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Joint Design of SAR Waveform and Imaging Filters

Based on Target Information Maximization
Jiawei Zhang, Huaping Xu, Member, IEEE, Wei Liu, Senior Member, IEEE, Chunsheng Li, Liang Feng and

Yifan Chen, Senior Member, IEEE

Abstract—In this paper, a joint design of both transmit wave-
form and imaging filters for synthetic aperture radar (SAR) is
proposed to improve its information acquisition capability. First,
the mutual information between SAR image and target scattering
characteristics is considered as the performance metric, and its
equivalent analytical version is derived in the 2-D frequency
domain. The design is formulated as an optimization problem
with an energy condition and a similarity constraint. Then, to
tackle the resultant non-convex problem, by referring to the
Dinkelbach’s method, an algorithm is derived to find the desired
solution via a cyclic maximization procedure alternating between
three subproblems. Based on minorization-maximization, a uni-
fied optimization method with an increasing penalty on constraint
violation is proposed to solve all subproblems. Convergence of
the developed algorithm is analytically proved. Finally, numerical
examples are presented to demonstrate the effectiveness of the
proposed design.

Index Terms—SAR, transmit waveform, imaging filter, infor-
mation acquisition, constrained optimization.

I. INTRODUCTION

BY transmitting a wideband waveform periodically and

receiving backscatter echoes of the observed scene, syn-

thetic aperture radar (SAR) can generate high-resolution 2-D

images, which are widely used for surveillance and monitoring

of Earth surface [1–3]. With the improvement of resolution,

even small and closely spaced targets become visible and

identifiable, which opens up a gateway to a number of

advanced applications, including aircraft detection [4], ship

classification [5], vehicle recognition [6], and so on. The

use scenarios for SAR are no longer limited to traditional

large-scale topographic mapping and point target discovery,

but also developed to description and perception of interested

targets, whose performance depends on the amount of acquired

information about the observed target. As a result, information

acquisition for SAR has become an increasingly important

problem.

Since the principle of synthetic aperture was introduced, one

emphasis in the application of SAR has been the detection of
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point-like targets, where the signal-to-noise ratio (SNR) has

been the primary metric used in SAR waveform selection

and imaging [7]. The most common waveform employed

in SAR is the linear frequency modulated (LFM) signal,

whose range profile obtained through matched filtering is the

sinc function. To reduce its sidelobes, weighted windowing,

adaptive filtering, and other optimization techniques have been

introduced [8]. Moreover, another SAR waveform is generated

by a nonlinear frequency modulated (NLFM) synthesis method

[9–11]. A proof-of-principle experiment was performed to

demonstrate the potential of NLFM pulses based on a real

SAR platform on the ground [9]. Using multi-objective op-

timization, a piecewise linear frequency modulated signal

was generated for NLFM design, leading to a higher SNR

and lower sidelobes compared with the LFM signal. Based

on the principle of stationary phase, an NLFM waveform

was obtained to suppress the undesired sidelobes, and this

scheme was demonstrated by an airborne SAR experiment

[10]. An advanced NLFM waveform optimization framework

was reported in [11], with higher SNR gain achieved.

As can be seen, the SAR waveform design has always

been focused on higher SNR and lower sidelobes, for better

point target detection capability. However, for extended targets,

information acquisition is the key factor [12]. Meanwhile, with

the improvement in wideband signal generation and wideband

processing, resolution of SAR has experienced a substantial

increase, which transforms many originally point-like targets

into extended ones. As early as in 1964, Woodward pointed

out that pursuing SNR blindly can mislead radar design and

data processing because there is no theory implying that

maximizing SNR can ensure maximal information acquisition

[13]. A similar issue was also addressed by Bell in [14]. Target

detection, classification and recognition with a high confidence

level, are still a difficult problem, even with high or ultra-

high resolution SAR images [15]. Although this problem has

been widely studied over the years, it is still far from being

fully solved [16]. It is clear that the present SAR waveforms

are not optimal for target information acquisition, and the

associated SAR imaging algorithms employing a matched

filter associated with the waveform are also not oriented for

target information. Under the narrowband SAR system where

the point scatter model is usually sufficient, maximizing SNR

is desired in a general sense, and information acquisition of

target details does not present much importance. However,

the contradiction between the SNR criterion and information

acquisition requirement for extended targets is more significant

in the wideband case. The SAR optimization criterion for a
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larger amount of information should be considered, especially 
for a wideband system.

SAR waveform design based on the maximizing target in-

formation criterion (MTIC) is rarely studied, while similar ac-

tivities have already been carried out for various non-imaging 
radars, such as single waveform radar [17], multi-input multi-

output radar [18] and cognitive radar [19]. Meanwhile, the 
MTIC has been involved in various application scenarios. 
For example, a MTIC-based waveform was implemented to 
perform target recognition from a set of possible alternatives 
[19]. It was shown that waveform design by maximizing 
mutual information (MI) can provide more desired estimation 
and classification c apabilities [ 20]. S uch a  c riterion w as also 
employed in target class discrimination applications, leading 
to better classification r esults [ 21]. I t d emonstrates t hat the 
information acquisition capability of an active sensor can 
be improved by judiciously designing its transmit waveform 
[22, 23]. It is not easy to extend these works to SAR, since it 
is a 2-D imaging radar with some unique requirements, such 
as desired imaging filters, high resolution (wideband property) 
and low sidelobe level. In [24], only a suboptimal wideband 
waveform was designed to improve information acquisition of 
high-resolution radar, while the receive filter w as s till based 
on the matched filter derived by maximizing SNR. As a result, 
significant performance degradation may occur, as the receive 
filter i s n ot o ptimized f or i nformation a cquisition. Although 
this scheme was improved by a joint design of waveform and 
receive filter, t he o ptimization i n a zimuth fi lter wa s ignored 
[25].

In this article, a novel method is developed to jointly design 
the SAR transmit waveform and imaging filters u nder the 
MTIC. To our best knowledge, this is the first time to address 
the joint design problem for information acquisition maxi-

mization of SAR. The MI between the SAR image and the 
target scattering characteristic is employed as the performance 
metric, which is transformed into an equivalent version of the 
Pearson correlation coefficient. An analytical expression of the 
objective function is then established in the 2-D frequency 
domain with detailed derivations. Combined with a similarity 
requirement in both directions, the constrained optimization 
problem is finally formulated.

The resultant problem is non-convex, with a fractional mul-

tivariate objective function and multiple constraints. To tackle 
the problem, referring to the Dinkelbach’s method, the numer-

ator and denominator of the objective function are decoupled 
by an auxiliary function. By using the cyclic maximization 
procedure, the multivariate problem is divided into three 
subproblems with respect to waveform, range filter a nd az-

imuth filter, respectively. Based on minorization-maximization 
(MM), the non-convex subproblems are converted to convex 
forms, with an increasing penalty on constraint violations. 
They are then solved alternately, and their convergence is 
analyzed. Numerical examples show that the joint design 
result synthesized by the proposed algorithms outperform their 
counterparts.

