN, an
LSTM, and an MLP to replace the original critic network. By
learning features from the current environment and historical
trajectories, this hybrid network enables effective adaptation to
dynamic conditions. Specifically, the CNN is used to evaluate
the decisions made by the actor network based on St and
At. It assesses the quality of the actor’s choices by capturing
spatial patterns and dependencies in the input data. The LSTM
is employed to identify the weight vector based on time-series
transitions B[t−t̄,t−1], where t̄ denotes the number of time-
series transitions. By considering temporal dependencies, the
LSTM assists in understanding the evolving dynamics of the
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Fig. 4. Illustration of the network structure for each subproblem.

environment and helps the critic network accurately assess the
actor’s performance. Then, the features output from LSTM-
CNN are ζ1 = fCNN (St,At) and ζ2 = fLSTM (St,At),
where ζ1 is the general Q-value, ζ2 is the weight vector
identification embedding, Then, we take ζ1 and ζ2 as inputs
and pass them through an MLP to obtain the Q-value:

Qπ(St,At,B[t−t̄,t−1]|ϕϕϕ) = fMLP (ζ1, ζ2). (21)

Additionally, another CNN is used as the actor network,
which generates the mean µ and variance ξ2 of the stochastic
policy based on St: [µ, ξ2] = fCNN ′(St;θθθ). Then, the
stochastic policy is obtained by following Gaussian distribu-
tion N (µ, ξ2):

π(At|St;θθθ) ∼ N (µ, ξ2). (22)

Then, the actor network generates an continuous action Ā
from the stochastic policy following the Gaussian distribution,
which is given as:

Ā = fπ(A|S;θθθ)(S) (23)

where fπ(At|St;θθθ) is a mapping from the state space to the
continuous action space under π(At|St;θθθ). However, since
the decision variables in P2 are discrete, we need to convert
Ā into the discrete action A from a discrete action space
W . There are two mainly used discretization approaches, the
simple approach and greedy approach. The simple approach is
to choose the nearest integer value to Ā, which is denoted as
A∗ = argminA∈W |A−Ā|. It can explore neighboring regions
and expand the exploration space. However, this method
can lead to a significant likelihood of deviating from the
optimum, and may subsequently result in slow convergence.
The greedy approach is to optimize Q-value at each step,
which given as A∗ = argminA∈W Q(S,A). However, this
method potentially leads to getting trapped in local optima
and come with higher complexity. Thus, similar to [29], [30],
Wolpertinger approach is adopted to balance exploration and
exploitation, which is given as

A∗ = arg min
A∈W

|A − Ā| (24)
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where W∗ is a subset of W and contains W nearest neighbors
of A. Additionally, the solution of simple approach is included
in W∗. Wolpertinger approach selects the highest Q-value
action from W∗ and it can become the greedy approach and
simple approach when W = |W∗| and W = 1, respectively.
Note that a larger value of W aids in expanding exploration,
whereas a lower value of W promotes exploitation. Thus, an
appropriate value for W (W = 10 in this paper) is to balance
between exploration and exploitation.

The training process of DRL for each subproblem described
above requires a significant number of episodes to achieve
well-trained actor and critic networks, which can be time-
consuming. To tackle this challenge, a neighborhood-based
parameter transfer learning strategy (NPTLS) has recently
been proposed, where the subproblem corresponding to a
weight vector can utilize the transfer knowledge of its close
weight vector to accelerate training. NPTLS has been prelim-
inarily applied to the latest research of vehicle networks [31]
and control systems [32] to solve related MOPs. However,
NPTLS has limited flexibility. It is only suitable for training
the actor and critic networks of the subproblems with two
closely related weight vectors. Moreover, NPTLS requires
saving the parameters of all actor and critic networks, which
is inefficient when dealing with a large number of objectives
or subproblems.

