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Abstract—In this paper, we deal with the integration of
multiple sources of information such as Earth observation
Synthetic Aperture Radar (SAR) images and their metadata,
semantic descriptors of the image content, as well as other
publicly available geospatial data sources expressed as linked
open data for posing complex queries in order to support
geospatial data analytics. Our approach lays the foundations for
the development of richer tools and applications that focus on
Earth observation image analytics using ontologies and linked
open data. We introduce a system architecture where a common
satellite image product is transformed from its initial format
into to actionable intelligence information, which includes image
descriptors, metadata, image tiles and semantic labels resulting
in an Earth observation-data model. We also create a SAR image
ontology based on our Earth observation-data model and a 2-
level taxonomy classification scheme of the image content. We
demonstrate our approach by linking high resolution TerraSAR-
X images with information from CORINE Land Cover, Urban
Atlas, GeoNames, and OpenStreetMap, which are represented in
the standard triple model of the RDFs.

Index Terms—TerraSAR-X images, Linked open data, queries,
Strabon, ontologies, RDFs, analytics.

I. INTRODUCTION

Earth Observation (EO) imaging satellites continuously ac-
quire huge volumes of high resolution scenes and increase
the size of archives and the variety and complexity of EO
image content. This exceeds the capacity of users to access the
information content. In this context, it requires new method-
ologies and tools, based on a shared knowledge from different
sources, for locating interesting information in order to support
emerging applications such as change detection, analysis of
image time series, urban analytics, etc.

The state-of-the-art of operational systems for EO data ac-
cess (in particular for images) allows queries by geographical
location, time of acquisition or type of sensor [1]. Neverthe-
less, this information is often less relevant than the content of
a scene (e.g., specific scattering properties, structures, objects,
etc.). Kato coined the term Content-based Image Retrieval[2]
to describe his experiments on the automatic retrieval of
images from a database by color and shape features. The term
has since then been widely used for describing the process
of retrieving desired images from large archives on the basis
of low-level features such as color, texture, shape, etc. that
can be automatically extracted from the images themselves.
Several successful systems following this principle have been
implemented during the last 20 years [3-7].

However, later the problem of matching the image content
expressed as low-level primitive features with semantic defi-
nitions, usually adopted by humans became evident; causing

the so-called semantic gap [8]. In an attempt to reduce the
semantic gap, more systems including labeling or definition
of the image content by semantic names were introduced.
For example, [9] clarified the problem of the semantic gap
and proposed several methods for linking the image content
with semantic definitions. Here, it was demonstrated that the
semantic representation has an intrinsic benefit for image
retrieval by introducing the concept of query by semantic
example (semantics and content). In general, an image archive
contains additional information apart from the pixel raster data,
as for example, distribution data, acquisition dates, processing
and quality information, and other related information, which
in general is stored and delivered together with the image
data in the form of text files. However, this information is not
fully exploited in querying the image archive. Thus, another
important issue is how to deal with and take advantage of the
additional information delivered together with EO images.
Presently, in addition to the image content and metadata,
geo-information plays an important role in finding scenes
of interest and projecting the results on a global view as a
map representation. Thus, the tendency is to use geospatial
information for querying and visualizing the content of image
archives. In [10], Shahabi et al. presented a three-tier system
for effectively visualize and query geospatial data. This system
simulated geo-locations and fusion relevant geospatial data in
a virtualized model in order to support decisions. It used a
set of fundamental spatio-temporal queries and evaluated the
queries to verify decisions virtually prior to executing them in
the real world. This system was oriented to multimedia data.
In [11], the geo-tags and the underlying geo-context for an
advanced visual search were exploited showing satisfactory
results in the image retrieval. The importance of integrating a
geospatial infrastructure based on standardized web services
into an EO data library was mentioned in [12]. The provision
of a geospatial service infrastructure to access multilevel and
multi-domain datasets is a challenging task. Stepinski et al.[13]
discussed the lack of tools for data analytics, citing as an
example the NLCD database, which has not been analyzed
so far due to the lack of tools beyond basic statistics and SQL
queries; thus, the authors introduced a new application called
Land-ExA [13], which is a Geoweb tool for query and retrieval
of spatial patterns in land cover datasets. This tool applies
the concept of “query by example” and, instead of presenting
a ranked list of relevant maps, it produces a similarity map
indicating the spatial distributions of the locations having
patterns similar to the passed query. Brunner et al. presented
a system implementing web-services and open-sources[14].



JOURNAL OF KTgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Here, an EO image is overlapped with vector sources via
web services. It provides good visualization; however, no
real image processing is achieved. Advanced queries using
metadata, semantics and image content were presented in [15],
showing how the integration of multiple sources helps the end-
user in finding scenes of interest. Moreover, in recent years the
development of ontologies as explicit formal specifications of
the terms in the domain and relations among them [16] has
been applied to the EO framework [17]. Knowledge mining in
EO data archives based on an ontology was suggested by [18],
which describes concepts and domains that can be adapted to
EO understanding. In [19], a taxonomy for high resolution
SAR images is proposed.

In this paper, we present a new framework that sets the
foundations for the development of richer tools and appli-
cations that focus on EO image analytics using ontologies
and linked open data. The proposed framework allows a
user to express complex queries by combining metadata of
EO images (e.g., date and time of image acquisition), image
content expressed as low-level features (e.g., selected feature
vectors) and/or semantic labels (e.g., ports, bridges), as well as
other publicly available geospatial data sources expressed in
Resource Description Framework (RDF) as linked open data.
The proposed framework also visualizes the results of such
complex queries using geographical locations. We demon-
strated our approach using Synthetic Aperture Radar (SAR)
data, specifically very high resolution TerraSAR-X images
as EO products, and CORINE Land Cover, Urban Atlas,
GeoNames, and OpenStreetMap as geospatial data sources in
the form of linked open data.