The rest of this paper is organized as follows. The SAR 
information acquisition model and the joint design problem are 
formulated in Section II. The proposed solution with detailed

analysis is presented in Section III. Numerical results are

provided in Section IV, and conclusions are drawn in Section

V.

Notation: Throughout this article, matrices are denoted by

bold uppercase letters, and vectors by bold lowercase letters.

N and R denote the set of natural numbers and real numbers,

respectively. E[·] is the expectation operation. λmin[A] is the

minimum eigenvalue of matrix A. Fτ and Fη are the Fourier

transform in the range and azimuth directions, respectively.

The symbol tr[A] indicates the trace of A. The superscript

(·)
T

, (·)
∗

and (·)
H

represent the vector/matrix transpose,

complex conjugate and the Hermitian transpose, separately.

The notation | · | indicates the modulus of a complex scalar.

|| · || is the Euclidean norm of a vector. Diag(a) represents the

diagonal matrix formed by components of the vector a. The

notation ⊗ represents the 2-D convolution operator, and ⊙ is

the Hadamard (element-wise) product of vectors/matrices.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. SAR Signal Model

A SAR mounted on a moving platform is similar to a con-

ventional radar, whose waveform is sequentially transmitted

and backscattered echoes are collected by the radar antenna.

A SAR waveform is generally written as

s(τ) = ωr(τ) cos [2πf0τ − ϕ(τ)] (1)

where τ , f0 and ϕ(τ) are the range time, center frequency

and phase code. ωr(τ) is a window function, and it varies

slowly with respect to τ . As the platform advances, a pulse is

transmitted at regular intervals. Meanwhile, the resultant SAR

echo is written into successive rows, which is then processed

by quadrature demodulation to generate 2-D baseband echo.

The 2-D SAR echo of a point target with unity amplitude is

the system impulse response [26]

hE(τ, η) ≈ ωa(η) exp (−j4πR0/λ )

· exp
(

−jπKaη
2
)

x (τ − 2R(η)/c )
(2)

where η, λ, c, ωa(η), R0, Ka, R(η) and x(τ) represent the az-

imuth time, wavelength, speed of light, azimuth beam pattern,

slant range of scene center, azimuth frequency modulation,

instantaneous slant range and complex baseband waveform

x(τ) = ωr(τ) exp(jϕ(τ)), respectively.

A general observation scene provides the baseband SAR

signal data:

s0(τ, η) = [σ(τ, η)+b(τ, η)]⊗ hE(τ, η) + n(τ, η) (3)

where the scene reflectivity is formed by superimposition

between target σ(τ, η) and background b(τ, η). n(τ, η) is

additive noise. Note that background b(τ, η) is defined as the

part of the scene that the observer is not interested in. So, the

observed scene is the superposition of target and background.

With this baseband 2-D echo, SAR imaging processing

is viewed as a deconvolution process. Differing from low-

resolution algorithm with high efficiency, e.g. SPECtral ANal-

ysis (SPECAN) [27], more sophisticated imaging processing

is considered. Referring to the Range Doppler (RD) algorithm,

the processing r(τ, η) involves four steps: range filtering m(τ),
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range cell migration correction (RCMC), phase compensating 
hP(η), and azimuth filtering w(η), so r(τ, η) is formed by 
cascading all these steps. Detailed derivations about r(τ, η) is 
presented in Section A of Appendix, while r(τ, η) is given as

r(τ, η) = m(τ) ⊗ gRCMC(τ, η) ⊗ hP(η) ⊗ w(η) (4)

where gRCMC(τ, η) and hP(η) are the inverse Fourier transform 
of the RCMC operation GRCMC(fτ , fη) and phase compen-

sation HP(fη) in (31) and (32), respectively, with fτ and fη 
denoting range and azimuth frequency, respectively. Then, 
hE(τ, η) and r(τ, η) are cascaded to obtain the whole SAR 
impulse response, given as

h(τ, η) = hE(τ, η) ⊗ r(τ, η)
= exp (−j4πR0/λ ) x (τ) ⊗ m (τ) ⊗ δ (τ − 2R0/c ) ⊗ w(η)

where δ(τ) is the Dirac delta function. A SAR image is 
obtained as

sI(τ, η) = [σ(τ, η)+b(τ, η)] ⊗ h(τ, η) + n(τ, η) ⊗ r(τ, η)
(5)

Similar to wireless communication systems, the above SAR 
information acquisition process can be viewed as a memory-

less channel as described in Fig. 1 [28, 29]. The target scatter-

ing characteristics σ(τ, η) determine the information source, 
and the channel is determined by the medium through which 
information is transferred from the source to the destination 

which is the resultant SAR image sI(τ, η). It is expected that the 
joint design of x(τ), m(τ) and w(η) can provide reliable 

communication, which means that target information is 
extracted by SAR image with arbitrarily small distortion.

Source

Channel

Destination

Target ( , )  

( , )b  Background

Impulse Response of SAR 

Echo Generation E ( , )h  

( , )n  Noise

0 ( , )s  SAR Echo

( , )r  Imaging Processing

I ( , )s  SAR Image

Waveform ( )x 

Range Filter ( )m 

Azimuth Filter ( )w 

Figure 1. Information acquisition for SAR.

B. Problem Formulation

A SAR system makes measurements of a target in order to

determine its unknown characteristics. In other words, SAR

observes a target aiming at acquiring information about it.

From Shannon theory, MI can tell us the amount of infor-

mation a SAR image provides about the target, and we can

use it to evaluate information acquisition quantitatively. The

MI Iσ between the target scattering coefficient σ(τ, η) and

SAR image sI(τ, η) is considered as performance index to

be improved. To this end, taking waveform, range filter and

azimuth filter as decision variables, the joint design can be

written as a maximization problem max Iσ . It is worth noting

that the optimization in range/azimuth direction cannot be per-

formed separately. Firstly, the range and azimuth coordinates

are coupled in the raw signal domain, so it is not easy to

derive a closed-form objective for the decision variable in one

single direction. Moreover, even if an approximate closed-form

optimization problem is given in each direction, separately, the

resultant imaging result is inferior to the joint design scheme

where information acquisition in the SAR image domain is

maximized.

It is usually assumed that σ(τ, η), b(τ, η) and n(τ, η) are

statistically independent, and follow a zero-mean complex

Gaussian distribution [18, 19, 21, 29, 30]. Based on the MI

definition, Iσ can be simplified into [31]

Iσ = − ln
(

1− |ρσ|
2
)

(6)

where ρσ is defined as the Pearson correlation coefficient.