To overcome these challenges, we introduce meta-DRL to
train meta-actor and meta-critic networks with better initial
parameters. By leveraging the well-trained meta-actor and
meta-critic networks, the actor and critic networks are obtained
via small fine-tuning episodes for any newly generated weight
vector. Compared with NPTLS, meta-DRL does not need
to meet the relationship of two closely weight vectors and
only stores the parameters of the meta-actor and meta-critic
networks instead of saving the parameters of all actor and critic
networks. This approach enhances efficiency and alleviates the
burden of parameter storage.

Similar to meta-learning, meta-DRL consists of a learning
process and a fine-tuning process. The procedure of meta-
DRL is outlined in Algorithm 2. Firstly, the parameters of
the meta-actor and meta-critic networks, denoted as θθθmeta

and ϕϕϕmeta, are initialized randomly (line 1). Within the main
loop, a set of H weight vectors are sampled from a given
distribution Λ, which includes all potential weight vectors
(line 3). Afterwards, for each sampled weight vector h, the
parameters of the actor and critic networks, denoted as θθθh
and ϕϕϕh, are set the same as θθθmeta and ϕϕϕmeta (line 5). Then,
the transition buffer B is initialized as ∅ (line 6). Next, DRL
is employed to train θθθh and ϕϕϕh. Specifically, in each episode
eps, the initial state St|t=1 is randomly generated (line 8).
Within each learning step t, At is selected according to St

using the actor network via (24) (line 10). Subsequently, Rt

is obtained and St is transformed into a new state St+1 (line
11). Then, Q-value and the stochastic policy are calculated
by (21) and (22), respectively (lines 12-13). Afterward, the
transition {St,At,Rt,St+1} is saved into B. After storing
enough transitions (i.e., eps > eps0), a mini-batch of υ
transitions is sampled from B to update θθθh and ϕϕϕh (lines 17-

Algorithm 2 Meta-DRL Phase
Learning Process

1: Randomly initialize θθθmeta and ϕϕϕmeta;
2: for iter = 1 : Tmeta do
3: Sample H = {λ1, · · · , λH} from Λ;
4: for h = 1 : H do
5: Set θθθh = θθθmeta and ϕϕϕh = ϕϕϕmeta;
6: Set B = ∅;
7: for eps=1:Maxeps do
8: Randomly initialize St|t=1;
9: for t = 1 : T do

10: Select At through (24) based on St|t=1;
11: Obtain Rt and St+1;
12: Obtain Q-value via θθθh based on (21);
13: Obtain stochastic policy by ϕϕϕh based on (22);
14: Store {St,At,Rt,St+1} into B;
15: end for
16: while eps > eps0 do
17: Sample a mini-batch of υ transitions from B;
18: Update θθθh and ϕϕϕh based on (25) and (26);
19: end while
20: end for
21: Obtain the well-trained θθθh and ϕϕϕh;
22: end for
23: Update θθθmeta and ϕϕϕmeta based on (27) and (28);
24: end for
25: Obtain the well-trained θθθmeta and ϕϕϕmeta.

Fine-tuning Process
26: Generate N weight vectors via Decomposition Phase;
27: for j = 1 : N do
28: Set θθθj = θθθmeta and ϕϕϕj = ϕϕϕmeta for λj ;
29: Perform Tft episodes and obtain the well-trained θθθj and

ϕϕϕj ;
30: Obtain zzz∗j of the j-th subproblem;
31: end for
Output: PF = {zzz∗1, · · · , zzz∗N}

18). The update rules are as follows:

θθθh = θθθh − ρ∇θθθJ(θθθh), (25)

ϕϕϕh = ϕϕϕh − ρ∇ϕϕϕL(ϕϕϕh), (26)

where ρ is the learning rate of the actor and critic networks.
The training process of DRL iterates until the termination

condition is met (i.e., eps > Maxeps). Subsequently, the well-
trained θθθh and ϕϕϕh for λh are obtained (line 21). Next, the
differences between θθθh and θθθmeta, and between ϕϕϕh and ϕϕϕmeta

are calculated. Then, θθθh and ϕϕϕh are updated as follows (line
23):

θθθmeta = θθθmeta +
η

h

H∑
h=1

(θθθh − θθθmeta), (27)

ϕϕϕmeta = ϕϕϕmeta +
η

h

H∑
h=1

(ϕϕϕh −ϕϕϕmeta), (28)

where η represents the learning rate of meta-learning. The
main loop continues to run until iter > Tmeta, where Tmeta
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is the maximal number of iterations. Finally, the well-trained
θθθmeta and ϕϕϕmeta are obtained (line 25).