This paper is organized as follows. Section II describes
our approach by presenting the system architecture. Section
IIT presents the EO Data Model and defines the SAR image
ontology. Section IV introduces query languages and shows
some examples of queries based on geospatial ontologies.
Section V presents some examples of urban analytics using
queries based on ontologies. Finally, the conclusion and further
work are presented in section V.

II. SYSTEM ARCHITECTURE

The system architecture is depicted in Fig. 1, which de-
scribes the main components and the relations between them.
The system is organized in two main parts 1) Processing of
EO products which is in raster format and 2) Management of
geospatial information which is in vector format. The system
aims at providing an approach for linking EO image content
expressed as semantic labels with the geometry of raster and
vector objects that allows generation of analytic charts as the
result of queries based on semantics, metadata, and related
information.

The upper part of Fig. 1 is mainly focused on EO product
processing by generating a data model and semantic de-
scriptions based on knowledge discovery methods. The lower
part is focused on the integration of geospatial data sources
expressed in the form of linked open data and the answering
and visualization of complex queries based on an ontology that
models the EO domain and the processing of an EO product.

In the following, we start presenting the data sources man-
aged by the system and later the description of each module.

A. Earth-Observation products and Linked Open Data

EO products together with linked open data are used as data
sources in the system and they are described in the following:

1) Earth-Observation products: In general, EO images
carry information about physical parameters and, additionally,
present the Earth surface as matrices of pixels, where each
pixel has an associated geographical location (latitude and lon-
gitude). However, querying and accessing to EO images pose
unique problems since geographical features to be represented
as ontological objects are not defined in the structure of the
data, which is a matrix of pixels. Moreover, EO images may be
complemented with geospatial information in vector format,
where the entities (objects) are well-defined with the basic
elementary points, lines, and polygons. Vector data contain
the geometry of these elements.

In this paper, we worked with TerraSAR-X images. A
TerraSAR-X product [20] is mainly composed of the image
data and its metadata. The size of a very high resolution
TerraSAR-X image is on average 10000x 10000 pixels with
varying numbers of bits per pixel(16 or 32), different types
of data (float, unsigned int) and consisting of one or multiple
bands in GeoTiff format, the corresponding metadata are con-
tained in Extensible Markup Language (XML) files containing
related information in form of structured text and numbers.
An XML product description metadata file comprises about
250 entries grouped into categories such as product compo-
nents, product information (i.e., pixel spacing, coordinates,
format, etc.), processing parameters, platform data, calibration
history, and product quality annotation. The image spatial
resolution varies from 1 meter to 10 meters depending on the
ordered product. A TerraSAR-X image has to be ordered in
a selectable data representation, where four main alternative
representations are available (Single look Slant range Complex
(§SC), Multi-look Ground range Detected (MGD), Geo-coded
Ellipsoid Corrected (GEC) and Enhanced Ellipsoid Corrected
(EEO))

2) Linked Open Data (LOD): The use of linked data is
a new research area which studies how one can make RDF
data available on the Web, and interconnect it with other data
with the aim of increasing its value for everybody [21]. In the
last few years, linked geospatial data has received increased
attention as researchers and practitioners have started tapping
the wealth of geospatial information available on the Web.
As a result, the linked open data cloud has been rapidly
populated with geospatial data (e.g., OpenStreetMap) some of
it describing EO products (e.g., CORINE Land Cover, Urban
Atlas). The abundance of this data will become useful to EO
data centers to increase the usability of the millions of images
and EO products that are expected to be produced in future.

In the following, we describe the EO products CORINE
Land Cover and Urban Atlas that we have made available
in RDF as linked geospatial data at the Datahub portal' and

Uhttp://datahub.io/organization/teleios
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Fig. 1: Architecture of the system. The system is composed of (upper-part) Earth observation product processing and (lower-part) management

of geospatial information.

other useful publicly available linked geospatial datasets, such
as OpenStreetMap and GeoNames.

a) CORINE Land Cover: The CORINE Land Cover
(CLC) project is an activity of the European Environment
Agency (EEA) that collects data describing the land cover of
38 European countries. The project uses a hierarchical scheme
with three levels to describe land cover with a mapping scale
of 1:100,000 and a small mapping unit of 25 hectares. Level
1 is the most generic classification (e.g., artificial surfaces,
agriculture areas) and comprises 5 categories, level 2 (e.g., ur-
ban fabric, industrial, transport units) comprises 15 categories,
and the last level is the most detailed one (e.g., continuous
urban fabric, discontinuous urban fabric) comprising around
45 categories.

b) Urban Atlas: Urban Atlas (UA) is also an activity
of the EEA that provides reliable, inter-comparable, high
resolution land use maps for 305 large European urban zones
and their surroundings. Its geometric resolution is 10 times
higher (1:10,000) than that of CLC with a minimum mapping
unit of 0.25 hectares for urban areas and 1 hectare for other
areas. The project uses a four-level hierarchical scheme based
on the CLC nomenclature. The first level comprises 4 cate-
gories (e.g., forests, water, artificial surfaces), the second level
comprises 4 categories (e.g., commercial units, mines, dump
and construction sites), the third level comprises 12 categories
(e.g., discontinuous urban fabric, sports and leisure facilities,
airports), while the fourth level comprises 7 categories (e.g.,
fast transit road and associated land). The Urban Atlas is
available for more than 150 urban agglomerations within
Europe.