It can be seen that the MI is only related to |ρσ|
2

and is a

monotonically increasing function of the modulus. Therefore,

maximizing Iσ is equivalent to maximizing |ρσ|
2

in the

associated optimization problem, with

|ρσ|
2
= |ρ1|

2
/(ρ2ρ3) , (7)

where

ρ1 = E {[σ(τ, η)⊗ h(τ, η)]σ∗(τ, η)} , ρ2 = E [σ(τ, η)σ∗(τ, η)] ,

ρ3 = E {[σ(τ, η)⊗ h(τ, η)] [σ∗(τ, η)⊗ h∗(τ, η)]

+ [b(τ, η)⊗ h(τ, η)][b∗(τ, η)⊗ h∗(τ, η)]

+ [n(τ, η)⊗ r(τ, η)][n∗(τ, η)⊗ r∗(τ, η)]} .

With detailed derivations in Section B of Appendix, in the

frequency domain, we have

ρ1 =

∫∫

Pσ(fτ , fη)H(fτ , fη)dfτdfη

ρ2 =

∫∫

Pσ(fτ , fη)dfτdfη

ρ3 =

∫∫

{

[Pσ(fτ , fη) + Pb(fτ , fη)] |H(fτ , fη)|
2

+ Pn(fτ , fη)|R(fτ , fη)|
2
}

dfτdfη,

(8)

where Pσ(fτ , fη), Pb(fτ , fη) and Pn(fτ , fη) denote the power

spectrum density (PSD) of σ(τ, η), b(τ, η) and n(τ, η), re-

spectively. ρ2 is the variance of σ(τ, η), and thus a constant.

To simplify the presentation, we choose ρ2 = 1, which does

not affect the following analysis. Meanwhile, H(fτ , fη) and

R(fτ , fη) are the 2-D Fourier transform of h(τ, η) and r(τ, η),
respectively, given as

H(fτ , fη) = exp (−j4πR0/λ )

· exp (−j4πR0/c fτ )X(fτ )M(fτ )W (fη)
(9)

and

R(fτ , fη) = M(fτ )GRCMC(fτ , fη)HP(fη)W (fη),

with X(fτ ) = Fτ [x(τ)], M(fτ ) = Fτ [m(τ)] and W (fη) =
Fη[W (η)].
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(8) is still very complex, so further simplification is needed. 
The integral in (8) is firstly approximated by summation. Then, 
H(fτ , fη) and R(fτ , fη) are simplified, w here s everal terms 
which have no effect on the optimization problem are ignored, 
such as the constant, time delay and unimodular phase-

compensation functions. Finally, the summation is expressed in 
a matrix form. For detailed derivations, please refer to Section 
C of Appendix. The objective function ρ(x, m, w) is then 
derived as

|ρσ|
2
≈ ρ(x,m,w) =

α(x,m,w)

β(x,m,w)
(10)

where

α(x,m,w) = (x⊙m)Hpστp
T
στ (x⊙m)wHpσηp

T
σηw,

β(x,m,w) = (x⊙m)HDiag(pστ )(x⊙m)wHDiag(pση)w

+ (x⊙m)HDiag(pbτ )(x⊙m)wHDiag(pbη)w

+mHDiag(pnτ )mwHDiag(pnη)w.

To maximize ρ(x,m,w) with respect to the frequency-domain

waveform x, range filter m and azimuth filter w, the joint de-

sign under the MTIC is then established as max ρ(x,m,w).
Without constraints it may lead to a waveform-filter pair with

poor resolution or unrealizability [32], so it is necessary to

impose some reasonable constraints on x, m and w.

In general, SAR has several basic performance metrics or

requirements, such as high resolution (wideband property) and

low sidelobe [33]. Although maximizing MI is considered as

the main objective, these common metrics cannot be compro-

mised too much, because they are related to SAR image quality

and specific applications. It is expected that MI is improved as

much as possible, while these requirements are also maintained

to some degree. To this end, by referring to the similarity

constraints used in pulse radar and MIMO radar [34–37], the

similarity constraints in both range and azimuth directions are

introduced to SAR waveform-filter optimization. Firstly, it is

imposed on waveform x with the classic LFM signal c, i.e.

‖x− Fc‖
2
≤ ε1

where F and ε1 denote the Fourier transform matrix and the

similarity parameter, respectively. It guarantees that the resul-

tant waveform will maintain some outstanding characteristics

of c, such as insignificant modulus variation, high resolution

and Doppler tolerance. Then, a similarity constraint also needs

to be imposed on the range filter. Since resolution and sidelobe

level rely on range profile which involves both waveform and

range filter, the newly designed range filter should help the

filtered signal provide the desired resolution and sidelobe level,

which can also be achieved by a similarity constraint with the

matched filter of c.

‖m− F∗c∗‖2 ≤ ε2

where ε2 is another similarity parameter. In the same way, let

ε3 be the similarity parameter in the azimuth direction, and

the similarity requirement is also employed for w to obtain a

similar azimuth profile:

‖w − r‖2 ≤ ε3

where r is the azimuth beam profile. These constraints in

both directions will result in a similar range-azimuth profile

with the classic SAR, so that performance in terms of these

common metrics can be maintained as well. Besides, it can

also relax the required prior information. A common waveform

optimization method usually requires some prior information,

while in practice the exact prior knowledge may not be

available [18]. This mismatch will degrade the performance of

designed waveform, but a similar imaging result can still be

achieved even with totally inaccurate prior knowledge, because

a similar range-azimuth profile is always guaranteed.

Finally, combining the objective function and constraints,

the joint design can be cast as the following optimization

problem P1:

P1



































max
x,m,w

ρ(x,m,w)

s.t.























xHx = E

‖x− Fc‖
2
≤ ε1

‖m− F∗c∗‖2 ≤ ε2

‖w − r‖2 ≤ ε3

(11)

where E is energy of the waveform.

III. SOLVING THE OPTIMIZATION PROBLEM

The optimization problem P1 is non-convex with a frac-

tional multivariate objective function and various constraints,

and there is no easy solution from existing methods [38, 39]. In

the following, a method is developed to tackle P1 effectively.

Firstly, the fractional objective function is substituted by a

quadratic function, and the multivariate problem is divided

into three subproblems based on a cyclic maximizer. Then, a

unified optimization method is proposed to solve all subprob-

lems: by employing the MM algorithm, a surrogate function

is found to minorize the objective function of subproblems,

and the non-convex equality constraint is transformed into two

convex constraints with an increasing penalty.

A. Algorithmic Procedure

Due to the fractional nature of the objective function

whose numerator α(x,m,w) and denominator β(x,m,w)
are functions of variables to be optimized, we introduce an

auxiliary function to decouple the numerator and denominator

by referring to the Dinkelbach’s algorithm [40, 41], i.e.