Based on the well-trained θθθmeta and ϕϕϕmeta, we perform
the fine-tuning process to obtain the Pareto optimal solution
set. Specifically, N weight vectors are generated through
Decomposition Phase (line 26). Note that N is personally
determined based on the specific situation or practical problem.
Then, for each λj , the parameters of its actor and critic
networks, denoted as θθθj and ϕϕϕj are set the same as θθθmeta

and ϕϕϕmeta (line 28). Afterwards, we execute a few fine-
tuning episodes, denoted as Tft (i.e., Tft ≪ Tmeta), and
then obtain the well-trained θθθj and ϕϕϕj (line 29). According
to the well-trained θθθj and ϕϕϕj , the Pareto optimal solution
zzz∗j = {st∗m,j , f

t∗
m,j , p

t∗
m,j |∀m ∈ M, t ∈ T } of the j-th subprob-

lem is obtained (line 30). Subsequently, the Pareto optimal
solution set PF = {zzz∗1, · · · , zzz∗N} is established by storing N
Pareto optimal solutions corresponding to N subproblems by
alternating the weight vectors. Finally, PF is output.

D. Phase 3: FL Execution
Based on zzz∗ for each subproblem, we run the FL ex-

ecution phase and obtain the objective function value for
each subproblem. During the FL execution phase, due to the
LEO’s high-speed movement and potential resource limitations
of the devices, devices may be located outside the service
area of the LEO. This can cause devices to prevent them
from participating in the FL training process and causing the
straggler issue in synchronous methods (i.e., FedAvg [3]). The
fully asynchronous method (i.e., FedAsyn [13]) can solve the
straggler issue, but it requires frequent model interactions,
resulting in high communication costs. Recently, an asyn-
chronous strategy based on periodic aggregation (short for
FedAsynPA [14]) has been proposed to address the straggler
issue while reducing frequent model interactions. However,
this approach suffers from inefficiency, as devices that upload
their local models earlier have to wait for the entire fixed
period to finish before receiving the updated global model
from the LEO. Consequently, device resources remain idle for
an extended period, leading to decreased system efficiency. To
overcome these challenges, we propose AUWA scheme, which
aims to mitigate the straggler issue and reduce communication
costs.

AUWA scheme consists of two asynchronous schemes:
asynchronous uploading and asynchronous weighted aggre-
gation. In the asynchronous uploading scheme, the selected
devices update and upload their local models asynchronously,
allowing them to enter and complete their training indepen-
dently. In the asynchronous weighted aggregation scheme, the
LEO does not immediately perform global model aggregation
upon receiving each local model. Instead, the uploaded local
models are stored in a buffer. Similar to FedBuffer in [15], the
buffer can be implemented through a cryptographic algorithm.
When the buffer contains a certain number of the uploaded
local models, the LEO perform global model aggregation.
Different from FedBuffer, the weight assigned to each local
model during the global model aggregation in AUWA scheme
is based on the performance of the local model, rather than
solely relying on the traditional data size.

In detail, during each asynchronous round, each selected
device m uploads its local model to the LEO once it updates
its local model. Then, the LEO utilizes a buffer with a total
size of Buffer0 to store the local models, incrementing the
buffer size by 1. When the buffer becomes full (i.e., buffer =
Buffer0), the LEO performs global model aggregation based
on the stored local models. In this paper, a metric utm is
introduced to guide the LEO in assigning appropriate weights
to the more valuable local models during the global model
aggregation, which can be defined as:

utm =
E{Fm(www0

m)− Fm(wwwt
m)}∑

m∈M′ E{Fm(www0
m)− Fm(wwwt

m)}
, (29)

where E{Fm(www0
m)−Fm(wwwt

m)} represents the expected perfor-
mance of the local model from the selected device m in the
t-th round. From (29), it can be observed that devices with
better-performing uploaded local models are assigned higher
weights in the global model aggregation process.