We stress that the CLC and UA datasets present comple-

mentary characteristics making them very attractive to an EO
expert who can combine them for performing analytical tasks,
such as the ones presented in Section V. Fig. 2 depicts exactly
this observation where the content of the CLC and UA datasets
is depicted for the region of Cologne, Germany. One can
access various kinds of metadata information for the areas
classified by either CLC or UA, such as its computed area,
its code, the date of production, as well as its land use/land
cover.

c) OpenStreetMap: OpenStreetMap®> (OSM) maintains a
global editable map based on information provided by users,
which is organized according to an ontology derived mainly
from OSM tags, i.e., attribute-value annotations of nodes,
ways, and relations. The OSM data have been transformed into
RDF and published as linked open data by the LinkedGeoData
project (http://linkedgeodata.org/).

d) GeoNames: GeoNames® is a gazetteer that collects

both spatial and thematic information for various place names
around the world. It contains over 10 million geographical
names and consists of over 8 million unique features whereof
2.8 million populated places and 5.5 million alternate names.
All features are categorized into one out of nine feature classes
and further sub-categorized into one out of 645 feature codes.
GeoNames is integrating geographical data such as names of
places in various languages, elevation, population and others
from various sources.

Zhttp://openstreetmap.org/
3http://www.geonames.org/
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B. Earth Observation product processing

The upper part of Fig. 1 shows the modules used for
EO product processing. This part is composed of 1) Data
Model Generation (DMG), 2) EO DataBase (EO-DB) and 3)
Knowledge Discovery (KD).

1) Data Model Generation: The DMG aims at transform-
ing from an initial form of full EO products to actionable
intelligence information, which includes image descriptors,
metadata, image patches, etc., called EO Data Model as
depicted Fig. 3. Finally, all this information is stored into a
relational database enabling the rest of the modules. During
DMG the metadata of an EO image is processed. In general,
the metadata comes in a text format stored as markup language
(e.g., XML) files including information about the acquisition
time, the quality of the processing, description of the image
like resolution, pixel spacing, number of bands, origin of the
data, acquisition angles, acquisition time, resolution, projec-
tion, etc. The use of metadata enriches the data model by
adding more parameters that can be used later in advanced
queries. Then the EO image is going to be cut into square-
shaped patches and for each patch a very high resolution
quick-look is generated. These quick-looks are used in the
knowledge discovery component. In a next step, using the
patches, the image content analysis is performed by different
feature extraction methods, which are able to describe texture,
color, spectral features, etc. Currently, the system relies on two
feature extraction methods, namely, the Gabor Linear Moment
and Weber Local Descriptors.

a) Gabor Linear Moment (GLM): GLM is a linear
filter used in image processing. Frequency and orientation
representations of a Gabor filter are similar to those of the
human visual system, and it has been found to be particularly
appropriate for texture representation and discrimination [22].
In the spatial domain, a 2D Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave. Gabor filters
are self-similar; all filters can be generated from one mother
wavelet by dilation and rotation. The implementation of the
Gabor filter by [22] convolves an image with a lattice of
possibly overlapping banks of Gabor filters at different scales,
orientations, and frequencies. The scale is the scale of the
Gaussian used to compute the Gabor wavelet. The texture
parameters computed from the Gabor filter are the mean and
variance for different scales and orientations. The dimension
of the final feature vector is equal to twice the number of
scales multiplied by the number of orientations; for instance,
using two scales and six orientations results in a feature vector
with 24 elements.

b) Weber Local Descriptor (WLD): Inspired by Webers
law, Chen et al.[23] proposed a robust image descriptor for
texture characterization in optical images with two compo-
nents: differential excitation and orientation. The differential
excitation component is a function of the ratio between two
terms: 1) the relative brightness level differences of a current
pixel compared to its neighbors and 2) the brightness level of
the current pixel. The orientation component is the gradient
orientation of the current pixel. Using both terms, a joint
histogram is constructed giving the WLD descriptor as a
result. This filter was adapted for SAR images [24]. Here,

the gradient in the original WLD was replaced by the ratio of
mean differences in vertical and horizontal directions.

As result of the DMG, part of the EO Data Model is created
and stored into the database. This model will be completed
by using active learning methods for semantic labeling of the
image content and posteriori it will be complemented with
geospatial information coming from linked open data sources.

2) Earth Observation database: The EO product process-
ing is centered on a relational database management system
(DBMS), where the database structure supports the knowledge
discovery component after mapping the EO Data Model into
several tables and creating the relations between them. The
use of a DBMS provides some advantages such as the natural
integration of the different kinds of information, the ensuring
of the referential integrity, the speed of the operations, etc.
Therefore, all the information about the EO product such as
patches with geographical locations, image coordinates, meta-
data entries, extracted features, quick-looks, etc. are stored into
a structured table-based scheme, which implements the proper
relations between the tables and indices for performance
optimization.