Ψ(x,m,w; x̃, m̃, w̃)

= α(x,m,w)− β(x,m,w)ρ (x̃, m̃, w̃) .
(12)

which is now considered as a new objective function for re-

formulating the problem P1. However, it is still a multivariate

problem, and difficult to be solved jointly with respect to x,

m and w. Based on the sequential optimization procedure, a

multivariate optimization problem can be split into a number

of suboptimization problems with only one variable, and they

are alternately solved to generate a monotonically increasing

objective function sequence [42].
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1) Waveform Optimization : At the k-th step of iteration, 
given m = m̃ = m(k−1), w = w̃ = w(k−1) and x̃ = x(k−1), 
x(k) is expected to be found first. Without l oss o f generality, 
let k = 1, so that the auxiliary function with respect to x is

formed as

Ψ
(

x,m(0),w(0);x(0),m(0),w(0)
)

= xHA1x+ xHA2x+ δ

(13)

where

A1 = w(0)Hpσηp
T
σηw

(0) · pστp
T
στ ⊙

(

m(0)Hm(0)
)∗

,

A2 = −ρ
(

x(0),m(0),w(0)
)

·
[

w(0)HDiag(pση)w
(0) · Diag(pστ )⊙

(

m(0)m(0)H
)∗

+w(0)HDiag(pbη)w
(0) · Diag(pbτ )⊙

(

m(0)m(0)H
)∗]

δ is a constant, and

δ = −ρ
(

x(0),m(0),w(0)
)

m(0)HDiag(pnτ )m
(0)

·w(0)HDiag(pnτ )w
(0)

Because adding or subtracting a constant to the objective

function does not affect the solution to the optimization

problem, δ has been ignored. Taking the constraints of x from

P1, the first suboptimization problem is constructed as

P2















max
x

xHA1x+ xHA2x

s.t.

{

xHx = E

‖x− Fc‖
2
≤ ε1

(14)

The first part of the objective function in P2 is convex, and the

second one is concave. If the two are added together, it is not

easy to determine whether the objective function is convex

or concave. Moreover, the first constraint is non-convex, so

both of them should be reformulated. Although all constraints

of x become convex if xHx = E is relaxed to xHx ≤ E,

xHx = E is usually imposed on waveform optimization

to make sure the energy always reaches the maximum for

engineering considerations [32, 35, 43].

A general purpose semi-definite relaxation (SDR) solver is

capable of converting P2 to a convex problem, but the worst-

case complexity can be as high as O(N6.5) [44–46]. The MM

algorithmic framework provides guidance in deriving problem-

driven algorithms with low computational cost [47]. In the

following, an MM-based algorithm is derived to handle the

subproblem.

Starting from a feasible point, the MM procedure involves

two steps. Assuming that we hope to tackle the maximization

problem max f(θ) over the feasibility set Q. In the first

minorization step, a surrogate function g(θ; θ(t)) is derived

at the t-th iteration, which locally approximates the objective

function f(θ). g(θ; θ(t)) is called a minorizer of f(θ), and it

satisfies

g(θ; θ(t)) ≤ f(θ), for all θ ∈ Q; g(θ(t); θ(t)) = f(θ(t))

Then, in the maximization step, the surrogate function is

maximized [48].

Using the MM optimization framework, one can find a

surrogate function to replace the objective function in P2,

so that a concave objective function is obtained for the

maximization problem. Since a convex function is minorized

by its supporting hyperplanes [49], we have

xHA1x ≥ xH
(t)A1x(t) + 2Re

[

xH
(t)A1(x− x(t))

]

(15)

where x(t) is a feasible point. Thus, a minorizer of f(x) is

written as

g1(x;x(t)) = xHA2x+ 2Re
(

xH
(t)A1x

)

− xH
(t)A1x(t) (16)

The remaining step is how to reform the first non-convex

constraint of P2. Firstly, it can be expressed as the pair of

inequality constraints

xHx− E ≤ 0, E − xHx ≤ 0 (17)

The second part is a concave constraint, which is approximated

by the first order Taylor expansion at x(t) [50], i.e.

E−xHx ≤ E−2Re
(

xH
(t)x

)

+xH
(t)x(t) = 2E−2Re

(

xH
(t)x

)

Then, (17) is changed to

xHx− E ≤ 0, E − Re
(

xH
(t)x

)

≤ 0 (18)

Even though all constraints are convex, the value of x cannot

be updated, because x has only one feasible point x(t) due to

(18). This issue can be handled by an increasing penalty on

constraint violation [51], so that P2 is reformulated as

P3







































max
x,s

g1(x;x(t))− τ̄(t)s

s.t.























xHx ≤ E

E − Re
(

xH
(t)x

)

≤ s

‖x− Fc‖
2
≤ ε1

s ≥ 0

, (19)

where s is a slack variable, and τ̄(t) is the penalty parameter.

The above problem is convex, and can be solved by general

solvers with lower worst-case complexity O(N3.5) than SDR

[45]. The non-convex problem P2 is tackled by iterating P3,

and x(1) is obtained. The optimization procedure is given as

Algorithm 1 below.

Algorithm 1: Optimization algorithm for subproblem P3

Input decision variable θ and slack variable s

given initial point θ(0) = θ
(0), τ̄(0) > 0, τ̄max > 0, µ > 1.

If the slack variable is not at the input, set τ̄(0) = 0.

t := 0

repeat

1. Form the surrogate function g(θ;θ(t)).

2. Solve the resultant problem by the CVX tool [52].

3. Update τ̄ . τ̄(t+1) := min(µτ̄(t), τ̄max).

4. Update iteration. t := t+ 1.

until stopping criterion is satisfied.

output θ(1) = θ(t∗) with maximum iteration step t = t∗.
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One reasonable stopping condition is that the variation of 
objection function is less than a minimum value e, i.e.

g1
(

x(t+1);x(t+1)

)

−τ̄(t+1)s(t+1)−g1
(

x(t);x(t)

)

+τ̄(t)s(t) ≤ e

With x(1) substituted in (13), it can be confirmed that

ρ
(

x(1),m(0),w(0)
)

≥ ρ
(

x(0),m(0),w(0)
)

(20)

The proof is presented in Section C of Appendix.

2) Range Filter Optimization : Given x = x̃ = x(1), w =
w̃ = w(0) and m̃ = m(0), the auxiliary function for m is

written as

Ψ
(

x(1),m,w(0);x(1),m(0),w(0)
)

= mHB1m+mHB2m

where

B1 = w(0)Hpσηp
T
σηw

(0) · pστp
T
στ ⊙

(

x(1)x(1)H
)∗

,

B2 = −ρ
(

x(1),m(0),w(0)
) [

w(0)HDiag(pση)w
(0) · Diag(pστ )

⊙
(

x(1)x(1)H
)∗

+w(0)HDiag(pbη)w
(0) · Diag(pbτ )

⊙
(

x(1)x(1)H
)∗

+w(0)HDiag(pnη)w(0) · Diag(pnτ )
]

Similarly, based on the MM algorithm, a minorizer of the

objective function is given as

g2(m;m(t)) = mHB2m+ 2Re
(

mH
(t)B1m

)

−mH
(t)B1m(t)

Combined with all constraints about m, the associated prob-

lem with respect to m, is cast as

P4

{

max
m

g2(m;m(t))

s.t. ‖m− F∗c∗‖
2
≤ ε2

(21)

P4 is convex, and it is iterated through Algorithm 1, without

penalty parameter. After the stopping criterion is satisfied , we

have the solution m(1) = m(t∗), and it can also be proved that

ρ
(

x(1),m(1),w(0)
)

≥ ρ
(

x(1),m(0),w(0)
)

. (22)

The proof is similar with Section C of Appendix.