V. EXPERIMENTAL STUDIES

A. Global Model Structures and Datasets

In this paper, we utilized three different networks as the
FL global models: an MLP and two CNNs named CNN1 and
CNN2, whose network structures are the same as [18]. To
evaluate the performance of DMMA-FL using these global
models, we utilized two datasets named MNIST and CIFAR-
10. MNIST dataset [33] comprises 60,000 training samples
and 10,000 test samples, consisting of ten classes of handwrit-
ten digits. CIFAR-10 dataset [34] contains 60,000 color images
with dimensions of 32×32 pixels and is categorized into ten
different classes. For the training phase, the data samples were
distributed randomly among multiple devices using both the
IID and Non-IID settings. In the IID data setting, each device
received a local training dataset that contained a uniform
sampling of all ten classes. In the Non-IID setting, each device
obtained a subset of samples that included different classes,
resulting in variations among the devices’ datasets.

Overall, we trained six instances, including MLP and CNN1
on MNIST dataset in the IID and Non-IID settings, and CNN2
on CIFAR-10 dataset in the IID and Non-IID settings.

B. Experimental Setup

The parameters for the studied LEO-FL system are con-
figured as follows [16]–[18], [35]. The LEO operates at an
altitude of 780 km, covering a service area of 2800 km2 [36].
Devices are randomly distributed within a rectangular area
within the service area of the LEO. The transmission time
is limited to a range of 5 to 15 time slots, where each time
slot lasts for 0.1 seconds. The bandwidth of the LEO is 400
MHz. The carrier frequency of uplink and downlink is 30 GHz
[16]. The noise power spectral density is specified as -174
dBm/Hz. Furthermore, the total dataset size is 47.04 MB. The
remaining parameters of the studied system are summarized in
Table II. All experiments were conducted using PyTorch 1.15
(Python3.8) and tested on a high-performance workstation
equipped with a RTX4060 GPU.

To verify the effectiveness of DMMA-FL, we employed
three categories of comparison methods: single-objective,
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TABLE II
PARAMETER SETTINGS OF THE STUDIED SYSTEM

Parameter Value Parameter Value Parameter Value
T 200 M 100 τl 0.01
τg 0.01 αm,m ∈ M 2e-27 N 30
pleo 100W cm,m ∈ M 20 X 86.6 KB
GT 60 GR 20 κ 20
g1 0 gβg 10GHz βf 40
p1 0 pβp 100W βp 20
K 30 ϵg on MNIST 0.85 Rcal 500Kbps
Tft 50 ϵg on CIFAR-10 0.6 Btot 100MHz

Maxeps 500 Tmeta 20 eps0 60
H 50 ϱ 0.01 ρ 0.001
η 0.03 Buffer0 6 υ 256

heuristics-based MOO, and learning-based MOO methods,
which are listed as follows:

1) Single-Objective Optimization Methods:
• FedCS: A study considers the impact of device selection

to minimize the model training convergence [37], with
the objective function as F = Ct (∀t ∈ T ).

• Sliding DE: A novel scheduling policy based on sliding
differential evolution [18] to optimize an SOP denoted as
F = Ct + ϵLt (∀t ∈ T ), where ϵ = 0.9.

• SDEFL: A novel service time efficient FL scheme to
minimize the communication-computing time [12] with
the objective function as F = Lt (∀t ∈ T ).

2) Heuristics-Based MOO Methods:
• MOPSO-FL: A multi-objective particle swarm optimiza-

tion (PSO) approach for FL systems [38].
• NSGA-FL: A fast and elitist multi-objective genetic al-

gorithm applied for FL systems [39].
• MOEA-FL: A multi-objective approach based on decom-

position strategy for FL systems [40].
3) Learning-Based MOO Methods:
• ACT-FL: A multi-objective approach based on DRL,

where NPTLS and the actor-critic algorithm are proposed
to train each subproblem built by a point network [27].