3) Knowledge discovery: The knowledge discovery com-
ponent deals with finding hidden patterns or existing objects
in the EO database and grouping them in semantic categories
by involving the end-user interactively for labelling the image
content. The image labeling or semantic definition is based
on active learning methods being supported, as for example,
by a Support Vector Machine (SVM). Starting from a limited
number of labeled data, active learning selects the most
informative samples to speed up the convergence of accuracy
and to reduce the manual effort of labeling [25]. The two core
components in active learning are the sample selection strategy
and model learning, which are repeated until convergence.
In our implementation of the sample selection (cf. Fig. 1),
a set of image patches are presented to the end-user, who
will give positive and negative feedback examples assuming
that a positive example is a patch containing an object of
interest. Later, the list of positive and negative samples is
passed as training data (TD) to a support vector machine.
The SVM creates a model based on the training data, using
this model it will be able to predict whether another patch
belongs to the desired category or not. At the beginning of the
procedure, when only a few labeled tiles are available, a coarse
classifier is learned. After that, we repeat the iteration of the
two components until the classification result is satisfactory.
The number of iterations is determined by the end-user, who
will stop the interactive loop when he is satisfied with the
results. These results are grouped as a new category with a
semantic label given by the end-user. Thus, this component
adds semantic descriptors to the EO Data Model.

C. Management of geospatial information

The lower part of Fig. 1 is responsible for enriching EO
products with auxiliary data as for example land cover cate-
gories taken from CORINE Land Cover (CLC), geographical
location of points taken from Geonames, etc. These offer
querying functionalities to users that go beyond the ones
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currently being available to them. This can be done by relying
on semantic web technologies, such as stRDF and stSPARQL,
OWL ontologies, and geospatial data sources expressed as
linked data.

The enrichment of EO products stored in the EO database
involves first a transformation step of the relational database
encoding to the data model RDF. This transformation is guided
by an OWL ontology that models the EO domain and the
knowledge pertaining to the processing of an EO product as it
was previously described. This ontology is hereinafter called
SAR ontology. The result of the transformation is the RDF
description of the EO products, which is subsequently stored
in a Strabon RDF store together with other available linked
open data, such as CLC. The Strabon endpoint component
is the interface that provides user access to the content of
Strabon by allowing users to formulate complex queries in
the stSPARQL query language. The Strabon endpoint also
offers capabilities to visualize the results of complex queries
on a map and diagrams that are useful for data analytics. An
important part of our architecture is that it allows the users also
to leverage the linked data offered by the Strabon endpoint
and to develop domain-specific services (e.g., data mining,
rapid mapping) as well as general-purpose applications (e.g.,
visualization tools, such as [26]).
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(a) A map centered on the region of Cologne depicting avail-
able information from the CORINE Land Cover dataset
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(b) A map centered on the region of Cologne depicting available information
from the Urban Atlas dataset

Fig. 2: (a) CORINE Land Cover and (b) Urban Atlas information
for the region of Cologne.

III. EO DATA MODEL AND SAR ONTOLOGY

After the processing of EO products, a data model is gener-
ated in order to provide all information representing actionable
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Fig. 3: UML Representation of the EO Data Model.

intelligence that later is exploited for semantic definition of
the image content. In a further step, the description of the EO
products is made by using RDFs and ontologies.

A. EO Data Model

The EO data model has been introduced in [15]. Here,
we present an enhanced and extended version of this model
including semantic annotations as is depicted in Fig. 3.

The EO Data Model represents an EO product, which is
composed of metadata, a raster image, and vector data. The
raster image is divided into patches, which are converted
to feature vectors by applying feature extraction methods.
Later, using machine learning methods, the patch content is
associated with semantic labels (categories) giving as result a
semantic catalogue of the image. From this model, the main
processing unit is a patch because it consists of geographical
information, it has associated feature vectors, and it includes
semantic definitions. This data model is transformed to the
standard triple model of the RDF in order to be part of the
SAR ontology and to be linked to other data as for example
CORINE Land Cover (CLC), Urban Atlas (UA), etc.

B. Definition of the SAR ontology

In order to define the SAR ontology, the semantic annotation
of the SAR image content is organized as two-level hierarchi-
cal taxonomy which later is used as a main component of the
ontology. In this section we define the SAR ontology based on
our EO Data Model and the TerraSAR-X taxonomy.

1) TerraSAR-X taxonomy: The TerraSAR-X taxonomy is
the result of a careful analysis and annotation of the content
of SAR images [19]. A sufficiently large dataset composed of
several TerraSAR-X scenes was created in order to perform the
annotation on a large set of TerraSAR-X data. The acquisition
of TerraSAR-X products covers 109 different areas around the
world. The total number of patches obtained after running the
data model generation is about 110,000 and these patches
were classified into about 850 semantic categories. For these
categories about 75 independent labels were defined and we
grouped these labels into a hierarchical semantic annotation
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scheme [27]. The annotation was made using the machine
learning methods described above. Our scheme is a two-level
annotation scheme where level 1 gives general information
about the content of a patch (e.g., agriculture, bare ground,
forest, transportation, unclassified, urban area, or a water
body), while level 2 details the general information from level
1 (e.g., for forest — > forest broadleaf, forest coniferous,
forest mixed, parks, trees, and not specified further).

EO Taxonomy

— /" \

Agriculture  Water bodies Transportation
Cropland Pasture Rivers =+ Roads  Ports

Fig. 4: Taxonomy scheme with two levels: Level 1 gives general
information about the categories and level 2 details each category of
level 1.

Fig. 4 presents only few examples of the taxonomy defined
for TerraSAR-X during the annotation procedure. The com-
plete TerraSAR-X taxonomy is presented in detail in [27].
Examples of the image content are presented in Fig. 5. Here,
we selected TerraSAR-X patches representing 6 major lan-
duse classes (urban area, forest, water bodies, transportation,
agriculture and bare ground). In Fig. 5 can be seen that urban
area classes are the classes with very high brightness. Semantic
class forest has medium brightness and homogeneous texture.
The brightness varies according to the thickness of vegetation.
Roads appear as dark linear features and class ocean appears
as dark pixels in the TerraSAR-X image.