3) Azimuth Filter Optimization : Given x = x̃ = x(1),

m = m̃ = m(1) and w̃ = w(0), the auxiliary function for w

is written as

Ψ
(

x(1),m(1),w;x(1),m(1),w(0)
)

= wHC1w +wHC2w

where

C1 =
(

x(1) ⊙m(1)
)H

pστp
T
στ

(

x(1) ⊙m(1)
)

· pσηp
T
ση,

C2 = −ρ
(

x(1),m(1),w(0)
)

[

(

x(1) ⊙m(1)
)H

Diag(pστ )
(

x(1) ⊙m(1)
)

· Diag(pση)

+
(

x(1) ⊙m(1)
)H

Diag(pbτ )
(

x(1) ⊙m(1)
)

·Diag(pbη) +m(1)HDiag(pnτ )m(1) · Diag(pnη)
]

A minorizer of the objective function corresponding to w

is derived as

g3(w;w(t)) = wHC2w + 2Re
(

wH
(t)C1w

)

−wH
(t)C1w(t)

Combined with all constraints about w, the associated

problem with respect to w, is cast as

P5

{

max
w

g3(w;w(t))

s.t. ‖w − r‖
2
≤ ε3

(23)

Similar with P4, P5 is convex. w(1) is found when the iteration

procedure of P5 converges. It can be confirmed that

ρ
(

x(1),m(1),w(1)
)

≥ ρ
(

x(1),m(1),w(0)
)

. (24)

Finally, a non-decreasing objective function sequence is gen-

erated through alternately iterating P3, P4 and P5, namely

ρ
(

x(1),m(1),w(1)
)

≥ ρ
(

x(0),m(0),w(0)
)

. (25)

Consequently, the algorithm derived above is effective in

tackling the joint optimization problem P1, as it leads to a

monotonically increasing sequence of the objective function

during the iterative process. Its implementation is summarized

in Algorithm 2.

Algorithm 2: Optimization algorithm for P1

initialize x(0), m(0), w(0)

k := 1

repeat

1. Form g1(x;x(t)) with m(k−1) and w(k−1).

2. Solve P3 by Algorithm 1 to obtain x(k).

3. Form g2(m;m(t)) with x(k) and w(k−1).

4. Solve P4 by Algorithm 1 to obtain m(k).

5. Form g3(m;m(t)) with x(k) and m(k).

6. Solve P5 by Algorithm 1 to obtain w(k).

7. k := k + 1.

until stopping criterion is satisfied.

output x(k), m(k) and w(k).

By setting up a proper stopping condition

ρ
(

x(k),m(k),w(k)
)

− ρ
(

x(k−1),m(k−1),w(k−1)
)

≤ e,

the iterative process can be terminated to output final solutions

for the waveform, range filter and azimuth filter.

B. Convergence Verification

Although the stopping condition is set, it still needs to

be verified whether the iterative process can be terminated,

especially when the minimum variation e is very small. To

this end, the convergence of iterative process is analyzed in

the following by showing that the objective function is mono-

tonically increasing and converges to a finite value. Firstly, the

convergence of the MM-based algorithm for suboptimization

problem P2 is analyzed. For sufficiently large τ̄max, the slack

variable is forced toward zero. Observe that once τ̄ = τ̄max in

Algorithm 1, we have

f(x(t+1)) ≥ g(x(t+1);x(t)) ≥ g(x(t);x(t)) = f(x(t)) (26)
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which indicates that f(x(t)) is not descending during iterations 
of P3. It is easy to prove that f(x) has a upper bound:

f(x) ≤ λmax[A1 +A2]E (27)

Thus, the solving method of suboptimization problem con-

verges.

The convergence of alternate iteration procedure over three

suboptimization problems should also be verified. As the

monotonic increasing property has been verified in (25),

further proof is needed to show that ρ(x,m,w) is upper

bounded.

Since the energy of target scattering characteristic function

is limited, there must exist two positive numbers Eτ and Eη

with ‖Pστ‖
2
≤ Eτ and ‖Pση‖

2
≤ Eη . Then, the numerator

of ρ(x,m,w) has an upper bound, i.e.

α(x,m,w) = (x⊙m)
H
pστp

T
στ (x⊙m)wHpσηp

T
σηw

≤ ‖x⊙m‖
2
‖pστ‖

2
‖w‖

2
‖pση‖

2

= ExmEτEwEη

where ‖x⊙m‖
2
= Exm. Meanwhile, the denominator has a

lower bound, which is

β(x,m,w)

= tr
[

Diag(pστ )(x⊙m)(x⊙m)
H
]

tr
[

Diag(pση)wwH
]

+ tr
[

Diag(pbτ )(x⊙m)(x⊙m)
H
]

tr
[

Diag(pbη)wwH
]

+ tr
[

Diag(pnτ )mmH
]

tr
[

Diag(pnη)wwH
]

≥ λmin[Diag(pστ )]tr
[

(x⊙m)(x⊙m)
H
]

· λmin[Diag(pση)]tr
[

wwH
]

+ λmin[Diag(pbτ )]tr
[

(x⊙m)(x⊙m)
H
]

· λmin[Diag(pbη)]tr
[

wwH
]

+ λmin[Diag(pnτ )]tr
[

mmH
]

λmin[Diag(pnη)]tr
[

wwH
]

= pσ0Exmpσ1Ew + pb0Exmpb1Ew + pn0Empn1Ew

where pσ0, pσ1, pb0, pb1, pn0 and pn1 are minimum values

of pστ , pση , pbτ , pbη , pnτ and pnη , respectively. For the

first inequality, we have used the fact that, given A, B < 0,

tr[AB] ≥ λmin[A]tr[B] [43]. Therefore,

ρ(x,m,w) =
α(x,m,w)

β(x,m,w)

≤
ExmEτEη

Exmpσ0pσ1 + Exmpb0pb1 + Empn0pn1

(28)

Finally, the above bounded objective function in combina-

tion with the monotonically increasing property verifies the

convergence.

IV. NUMERICAL EXAMPLES

In this section, numerical simulations are performed to

show the effectiveness of the problem formation and its

solving procedure, where five SARs are compared in terms

of information acquisition, SAR image quality, target detec-

tion and 2-D resolution performance, including the proposed

scheme, the weighted SAR with weighted LFM signal and

newly designed receive filter [25], the suboptimal SAR with

suboptimal waveform [24], the classic SAR with the LFM

signal and NLFM SAR with the NLFM signal generated by

the POSP approach [10, 11]. The main parameters are listed

in Table I.