• LRA-FL: A multi-objective approach via resource allo-
cation algorithm for over-the-air FL systems, where it
utilizes the decomposition scheme and NPTLS [41].

• DQN-FL: A multi-objective approach based on decom-
position scheme and deep Q network (DQN) to train each
subproblem [42].
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Fig. 5. Test accuracy obtained by two scenarios. (a) MLP on MNIST dataset.
(b) CNN1 on MNIST dataset. (c) CNN2 on CIFAR-10 dataset.

C. Effectiveness of Collaboration Scheme

To demonstrate the effectiveness of the collaboration
scheme, we compared the studied system to the system

without the collaboration scheme (SWC), referring to the
scenarios in Fig. 2. Note that we chose a range of 5 to
100 devices because this range can encompass the majority
of satellite communication and other FL scenarios [43]–[47].
For instance, the range of 0 to 30 devices corresponds to
sparsely populated areas, such as high mountains or deserts.
The range of 30 to 70 devices is suitable for scenes with
moderate population density, like town convenience stores
and gas stations. Lastly, the range of 70 to 100 devices is
intended for densely populated scenarios, such as schools and
shopping malls. The experimental results are depicted in Fig.
5. We can observe that when the number of devices is small,
there is no significant difference between our studied system
and SWC. However, as the number of devices increases, our
studied system enables the continuous training of an ideally
accurate model on the six instances, benefiting from the ability
to transmit the global model to the next LEO. On the other
hand, as the number of devices increases, a single LEO cannot
complete the FL training process in SWC. Consequently, the
next LEO has to start training the global model from scratch,
which negatively impacts test accuracy. When the number of
devices exceeds a large threshold, the global model of SWC
may fail to converge without collaboration. To this end, the
collaboration scheme in the studied system is effective.

D. Effectiveness of Multi-Objective Optimization

To illustrate the effectiveness of DMMA-FL, we conducted
comparisons with three single-objective optimization methods
and six MOO methods. For single-objective methods, since
they only generate a single optimal value, we compared single-
objective methods with DMMA-FL by the obtained optimal
solution(s). As for MOO methods, since the true Pareto
optimal solution set is unknown, we employed commonly
used metrics named hypervolume (HV) [48] to comprehen-
sively evaluate the diversity and convergence of the generated
approximate Pareto optimal solution set. Given a point set
A ⊂ Rl and a reference point rrr ⊂ Rl, where l = 2 is the
number of optimization objectives. The HV of the set A is
calculated as follows:

HV (A,rrr) = Le

(⋃
aaa∈A

{bbb|aaa ≺ bbb ≺ rrr}

)
(30)

where Le(·) denotes the Lebesgue measure of a set: Le(Z) =∫
zzz∈Z 111Z(zzz)dzzz, where 111Z is the characteristic function of ob-

jective space Z . If zzz ∈ Z , 111Z(zzz) = 1; otherwise, 111Z(zzz) = 0.
In the calculation process of the HV, the non-dominated
solutions obtained by each algorithm are normalized using the
same reference set, and the reference point is commonly fixed
at (1, 1). Note that a larger HV illustrates a better approximate
Pareto optimal solution set and a better performance of the
corresponding MOO method.

We compared DMMA-FL with the three single-objective
methods by the obtained Pareto optimal solutions. The ex-
perimental results are illustrated in Fig. 6, Fig. 7 and Fig. 8.
From them, we can observe that DMMA-FL is able to generate
an approximate Pareto optimal solution set in all six in-
stances, which includes approximate Pareto optimal solutions
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associated with different weight vectors. In contrast, FedCS,
SlidingDE, and SDEFL, being single-objective methods, only
have a single optimal solution. In fact, the objective function
of FedCS, SlidngDE, and SDEFL represents a single-objective
subproblem corresponding to a potential weight vector of
the MOP. The optimal solution obtained by these methods
represents only a portion of the approximate Pareto optimal so-
lution set generated by DMMA-FL. The inferior performance
of FedCS, SlidingDE, and SDEFL compared to DMMA-
FL in terms of approximate Pareto optimal solutions can be
attributed to their optimization methods, which may become
trapped in local optima, resulting in suboptimal solutions.