Fig. 5: (left-right) high density urban area, forest broadleaf, ocean,
pasture, skyscraper, road, lake, and bridge.

In the following, the SAR ontology derived from our
TerraSAR-X taxonomy is described

2) SAR ontology: The description of the EO products
follows the OWL ontology* depicted in Fig. 6 and which will
be referred as the SAR ontology. It comprises the following
major parts:

1) the part that comprises the hierarchical structure of a
product and the XML metadata associated with it (e.g.,
time and area of acquisition, sensor, imaging mode,
incidence angle),

“http://www.earthobservatory.eu/ontologies/dlrOntology.owl
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Fig. 6: The SAR ontology based on the two-level classification
scheme defining the semantic categories of TerraSAR-X images.

2) the part that defines the concepts and properties that
formalize the outputs of the data model generation com-
ponent (e.g., patch, feature vector),

3) the part that defines the land cover/use classification
scheme for annotating image patches that was con-
structed while experimenting with the knowledge discov-
ery framework presented above (e.g., port’, 'urban built-

up’).
In particular, the SAR ontology comprises the following
classes (as shown in Fig. 6).

e Image. This class corresponds to TerraSAR-X satellite
images. Instances of this class are TerraSAR-X images.

¢ Product. This class corresponds to EO products that are
associated with TerraSAR-X images. An instance of the
class Product might be associated with multiple instances
of the class Image through the property hasImage.

e Metadata. This class corresponds to TerraSAR-X xml
annotation file. Instances of this class are TerraSAR-X
metadata entries.

e Patch. This class corresponds to patches of an image as
they are generated using the tiling procedure mentioned
in Section II-B1. Instances of this class are associated
with instances of the class Image through the property
hasImage.

e FeatureVector. This class corresponds to a feature
vector that is computed for a specific patch. An instance
of this class is a feature vector value for an instance of
the Patch class with which it is associated through the
property hasFeatureVector.

e LandCover. This class corresponds to the land
cover/land use of a geographical area that a patch occu-
pies. The LandCover class has a number of subclasses
based on the classification scheme of Fig. 4, which is
reflected in the SAR ontology.

e Label. This class corresponds to the semantic label that
is assigned to a patch through the property hasLabel.
Instances of the class Label are associated with sub-
classes of the class LandCover through the property
correspondsTo.
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IV. QUERY LANGUAGES

A. Standard Query Languages

Using the EO Data Model stored in the relational database,
we can access the information via Standard Query Language
(SQL) statements. SQL is a statement based logical query lan-
guage, which allows finding and exploiting data in a standard
manner. SQL statements allow us to easily query an image
archive combining all defined entities and their attributes. For
example, a typical SQL statement for searching EO products
within in a specific time period is

SELECT resolution,

FROM metadata

WHERE starttimeutc > 30/06/2007 and
stoptimeutc <30/06/2010.

startimeutc, stoptimeutc

This query returns the EO images acquired during this
period. More complicated queries can be performed based on
SQL statements as for example:

SELECT =
FROM patch
WHERE mean (gabor—-features) >45.

A list of patches with a mean value of their extracted
features being greater than 45 is returned.

From an application point of view, this kind of queries is a
powerful tool in finding information in the relational database.

B. The data model stRDF and the query language stSPARQL

The stRDF data model and the stSPARQL query language
are extensions of the RDF data model and the SPARQL query
language for the representation and querying of RDF data
with geospatial information. stRDF introduces the new data
type strdf :geometry for modeling geometric objects that
change over time. The values of this data type are typed literals
that encode geometric objects using the OGC standard Well-
known Text (WKT) or Geographic Markup Language (GML).
In stRDF, information is expressed as triples of URISs, literals,
and blank nodes in the form “subject predicate object”.
stRDF allows triples to have an optional fourth component
representing the time the triple is valid in the domain.

The following four RDF triples encode information related
to a patch of an image. The prefix tsx corresponds to the
namespace for the URIs that refer to the SAR ontology, while
xsd and strdf correspond to the XML Schema namespace
and the namespace for our extension of RDF, respectively.

tsx:QKL_TSX1_SAR...047_160_0_0.jpg a tsx:Patch;

tsx:hasSize "160"" "xsd:integer;

tsx:hasIndexI "0""“"xsd:integer;

strdf:hasGeometry "POLYGON((12.28 45.45,...,
12.28 45.45))"" "strdf:WKT.

The fourth triple above shows the use of spatial liter-
als to express the geometry of the patch in question. This
spatial literal specifies a polygon that has exactly one ex-
terior boundary and no holes. The exterior boundary is se-
rialized as a sequence of the coordinates of its vertices.
These coordinates are interpreted according to the WGS84
geodetic coordinate reference system identified by the URI
http://spatialreference.org/ref/epsg/4326/
(which can be omitted from the spatial literal).

stSPARQL provides functions that can be used in filter
expressions to express qualitative or quantitative spatial rela-
tions. For example, the function strdf:contains is used
to encode the topological relation non-tangential proper part
inverse (NTPP~1) of RCC-8 [28]. stSPARQL also supports
update operations (insertion, deletion, and update of stRDF
triples) on stRDF data in SPARQL Update 1.1°. In addition,
stSPARQL performs the corresponding spatial selection and
spatial join by instantiating the two queries templates.

The following query, expressed in stSPARQL, computes the
distribution of instances of Urban Atlas classes in TerraSAR-X
images.