Table I

LIST OF SIMULATION PARAMETERS

Parameter Symbol Value

Platform height H0 6km

Antenna length D 2m

Effective radar velocity v 150m/s

Look angle θ 30◦

Beam squint angle φ 0◦

Center frequency f0 5.3GHz

Pulse duration T 1µs

Range Bandwidth Br 100MHz

Range sampling rate Fr 120MHz

Azimuth sampling rate Fa 180Hz

Number of range lines Na 256

Samples per range line Nr 256

Details of the simulation process are given as follows:

Step 1 Joint design of waveform and imaging filters: pστ

and pση are set according to the target scattering character-

istics PSD. Without loss of generality, suppose that n(τ, η)
and b(τ, η) have a constant PSD. SNR and SCR are de-

fined as SNR = E
[

|σ(τ, η)|2
]

/E
[

|n(τ, η)|2
]

and SCR =
E
[

|σ(τ, η)|2
]

/E
[

|b(τ, η)|2
]

, respectively. Initialize x(0), m(0)

and w(0) with Fc, F∗c∗ and r, and then Algorithm 2 is

applied step by step until the stop condition is satisfied, where

e = 10−3, τ0 = 1.1, µ = 1.5 and τ̄max = 104. Finally, the

time-domain waveform x†, range filter m† and azimuth filter

w† based on MTIC are obtained.

Step 2 SAR echo generation: The observed scene is formed

by an extended target embedded in background clutters, based

on the system model in Fig. 1. x† is used as the SAR transmit

waveform to illuminate the scene based on the parameters in

Table I. As the platform advances, the resultant echoes are

generated. For performance comparison, waveforms of the

weighted SAR, suboptimal SAR, classic SAR, and NLFM

SAR are generated, and their echos are also collected. The

five waveforms have the same energy, pulse duration and

bandwidth.

Step 3 SAR imaging: With the five groups of echo signals

from Step 2, the SAR images are obtained, through range

filtering, RCMC, phase compensation, and azimuth filtering.

The weighted SAR uses newly designed receive filter to

replace the matched filter in the range direction, and the classic

SAR and the NLFM SAR apply the matched filter to achieve

pulse compression. The resultant SAR images are used for

performance analysis and comparison.

A. Theoretical Analysis Verification

1) Convergence of Algorithm 1: To show the

convergence process of Algorithm 1, the value of

Ψ(x,m(0),w(0);x(0),m(0),w(0)) = f1(x) and g1(x;x(t))
versus iteration steps is given in Fig. 2, which also facilitates
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the verification o f e ffectiveness f or t he s urrogate function. 
Similarly, the objective function and surrogate function 
corresponding to two other subproblems of m and w are also 
shown below.
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Figure 2. Objective function and surrogate function of subproblem versus

iteration step: (a) f1(x) and g1(x;xt); (b) f2(m) and g2(m;m(t)); (c)

f3(w) and g3(w;w(t)), where ε1 = ε2 = ε3 = 6 and SNR=SCR=0dB.

As can be seen, Algorithm 1 is effective in tackling the three

subproblems, and it converges rapidly. Taking the first plot

as an example, the objective function f1(x) is monotonically

increasing with the iterative process proceeding, enforced by

the improving minorizer or surrogate function g1(x;x(t)). It is

confirmed that g1(x;x(t)) is effective to locally approximate

the objective function.

2) Convergence of Algorithm 2: Examples of the conver-

gence process for the optimization problem with different

feasible regions are now provided. Algorithm 2 is performed,

and the objective function f(x,m,w) versus the iteration

number is shown in Fig. 3, with respect to different similarity

constraint parameters ε1, ε2 and ε3.

It can be seen that the objective function sequence converges

rapidly for all cases. After three iterations, the value of

ρ(x,m,w) tends to stay stable, and the stop condition is

satisfied. A large value for the objective function is achieved

even after one iteration. Moreover, as demonstrated in (25),

the proposed algorithm to tackle P1 leads to a monotonically

increasing objective function, with respect to the iteration

number.

Compared to the bottom line associated with ε1 = 0.1
in Fig. 3(a), increasing εx from a small value to ∞ results

in a substantial growth of ρ(x,m,w), as the feasible region

of P1 becomes larger. Fig. 3(b) and (c) also show a similar

pattern which means that a continuous increase can be seen

in ρ(x,m,w), resulting from a set of increasing ε2 and ε3.

It is worth noting that different similarity parameters leads to

different iteration number. Because the stop condition remains
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Figure 3. Objective function for different feasible regions: (a) ρ(x,m,w)
with varying ε1; (b) ρ(x,m,w) with varying ε2; (c) ρ(x,m,w) with

varying ε3, where the symbol ∞ means that the associated constraint is

relaxed.

unchanged, the necessary iterations to meet the stop condition

are naturally different.

3) Similarity Constrains: As mentioned before, a resultant

waveform with high resolution, sidelobe level and easy gen-

eration can be achieved by the similarity constraint with an

existing SAR waveform. In order to verify its effectiveness, the

newly designed waveform with respect to different similarity

parameters is depicted in Fig. 4.
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Figure 4. Resultant waveform and the LFM signal in the time domain: (a)

real part; (b) imaginary part.

As expected, we can observe that a smaller ε1 results in

a waveform which is more similar to the LFM signal, which

indicates that the similarity constraint works well in helping

x† maintain some desired merits of c. As the modulus of

x† is close to c when ε1 is relatively small, it facilitates

hardware configuration in practice. Moreover, as mentioned

before, a similar range-azimuth profile is desired, which is

achieved by adjusting ε1, ε2 and ε3 simultaneously. In order

to investigate its effectiveness, the range-azimuth profile with

different similarity parameters is shown in Fig. 5.

As expected, the range profile relies on the similarity

parameters when the reference waveform c is fixed, which
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Figure 5. Range profile and azimuth profile with different similarity param-

eters: (a) range profile with fixed ε3; (b) azimuth profile with fixed ε1 and

ε2.

is demonstrated by more similar mainlobe width and sidelobe

lever with c resulting from a smaller ε1 and ε2. A similar

pattern is also shown in the azimuth profile. Referring to Fig.

3, with an increase of ε1, ε2 and ε3, the value of the objective

function also increases due to a larger feasibility region. It

implies that a desired result for both the objective function

and range-azimuth profile can be obtained by adjusting the

similarity parameters.

B. Performance Assessment

1) Information Acquisition: In the following analysis, set-

ting ε1 = 10 and ε2 = ε3 = 12, the waveform-filter

pair is generated through Algorithm 2, which is applied for

performance evaluation. In order to compare the information

acquisition ability, the |ρσ|
2

results versus different SNRs and

SCRs are shown in Fig. 6.

The proposed SAR always achieves the largest |ρσ|
2

over

all the considered SNR or SCR ranges compared with the

other four. As can be seen, although the weighted SAR results

in a larger amount of acquired information than the classic

SAR and NLFM SAR, it is still lower than the proposed

one. The reason is that SAR has 2-D range-azimuth coupling,

whose information extraction capability relies on transmit-

receive range pair and azimuth imaging filter. The weighted

SAR without joint range-azimuth consideration cannot ensure
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Figure 6. Information acquisition: (a) |ρσ |
2 with respect to different SNRs

under SCR=0dB; (b) |ρσ |
2 with respect to different SCRs under SNR=0dB.

maximal information acquisition in the 2-D SAR image.