We independently ran all the MOO methods 20 times on
each instance and recorded averaged HV and running time.
The experimental results are presented in Table.III. It is evident
from the table that our method (DMMA-FL) achieves a larger
HV across all six instances, which means DMMA-FL can
obtain a better approximate Pareto optimal solution set and
a better performance compared with other algorithms. ACT-
FL follows as the second-best performing method, utilizing
parameter transfer learning and operating with only two
closely weighted vectors, enabling efficient utilization of local
information. In contrast, DMMA-FL leverages meta-actor and
meta-critic networks based on global information from all
potential weight vectors. LRA-FL performs slightly worse
than ACT-FL, primarily because LRA-FL utilizes a DNN
framework, whereas ACT-FL employs a point network (i.e.,
seq2seq), which is better suited for training with DRL. DQN-
FL uses DQN based on value function, and its performance is
not as good as actor-critic methods like DMMA-FL and LRA-
FL. Heuristics-based methods exhibit lower HV compared
to learning-based methods, as they lack the ability to store
knowledge information and do not benefit from previous
knowledge to guide optimization. Among the heuristics-based
methods, MOEA-FL is better than NSGA-FL because NSGA-
FL may retain the non-dominant solutions that need to be
discarded, which has an influence on the search process.
MOPSO-FL obtained the worst performance in HV among
all the MOO methods. Due to the limitations of PSO, it is
easy to get trapped in local optima.

In Table.III, we can observe that DMMA-FL has the shortest
running time compared to the other six methods. This can
be attributed to the meta-actor and meta-critic networks with
better initial parameters. With just a few episodes, DMMA-
FL is able to obtain well-trained actor and critic networks
that output the Pareto optimal solution set. As for ACT-FL, it
employs BPTFS to train the actor and critic networks of the
neighboring subproblem with the initial parameters transferred
from the actor and critic networks of the previous subproblem.
However, the actor and critic networks of the first subproblem
are trained from scratch, resulting in higher computing costs.
Similar to HV, the network structure affects the running time
of LRA-FL. The running time of DQN-FL is behind DMMA-
FL, ACT-FL and LRA-FL, because actor-critic methods are
faster than DQN, which could use policy gradient to ac-
celerate training. Heuristics-based approaches exhibit slower
performance in the running time compared to learning-based
methods, as they rely on population-based iterative procedures

that often require more than 10,000 iterations to find optimal
solutions. NSGA-FL outperforms MOEA-FL in the running
time, primarily because MOEA-FL employs a decomposition
strategy that may consume additional running time. Among all
the MOO methods, MOPSO-FL consumes the most running
time.
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Fig. 6. The approximate Pareto optimal solution(s) of DMMA-FL and the
three single-objective methods using MLP on MNIST dataset.
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Fig. 7. The approximate Pareto optimal solution(s) of DMMA-FL and the
three single-objective methods using CNN1 on MNIST dataset.
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Fig. 8. The approximate Pareto optimal solution(s) of DMMA-FL and the
three single-objective methods using CNN2 on CIFAR-10 dataset.

E. Effectiveness of Meta-DRL

1) Effectiveness of Network Structure: To prove the ef-
fectiveness of the designed network structure (i.e., LSTM-
CNN for critic and one CNN for actor) of Meta-DRL in
DMMA-FL, we compared it with two CNNs (one CNN
for critic and another CNN for actor) and two MLPs (one
MLP for critic and another MLP for actor). Specifically, we
conducted experiments on the subproblem corresponding to
a randomly sampled weight vector across the six instances.
The experimental results are presented in Fig. 9. From Fig.
9(a), we observed that DMMA-FL reaches the larger HV
compared to its competitors, followed by DMMA-FL em-
ploying two CNNs. This is because the LSTM component
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TABLE III
HV AND RUNNING TIME OF DMMA-FL AND THE OTHER SIX MULTI-OBJECTIVE METHODS ON THE SIX INSTANCES.