SELECT ?ualLandUse
WHERE {

?ua ua:hasCode ?uaCode

?ua ua:hasLandUse ?ualandUse

?ua geo:hasGeometry ?7uaGeometry.
?uaGeometry geo:asWKT ?uaGeo

(COUNT (DISTINCT ?ua)

#Berlin
FILTER (strdf:mbbIntersects (?uaGeo,
"POLYGON ( (13.317529 52.494114000000003,13.4
29790499999999 52.50573,13.416467000000001
52.554319999999997,13.303621 52.54265600000
0001,13.317529 52.494114000000003) )"
" "strdf:WKT))

}

GROUP BY ?ualLandUse

ORDER BY DESC (?count)

In the above query, linked data from Urban Atlas are used
to retrieve geospatial information about a TerraSAR-X scene
taken over Berlin, Germany. The strdf :mbbintersects
function checks whether the minimum bounding box of the
geometry of each Urban Atlas class intersects with the min-
imum bounding box of the polygon that represents the given
TerraSAR-X image of Berlin. We realize that stSPARQL
enables us to develop advanced semantics-based querying of
EO data along with open linked data being available on the
web. In this way, the architecture of Fig. 1 unlocks the full
potential of these datasets, as their combination the abundance
of data being available on the web is offering significant added
value.

The stRDF model and stSPARQL query language have been
implemented in the Strabon system which is freely available
as open source software®. Strabon extends the well-known
open source Sesame 2.6.3 RDF store and uses PostGIS as
its spatially-enabled backend DBMS.

V. GEOSPATIAL DATA ANALYTICS

In the following experiments, we use a test dataset com-
posed of 200 worldwide TerraSAR-X scenes, where 109
images were applied to the formulation of the SAR Ontol-
ogy described above. In most examples, we interpret three
TerraSAR-X scenes taken over Germany (Berlin, Munich and
Cologne) since CORINE Land Cover and Urban Atlas data
are available for these cities. We also use Geonames data. It
is important to mention that applications are able to link to

Shttp://www.w3.org/TR/sparql11-update/
Shttp://www.strabon.di.uoa.gr/

AS 7?count)
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TABLE I: Number of patches, in the area of Cologne, that are
attributed to specific categories according to the SAR ontology.

SELECT ?annotation
(COUNT (DISTINCT ?patch) AS ?count)

WHERE {

?patch rdf:type tsx:Patch .

?patch geo:hasGeometry ?patchGeom .

?patchGeom geo:asWKT ?patchWKT .

?patch tsx:hasLabel ?label

?label tsx:type tsx:Label

?label tsx:correspondsTo ?annotation .

#Cologne
FILTER (strdf:mbbIntersects (?patchWKT,
"POLYGON ((6.915 50.914, 7.025 50.927, 7.012
50.972, 6.903 50.96, 6.915 50.915, 6.915
50.914))" " “strdf:WKT)

}

GROUP BY ?annotation
ORDER BY DESC (?numberOfPatches)

TABLE II: Distribution of semantic categories over Cologne city
according to TerraSAR-X, CLC, UA and Geonames

Dataset | Total Ist Category 2nd Category
High density Ur- Hd UA and
TSX 2 16% ban Area 14% Roads.
Industrial and
CLC 9 22% . 20% Green areas
commercial Area
UA 14 | 5719 Comtinwousurban |0 pgugral
fabric
GeoN 6 84% S 9.1% P

different data sources and to use and share data effectively for
answering queries and supporting specific requirements by the
use of RDFs.

A. Semantic link between geospatial ontologies

By exploiting the expressivity of the query language
SPARQL and the capability of Strabon Endpoint to export
query results encoded into various formats (XML, CSV, KML,
etc.), or to visualize them as diagrams, users can explore
implicit properties about data.

For example, an interesting question is: "What is the dis-
tribution of TerraSAR-X semantic categories in a specific
area?. This can be answered by the query in Table I, which
counts how many unique patches, in the area of Cologne,
are attributed to specific TerraSAR-X categories. By posing
similar queries for the CLC, UA and GeoNames datasets
and by visualizing the results as pie charts (cf. Fig. 7) a
user can have an insight for the category distribution of each
dataset. We observe that the TerraSAR-X and CLC datasets
have a high diversity of categories being almost uniformly
distributed among the patches, while UA and GeoNames have
less diversity of categories and one or two categories are
attributed to almost every patch. Table II summarizes the
results of the Fig. 7; here, it can be seen that TerraSAR-X
has the highest number of semantic categories, where 16% of
the patches are classified as "High density urban area’.

SPARQL can also be used to correlate different datasets
and to discover similarities or conflicts between them. For
example, the query in Table III selects all CLC categories
which are attributed to patches labeled as ’Industrial area’
in the SAR ontology. Table IV summarizes the results. Here,
we observed that the category ’industrial area’ in the SAR

4

(b) CLC categories

s
mr
A
LI
mH
R

(d) GeoNames categories

(a) TerraSAR-X categories

(c) UA categories

Fig. 7: Categories of different datasets (TSX, CLC, UA, GeoNames)
for the city of Cologne.

TABLE III: Select all CLC categories which are attributed to patches
labeled as ’industrial area’ in the SAR ontology.

SELECT DISTINCT ?annotation ?clcLandUse
WHERE {
?patch rdf:type tsx:Patch .
?patch geo:hasGeometry ?patchGeom .
?patchGeom geo:asWKT ?patchWKT .
?patch tsx:hasLabel ?label .
?label rdf:type tsx:Label
?label tsx:correspondsTo tsx:Industrial_area.