Similarly, the performance of suboptimal SAR is even worse

than the weighted SAR, because the optimization in range

filter is ignored. With the same SNR and SCR, the maximum

gap between the proposed SAR and the classic one is about

0.54. It indicates that the proposed scheme can significantly

improve the target information acquisition capability of SAR.

2) SAR Image Quality and Target Detection: With designed

waveform and imaging filters, it is expected that a better

visual quality of SAR images can be achieved. To illustrate

this, an observed scene with five airliners is simulated, and

the associated SAR images are formed. The five airliners

are considered as the observed targets, and their reflectivity

coefficients are different samples of one random process.

Firstly, the Na ×Nr data matrices are generated according to

the statistics of target scattering, background clutter, and noise.

Then, delimiting the area for airplane, the associated cells of

target data matrix are kept, and the observed scene is formed

with the associated clutter components. Through Steps 2 and

3, four images resulting from the above-mentioned SARs, are

shown in Fig. 7.

It can be found that the SAR image based on the MTIC has

achieved a better image quality with more explicit airliner con-

tour and shape than the other four SARs. Meanwhile, greater

contrast between target and background cells is shown in Fig

7(a), and more detailed information of the target is provided
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Figure 7. SAR images: (a) proposed SAR; (b) weighted SAR; (c) suboptimal

SAR; (d) classic SAR; (e) NLFM SAR, where SNR=SCR=-5dB.

by the proposed SAR. This has further demonstrated that the

proposed method is effective in improving the information

acquisition ability of SAR.

In order to further compare their ability in discriminating

between the useful part and other signals, the probability

histogram of each signal component in SAR images is plotted

in Fig. 8, where it is clear that the proportion of target

scattering corrupted by background clutter and noise in the

proposed SAR is smaller than the other four. In Fig. 8(a),

the discrimination between target and remaining part is better,

which is verified by a longer distance between the peak

of target and the peak of background or noise. The joint

design based on the MTIC enhances target scattering while

noise and clutter are suppressed, which benefits the process

of target information extraction. Differing from conventional

speckle noise suppression, the proposed scheme improves the

discrimination by enlarging the difference between the mean

values of target and other parts during the acquisition stage of

SAR. Certainly, existing speckle noise suppression methods

can also be applied to the SAR image generated through the

proposed scheme to further improve the image quality.

The information acquisition ability can also be evaluated in

terms of target detection performance [53, 54]. Based on Figs.

7 and 8, a target detection experiment is performed. Setting

the threshold to traverse the entire signal value range in turn,

(a) (b)

(c) (d)

(e)

Figure 8. Probability histogram of SAR images: (a) proposed SAR; (b)

weighted SAR; (c) suboptimal SAR; (d) classic SAR; (e) NLFM SAR.

the detection results (binary images) are obtained. Combined

with the binary target image, detection probability PD and

false alarm probability PFA are calculated, as shown in Fig.

9.
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Figure 9. Detection probability and false alarm probability.

It can be seen that the proposed SAR results in better

target detection result than other SARs, as a higher PD is

always held by the proposed scheme with any values of PFA,

and in particular, the improvement in PD is more significant,

when PFA is smaller than 0.2. This further verifies that the
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joint design can significantly i mprove t he S AR information 
acquisition capability.

3) Range-Azimuth Profile: In order to evaluate the range-

azimuth profile, a corner reflector is placed in the scene. After

Steps 2 and 3, the resultant SAR images and a point target

2-D profile are shown in Fig. 10.
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Figure 10. SAR images and a point target profile: (a) proposed SAR; (b)

weighted SAR; (c) suboptimal SAR; (d) classic SAR; (e) NLFM SAR; (f)

Range profile; (g) Azimuth profile.

As observed, the proposed scheme and the classic SAR

have similar range-azimuth profile, which demonstrates that

they can achieve similar 2-D resolution and sidelobe level.

Therefore, the 2-D similarity constraint is effective, and the

joint design has improved the target information acquisition

capability when prior knowledge is accurate, while a similar

imaging result can always be guaranteed even with inaccurate

prior information.

V. CONCLUSION

A joint design of transmit waveform and imaging filters

has been presented for more effective target information ac-

quisition in SAR, based on the MTIC. Firstly, the SAR image

extraction process with the designed waveform and imaging

filters is derived. The MI between SAR image and target scat-

tering characteristics is considered as the objective function

whose analytical expression is given in the 2-D frequency

domain. Combined with an energy limit and similarity con-

straints, the joint design is cast as a constrained optimization

problem. To solve the problem, the numerator and denominator

of the objective function are decoupled through an auxiliary

function, and a unified MM-based optimization algorithm with

an increasing penalty on constraint violation is proposed to

tackle the three subproblems. They are solved in an alternate

way and its convergence is proved. Finally, combining the

designed transmit waveform, range filter and azimuth filter, the

new SAR has achieved more effective information acquisition,

better image quality and target detection performance than

existing SAR designs. Moreover, one possible future research

topic may be the extension of the proposed method to tackle

multiple categories of targets which are sometimes embedded

in observation scene at the same time.

VI. APPENDIX

A. Derivation of r(τ, η) and h(τ, η)

The first imaging step is applying the range filter on the raw

echo. After passing through the range filter m(τ), it follows

that

sr(τ, η) = hE(τ, η)⊗m(τ)

= pr (τ − 2R(η)/c )ωa(η) exp (−j4πR0/λ) exp
(

−jπKaη
2
)

where pr = x(τ)⊗m(τ) denotes the range filter output. Then,

the azimuth Fourier transform is performed on each range gate

to transform sr(τ, η) into the range Doppler domain. Applying

the POSP to the above equation [26], the relationship between

azimuth frequency and time is given by fη = −Kaη. Thus,

the azimuth spectrum can be expressed as

Sr(τ, fη) = pr (τ − 2Rrd(fη)/c )Wa(fη)

· exp (−j4πR0/λ) exp
(

jπf2
η/Ka

) (29)

where Wa(fη) is the Fourier transform of antenna weighting

function. Since the range equation can be approximated by

R(η) =
√

R2
0 + v2η2 ≈ R2

0 +
v2η2

2R0
,

Rrd(fη) is written as

Rrd(fη) ≈ R0 +
λ2R0

8v2
f2
η = R0 +∆R(fη).