Instance DMMA-FL ACT-FL LRA-FL DQN-FL MOEA-FL NSGA-FL MOPSO-FL
HV Running time/s HV Running time/s HV Running time/s HV Running time/s HV Running time/s HV Running time/s HV Running time/s

MLP-MNIST-IID 0.58240.58240.5824 44.6244.6244.62 0.5610 70.56 0.5501 77.07 0.5329 95.86 0.5150 170.34 0.4599 104.28 0.4356 200.24
MLP-MNIST-Non-IID 0.59660.59660.5966 44.6244.6244.62 0.5707 71.78 0.5658 79.48 0.5402 90.32 0.5350 167.45 0.4699 105.37 0.4407 203.09

CNN1-MNIST-IID 0.64260.64260.6426 44.3644.3644.36 0.6096 67.05 0.5940 78.66 0.5832 93.49 0.5640 170.02 0.5025 100.47 0.4708 202.44
CNN1-MNIST-Non-IID 0.65320.65320.6532 44.0944.0944.09 0.6144 70.17 0.606 75.83 0.5861 97.04 0.5675 171.37 0.5054 99.43 0.4783 204.33
CNN2-CIFAR-10-IID 0.71470.71470.7147 44.3544.3544.35 0.6410 71.02 0.6315 72.90 0.5914 93.26 0.5798 171.92 0.4990 101.22 0.4875 204.20

CNN2-CIFAR-10-Non-IID 0.74530.74530.7453 43.7143.7143.71 0.6579 65.68 0.6393 75.32 0.5961 91.89 0.5893 169.08 0.5138 101.44 0.4923 198.64

effectively extracts features from time-related sequential data,
while the CNN component efficiently extracts spatial features
from the input data. DMMA-FL with two MLPs obtains the
lowest HV, indicating poorer performance. In terms of running
time, DMMA-FL spends the shortest running time, followed
by DMMA-FL with two CNNs, while the performance of
DMMA-FL with two MLPs is the worst for running time.
To this end, the effectiveness of LSTM-CNN is proven.
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Fig. 9. Effectiveness of the LSTM-CNN network structure. “A” and “B”
represent MLP on MNIST dataset in the IID and Non-IID settings, “C” and
“D” represent CNN1 on MNIST dataset in the IID and Non-IID settings,
“E” and “F” represent CNN2 on CIFAR-10 dataset in the IID and Non-IID
settings.

2) Effectiveness of Meta-Learning: To evaluate the effec-
tiveness of meta-learning, we compared DMMA-FL with that
without meta-learning, referred to as DMA-FL. Furthermore,
we investigated the impact of different fine-tuning episodes
(i.e., Ttf ) by setting them to 10, 50, and 100 for DMMA-FL.
Then, we tested the subproblem corresponding to a randomly
generated weight vector. The results of these experiments
are presented in Fig. 10. From Fig. 10(a), we can observe
that DMMA-FL with different fine-tuning episodes achieves
similar objective function values as DMA-FL. However, as
shown in Fig. 10(b), DMMA-FL with different episodes
outperforms DMA-FL regarding running time. These results
provide empirical evidence for the effectiveness of meta-
learning. Additionally, based on a trade-off between the ob-
jective function value and running time, we set the fine-tuning
episode as 50 in this paper.

F. Effectiveness of AUWA Scheme

To illustrate the effectiveness of AUWA scheme, we com-
pared it with FedAvg, FedAsyn, FedAsynPA and FedBuffer.
The experiment was performed using CNN2 on the CIFAR-10
dataset, as it represents the most complex task among the six
instances, and its results are considered representative. The
experimental result is shown in Fig. 11. We observed that
AUWA scheme outperforms the other four methods in the
test accuracy and convergence at a certain time. Specifically,
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Fig. 10. Effectiveness of meta-learning. “A” and “B” represent MLP on
MNIST dataset in the IID and Non-IID settings, “C” and “D” represent CNN1
on MNIST dataset in the IID and Non-IID settings, “E” and “F” represent
CNN2 on CIFAR-10 dataset in the IID and Non-IID settings.