?clc clc:hasID ?clcID .

?clc clc:hasLandUse ?clcLandUse
?clc geo:hasGeometry ?clcGeom.
?clcGeom geo:asWKT ?clcWKT .

FILTER (strdf:contains (?clcWKT, ?patchWKT))

#Cologne

FILTER (strdf:mbbIntersects(?clcGeo,

"POLYGON ((6.915 50.915,7.025 50.927,7.012
50.972,6.903 50.960,6.915 50.915))"" "strdf:WKT))

ontology is also characterized as Industrial area in CLC and
UA; however, more semantic categories are found in both
datasets.

Finally, we can use SPARQL to discover statistic properties
by correlating different datasets. For example, the query in
Table V counts how many patches with a specific label in the
area of Munich are characterized as *Continuous urban fabric’
according to the CLC dataset. The results of this query and

TABLE IV: CLC, UA and GeoNames categories attributed to patches
labeled as ’industrial area’ in the SAR Ontology

CLC UA GeoNames
Industrial or Commer- Other roads and asso- S
cial units ciated land
Continuous urban fab- Continuous urban fab- A
ric ric
Discontinuous urban
gt Green urban areas
fabric

Industrial commercial
public military and
private units
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TABLE V: Count how many patches in the area of Munich with a
specific label are contained in an area characterized as ’Continuous
urban fabric’ according to the CLC dataset

SELECT ?annotation
(COUNT (?patch)
WHERE {
#select corine areas
?clc a clc:Area .
?clc clc:hasLandUse clc:continuousUrbanFabric .
?clc geo:hasGeometry ?clcGeom .
?clcGeom geo:asWKT ?clcWKT .

AS ?count)

#select patches

?patch rdf:type tsx:Patch .

?patch geo:hasGeometry ?pathcGeom .
?patchGeom geo:asWKT ?patchWKT .
?patchWKT tsx:hasLabel ?label

?label tsx:correspondsTo ?annotation .

#Munich

FILTER (strdf:mbbIntersects (?patchWKT,

"POLYGON ((11.492 48.110,11.599 48.123,11.586
48.169,11.479 48.157,11.492 48.110))"""strdf:WKT))

FILTER
}
GROUP BY ?annotation
ORDER BY DESC (?numberOfPatches)

(strdf:contains (?clcWKT, ?patchWKT))

Koln
Munich sssssss
Berlin  messsss

High density High density High density
residential 1 residential 3 residentlal 2

High  Road & high

High
bullding 2 building 1 density residential

Fig. 8: How many patches with a specific label are contained in a
continuous urban fabric area (CLC)?.

two similar ones about Cologne and Berlin are visualized as a
histogram in Fig. 8. These queries select patches in continuous
urban fabric CLC areas. Thus, the TerraSAR-X categories that
are selected are similar (e.g., different types of residential
areas and high building areas). In Fig. 8 we can also see that
the largest number of ’high residential area’ patches occur is
in Munich. The number of ’roads’ is similar in Berlin and
Cologne.

B. Land use distributions

In the following examples, we present land use distributions
of the different geospatial datasets.

a) Land use distribution of the whole dataset: Fig. 9
shows the land use distribution of the whole dataset according
to the SAR Ontology. As we can see, around 34 different
land use categories can be identified, with *'medium density
residential area’ ranking first, followed by ’roads’ and "high
density residential area’.

b) Land use of Berlin: Fig. 10 shows the land use distri-
bution of Berlin according to the Urban Atlas dataset. The pie

Fig. 9: Land use distribution of our test dataset.

chart visualizes the result of the stSPARQL query described
in the previous section. As we can see, the "continuous urban
fabric areas’ cover the highest percentage of land use in Berlin
followed by ’water bodies’.

M industrialCommercialPu...
B waterBodies
discontinuousDenseUrb...
M discontinuousMediumD...
B continuousUrbanFabric
M sportsAndLeisureFaciliti...
M greenUrbanAreas
M constructionSites
M otherRoadsAndAssociat...
M agriculturalAndSemiNat...
M railwaysAndAssociatedL...
W portAreas
Other

27.8%

34.6%

Fig. 10: Land use distribution of Berlin according to Urban Atlas.

c) Land use of Munich: In this example, we look for
semantic categories within an area of Munich characterized
as ’continuous urban fabric’. The query shown in Table VI
discovers the semantic categories of the SAR ontology that
correspond to the ’continuous urban fabric areas’ of Munich
according to the CORINE Land Cover dataset. The result of
the query is visualized in Fig. 11. Here, we can observe that
categories like "high density residential area’, ’sport area’,
forest’, channel’, etc. which belong to the SAR ontology are
characterized as ’continuous urban fabric’ in the CLC dataset.

d) Land Use of Cologne: In this example, we analyzed
the number of Urban Atlas areas of Cologne contained by
a TerraSAR-X patch. The query specification is described in
Table VII. Here, this returns the number of Urban Atlas areas
that exist in each TerraSAR-X patch of Cologne city. The
result is shown in Fig. 12.

C. Urban analytics

Queries help us to get an idea about the existing semantics
that are in the database and the relation between these seman-
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TABLE VI: Count how many patches in the area of Munich with a
specific label are contained in an area characterized as ’Continuous
urban fabric’

SELECT ?annotation
WHERE {

?p rdf:type tsx:Patch .

?p geo:hasGeometry ?tsxGeometry

?tsxGeometry geo:asWKT ?g .