The RCMC is then applied, and the azimuth filter W (fη)
in frequency domain is introduced, so that (29) is transformed

into

Sa(fτ , fη) = Fτ [Sr(τ, fη)]GRCMC(fτ , fη)HP(fη)W (fη)

≈ X(fτ )M(fτ ) exp (−j4πR0fτ/c )

·W (fη)Wa(fη) exp (−j4πR0/λ ) .
(30)
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where X(fτ ) = Fτ [x(τ)], M(fτ ) = Fτ [m(τ)] and Wa(fη) 
is assumed to be a rectangular window function with constant 
envelope 1 and GRCMC(fτ , fη) denotes the RCMC operation:

GRCMC(fτ , fη) = exp {j4πfτ∆R(fη)/c } (31)

where small range blocks are used, and the range invariant

range cell migration is assumed within each block [26]. More-

over, the residual phase in the azimuth direction is removed

by phase compensation given by

Fη [hP(η)] = HP(fη) = exp
(

−jπf2
η/Ka

)

. (32)

It can be seen from (30) that the RCMC can achieve decou-

pling between range frequency and azimuth frequency. Then,

(30) is transformed into the 2-D time domain:

sa(τ, η) ≈ exp (−j4πR0/λ )x (τ)⊗m (τ)

⊗ δ (τ − 2R0/c )⊗ w(η).
(33)

Cascading all imaging steps including range filter m(τ),
RCMC gRCMC(τ, η), phase compensation hP(η) and azimuth

filter w(η), we have

r(τ, η) = m(τ)⊗ gRCMC(τ, η)⊗ hP(η)⊗ w(η) (34)

where gRCMC(τ, η) is the inverse Fourier transform of

GRCMC(fτ , fη). It generates a direct filter from target scat-

tering characteristics to SAR image, namely

h(τ, η) = hE(τ, η)⊗ r(τ, η)

= exp (−j4πR0/λ )x (τ)⊗m (τ)⊗ δ (τ − 2R0/c )⊗ w(η).

B. Proof of Equation (8)

Taking ρ1 as an example, ρ2 and ρ3 are derived in the same

way.

ρ1 = E [σ(τ, η)⊗ h(τ, η)σ∗(τ, η)]

= E

[
∫∫

σ(τ − x, η − y)h(x, y)dxdyσ∗(τ, η)

]

=

∫∫

E [σ(τ − x, η − y)σ∗(τ, η)]h(x, y)dxdy

=

∫∫

Rσ(−x,−y)h(x, y)dxdy

= Rσ(∆τ,∆η)⊗ h(∆τ,∆η)|∆τ=0,∆η=0

where Rσ(∆τ,∆η) is the autocorrelation function of σ(τ, η).
It is usually assumed that σ(τ, η) is a generalized random

process [19, 29]. According to the Wiener-Khinchin theorem,

the autocorrelation function can be defined as the inverse

Fourier transform of the PSD, and then

ρ1 =
∫∫

Pσ(fτ , fη)h(fτ , fη)e
j2πfτ∆τej2πfη∆ηdfτdfη |∆τ=∆η=0

=

∫∫

Pσ(fτ , fη)h(fτ , fη)dfτdfη

C. Proof of Equation (10)

To obtain (10), ρ1, ρ2 and ρ3 need to be represented in

a discrete form. In the following analysis, some terms can

be ignored, because they have no impact on the optimization

problem. As can be seen in (9), the first term exp(−j4πR0/λ)
is a constant, so it can be ignored in the optimization of

|ρσ|
2
. Meanwhile, the time delay in range direction does not

influence the waveform and range filter design, and thus it can

be considered as zero during the optimization of waveform-

filter pair. The second term in (9) can also be ignored.

Then, ρ1 is approximately transformed into a discrete form,

i.e.

ρ1 ≈
∑N

k1=1
Pστ (fτk1

)X(fτk1
)M(fτk1

)∆fτ

·
∑M

k2=1
Pση(fηk2

)W (fηk2
)∆fη,

where N, M ∈ N, fτk1
= −Bτ/2 + k1∆fτ and fηk2

=
−Bη/2 + k2∆fη . Pστ (fτ ) and Pση(fη) are PSDs in the

range and azimuth directions of σ(τ, η), respectively. Because

GRCMC(fτ , fη) and HP(fη) are both unimodular exponential

functions in (31) and (32), respectively, we have

|R(fτ , fη)|
2 = |M(fτ )|

2|W (fη)|
2. (35)

ρ3 is approximately written as

ρ3 ≈
∑N

k1=1
Pστ (fτk1

) |X(fτk1
)|
2
|M(fτk1

)|
2
∆fτ

·
∑M

k2=1
Pση(fτk2

) |W (fηk2
)|
2
∆fη

+
∑N

k1=1
Pbτ (fτk1

) |X(fτk1
)|
2
|M(fτk1

)|
2
∆fτ

·
∑M

k2=1
Pbη(fτk2

) |W (fηk2
)|
2
∆fη

+
∑N

k1=1
Pnτ (fτk1

)|M(fτk1
)|
2
∆fτ

·
∑M

k2=1
Pnη(fτk2

) |W (fηk2
)|
2
∆fη

where Pbτ (fτ ), Pbη(fη), Pnτ (fτ ) and Pnη(fη) are the

PSDs in the range and azimuth directions of b(τ, η) and

n(τ, η), respectively. Use the notations x, m, w, pστ , pση ,

pbτ , pbη , pnτ and pnη to represent the vectors formed

by X(fτk1
), M(fτk1

), W (fηk2
), Pστ (fτk1

), Pση(fηk2
),

Pbτ (fτk1
), Pbη(fηk2

), Pnτ (fτk1
), and Pnη(fηk2

), respectively.

As an example, for x = [X(fτ1), X(fτ2), · · · , X(fτN )]
T

, we

have

ρ1 ≈ pT
στ (x⊙m) · pT

σηw

Similarly, ρ3 is rewritten as

ρ3 ≈ (x⊙m)HDiag(pστ )(x⊙m)wHDiag(pση)w

+ (x⊙m)HDiag(pbτ )(x⊙m)wHDiag(pbη)w

+mHDiag(pnτ )mwHDiag(pnη)w.

Substitute ρ1, ρ2 and ρ3 into (7), (10) is finally obtained.
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D. Proof of Equation (20)

Suppose that x(1) is the solution of P2 at the first step. We

have

Ψ
(

x(1),m(0),w(0);x(0),m(0),w(0)
)

≥ Ψ
(

x(0),m(0),w(0);x(0),m(0),w(0)
)

.

Based on the definition of auxiliary function, there must exist

Ψ
(

x(0),m(0),w(0);x(0),m(0),w(0)
)

= α
(

x(0),m(0),w(0)
)

− β
(

x(0),m(0),w(0)
)

· ρ
(

x(0),m(0),w(0)
)

= 0.

It follows that

Ψ
(

x(1),m(0),w(0);x(0),m(0),w(0)
)

= α
(

x(1),m(0),w(0)
)

− β
(

x(1),m(0),w(0)
)

· ρ
(

x(0),m(0),w(0)
)

≥ 0.

Meanwhile,

Ψ
(

x(1),m(0),w(0);x(1),m(0),w(0)
)

= α
(

x(1),m(0),w(0)
)

− β
(

x(1),m(0),w(0)
)

· ρ
(

x(1),m(0),w(0)
)

= 0.

With β(x,m,w) ≥ 0, we have

ρ
(

x(1),m(0),w(0)
)

≥ ρ
(

x(0),m(0),w(0)
)

.
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