AUWA scheme achieves the fastest convergence and obtains
the higher test accuracy, followed by FedBuffer. FedAsynPA
achieves a similar test accuracy to FedBuffer. Although the
initial test accuracy of FedAsynPA is low, the frequent period
aggregations within a short time duration allow for rapid
improvement in test accuracy. As a result, the test accuracy
can increase rapidly. FedAsyn requires frequent interactions
with the devices for parameter exchange, resulting in higher
time costs. Therefore, the test accuracy is not as high during
certain periods. FedAvg performs the worst because it waits
for the slowest device in each round before performing model
aggregation.
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Fig. 11. Test accuracy obtained by the five aggregation strategies using CNN2
on CIFAR-10 dataset in the Non-IID setting

G. Analysis of Overhead

Overhead is an important factor of FL systems, which
commonly associated with communication and computation
time cost [49], [50]. However, communication and compu-
tation time overhead in this paper is one of the objectives
of P2, which is influenced by another objective (i.e., the
global model convergence reference value C). To this end,



13

we adopt a simple approach to measure the overhead: main-
taining C at approximately the same value and comparing the
communication-computing time overhead with MOO methods.
In MOO methods, the experiments are conducted using CNN2
on the CIFAR-10 dataset and the reason is same as Fig. 11.
The experimental results are presented in Table IV. From it,
we can observe that DMML-FL exhibits the lowest overhead
when achieving approximately the same global model conver-
gence reference values, followed by ACT-FL, and MOPSO-FL
consume most overhead among the MOO methods.

TABLE IV
COMMUNICATION-COMPUTING TIME OVERHEAD OF DMMA-FL AND THE

OTHER SIX MULTI-OBJECTIVE METHODS FOR CNN2 ON THE CIFAR-10
DATASET

MOO Methods Overhead/ms Global model convergence reference value

DMML-FL 4870.75 -390.25
ACT-FL 4956.21 -391.55
LRA-FL 4968.15 -386.71
DQN-FL 5042.21 -392.06

MOEA-FL 5058.57 -385.32
NSGA-FL 5343.00 -387.77

MOPSO-FL 5477.29 -385.46

VI. CONCLUSION

We studied LEO and FL in future 6G-satellite systems. In
the studied LEO-FL system, we investigated several encounter
issues in multi-metric performance optimization. These chal-
lenges include heterogeneous on-device capabilities at the
network edge, the limited coverage time of a satellite, the
straggler issue arising from the high mobility of LEO satel-
lites, and the need to handle asynchronous uploading and
aggregation from a massive number of devices. To achieve
an optimal tradeoff among these challenges, we adopted a
novel approach different from most previous FL works. In-
stead of focusing on individual optimization objectives, we
adopted a MOO perspective that simultaneously improves
communication-training efficiency and local training accuracy.
To address these challenges, we proposed a decomposition
and meta-DRL based MOO algorithm for FL called DMMA-
FL to enable dynamic adaptation, efficient uploading and
aggregation, and Pareto optimal solution sets approaching.
Compared to single-objective optimization, heuristics-based
and learning-based MOO methods, the effectiveness of the
proposed LEO-FL system and DMMA-FL algorithm is il-
lustrated using different FL global models on MNIST and
CIFAR-10 datasets in the IID and Non-IID settings.

In the future, we plan to develop the proposed algorithm
from the following aspects. Firstly, the combination of ad-
vanced techniques, such as continuous learning and behavior
regularization, can further improve the sample efficiency and
model adaptability of actor and critic networks. Secondly,
introducing attention mechanisms to our proposed algorithm
enables DRL to better handle long sequences and capture
relationships within the sequences. Thirdly, the parameters of
our proposed method are set to the same values as references.
It is advisable to conduct additional attempts to find the
optimal parameters and enhance the performance. Finally, it
is expected that researchers will be motivated by the proposed

algorithm to devise more advanced methods for FL in 6G-
satellite systems.
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