?p tsx:hasLabel 2?1

?1 rdf:type tsx:Label

?1 tsx:correspondsTo ?annotation

(COUNT (DISTINCT ?1) as Z2count)

?clc clc:hasID ?clcID

?clc clc:hasLandUse clc:continuousUrbanFabric
?clc geo:hasGeometry ?clcGeometry.
?clcGeometry geo:asWKT ?clcGeo .%

#Munich

FILTER (strdf:mbbIntersects(?clcGeo,
"POLYGON ( (11.4923935 48.110413000000001,
11.599087000000001 48.123100000000001,
11.586228999999999 48.169327000000003,
11.479395999999999 48.156627999999998,
11.4923935 48.110413000000001))"
““strdf:WKT))

FILTER (strdf:contains(?clcGeo, ?9g))

}
GROUP BY ?annotation
ORDER BY DESC (?count)

M High_density_residentia...

M Roadandhigh_density_r...
High_buildingand1

M High_buildingand2

M Mixed_urban_areaand1

M High_density_residentia...

M Industrial_area

M Roadand2

B Stubbleandl

M High_density_residentia...

M Channel

M Forest_mixed

W Sport_area

M Railwayand3

Fig. 11: Semantic categories of the SAR ontology within an area of
Munich characterized as continuous urban fabric.

Nondide.
High densit residentl areaand3

nunUhsezs 17

anaiaton

Fig. 12: Number of Urban Atlas areas of Cologne contained in a
specific patch.

tics and other different parameters (e.g., location of the scene,
incidence angles, etc.).

e) Cities ranked by green areas: Fig. 13 shows the cities
of our experimental database ranked by green areas. The bar
chart illustrates the distribution of green areas by city. A query
was performed using semantic labels like ’trees’, ’forest’,
"parks’ and we counted the total number of patches belonging
to these categories. The results highlighted that the city code

10

TABLE VII: Number of Urban Atlas areas of Cologne being
contained in a TerraSAR-X patch

SELECT ?annotation
WHERE {
#select Urban Atlas areas
?ua ua:hasLandUse ?ualLandUse
?ua geo:hasGeometry ?uaGeometry
?2uaGeometry geo:asWKT ?uaGeo

(COUNT (?ua) AS ?numOfUAreas)

#select patches

?p rdf:type tsx:Patch .

?p geo:hasGeometry ?tsxGeometry
?tsxGeometry geo:asWKT ?g .

?p tsx:hasLabel 2?1

?1 tsx:correspondsTo ?annotation

#Cologne

FILTER (strdf:mbbIntersects(?g, "POLYGON
((6.9154109999999998 50.914684000000001,
7.0246969999999997 50.926659999999998,
7.011908 50.972445999999998,
6.9025806999999997 50.960479999999997,
6.9154109999999998 50.914684000000001) )"
" strdf:WKT))

FILTER (strdf:contains(?g,

?uaGeo))

}

GROUP BY ?annotation

totalnumber of patches

R EEEEEEEEEEEE]

47734383 75 7L 72 46 50 49 56 14 15 23 33 34 59 62 19 37 42 54 10 26 40 80 69 22 24 13 82 11 57 63 18
Cityid

Fig. 13: Cities ranked by green areas.

59, referring to Teica in Romania, has the highest percentage
of green areas.

f) Distribution of semantic labels by incidence angle:

In this kind of query, we used metadata and semantic labels
in order to show the distribution of semantic labels versus
incidence angle and we analyzed whether there is a correlation
between them. Fig. 14 shows the results. Here, it can be
observed that most of the semantic labels appear at incidence
angles between 35 and 40; however, the category ’forest’
occurs at angles of more than 45.

g) Distribution of water bodies by continents: In this
kind of query, we used Geonames and semantic categories
from the SAR ontology in order to group our scenes according
to the place and to semantic labels being associated with water
bodies (e.g., channels, rivers, ocean, etc.). Fig. 15 shows the
results. One can see that the member states of the European
Union have the highest diversity in water bodies linked to
23 different semantic categories, where the major category
corresponds to ’river and stubble’. Oceania has only three
water body classes. ’Channels’ exist in five continents, while
the category ’river and agriculture’ does not exist in North
America and Oceania
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Distribution of the semantic labels vs incidence angles
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Fig. 15: Distribution of water bodies by continent.

VI. CONCLUSIONS

Our approach in this paper is focused on geospatial data an-
alytics by using very high resolution SAR images, by defining
an ontology to explain the image content, and by integrating
linked open geospatial data sources. In this paper, we presented
a remote sensing application case oriented to geospatial data
analytics for TerraSAR-X images. Data analytics is achieved
using the defined SAR ontology and the proposed system
architecture.

This deals with the integration of multiple source of infor-
mation such as image content expressed as low-level features,
metadata entries, semantic descriptors of the image content
being represented in an ontology as well as publicly available
geospatial data sources expressed in RDFs as linked open data
such as CORINE Land Cover, Urban Atlas, etc. The system
allows end-user to pose complex queries and to visualize the
results using geographical locations. Moreover, the content of
a satellite image together with linked open data land use/land
cover is summarized in charts that explain the urban analytics.

Finally, we conclude that the combination of linked open
data with Earth observation images is without doubt a chal-
lenging task that may be achieved if proper tools are available.
It addresses new research topics such as sharing standardiza-
tion and optimization, image retrieval using several sources,

query languages, etc. Moreover, as future work it remains
the evaluation of the system performance as well as the
enhancement of the SAR ontology, and the generalization of
the ontology for EO images. We also could think in adding
statistical machine learning methods for image retrieval using
heterogonous data sources.
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