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Automorphism Ensemble Decoding of Quasi-Cyclic

LDPC Codes by Breaking Graph Symmetries
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Abstract—We consider automorphism ensemble decoding
(AED) of quasi-cyclic (QC) low-density parity-check (LDPC)
codes. Belief propagation (BP) decoding on the conventional
factor graph is equivariant to the quasi-cyclic automorphisms
and therefore prevents gains by AED. However, by applying small
modifications to the parity-check matrix at the receiver side,
we can break the symmetry without changing the code at the
transmitter. This way, we can leverage a gain in error-correcting
performance using an ensemble of identical BP decoders, without
increasing the worst-case decoding latency. The proposed method
is demonstrated using LDPC codes from the CCSDS, 802.11n
and 5G standards and produces gains of 0.2 to 0.3 dB over
conventional BP decoding. Compared to the similarly performing
saturated BP (SBP), the proposed algorithm reduces the average
decoding latency by more than eight times.

I. INTRODUCTION

Quasi-cyclic (QC) low-density parity-check (LDPC) codes

are the error-correction workhorse of modern communica-

tion systems (e.g., CCSDS, Wi-Fi 802.11n and 5G [1] stan-

dards), motivated by the presence of a well-understood, low-

complexity belief propagation (BP) decoder. Long LDPC

codes constructed using classical information theoretic de-

sign tools can closely approach the Shannon limit under

BP decoding [2]. However, in the short block-length regime

(block-lengths of few hundreds of bits) LDPC codes perform

poorly when compared to other structured algebraic cod-

ing (e.g., Bose-Chaudhuri-Hocquenghem (BCH), Reed–Muller

(RM) and cyclic redundancy check (CRC)-aided polar codes),

see [3] for an exhaustive comparison. The degraded error-rate

performance can be attributed to the non-optimal BP decoding

algorithm (when compared to the maximum likelihood (ML)

decoder) and the sub-optimality of the short length LDPC code

design. The problem of designing short length LDPC codes is

out of the scope of this paper.

In this paper, we are interested in enhancing the decoding

algorithm itself without changing the code structure. We show

ways of enhancing the error-rate performance under iterative

decoding with reduced latency while relaxing the complexity

constraint. Remember that in the decoding problem we know

the optimal solution (i.e., ML or maximum a posteriori (MAP)

decoders), however, due to the infeasible complexity for prac-

tical codes, we have to rely on sub-optimal decoders with a

practical decoding cost (e.g., sum-product algorithm (SPA) BP
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decoder in the LDPC decoding context). To highlight the sub-

optimality of the LDPC BP decoder in the short-length regime

we refer to [4, Fig. 4] and [5, Fig. 10]. For short-length LDPC

codes, a huge performance gap (in Eb/N0) exists between

BP decoding and the ML bound which can be estimated via

an ML-approaching ordered statistic decoding (OSD). Closing

this performance gap is the main motive behind this work.1

Ensemble decoding is a method to improve decoding per-

formance by employing L parallel independent BP decoders

each proposing a codeword estimate and then selecting the

most likely candidate as the decoder output. Two instances of

ensemble decoding are augmented BP [6] and saturated BP

(SBP) [7] decoding, where all possible combinations of satu-

rated log-likelihood ratio (LLR) values in the S least reliable

positions of the received sequence are used as inputs to the

constituent decoders. Another variant of ensemble decoding

is multiple-bases belief propagation (MBBP) decoding [8] (or

belief propagation list (BPL) decoding in the context of polar

codes [9]), where each BP decoder uses a different decoding

graph rather than a different input. When the automorphism

group of the code is known, identical constituent decoders de-

coding permuted versions of the channel output may be used,

yielding so-called automorphism ensemble decoding (AED).

This has been successfully applied to high-density cyclic

codes [10], RM codes [11] and polar codes [12]. Moreover, a

sequential (rather than parallel) variant of automorphism-based

decoding has been proposed in [13].

For QC LDPC codes, however, the decoder equivariance

phenomenon [14] previously prevented successful application

of AED. We show that a small variation in the decoding

Tanner graph is enough to exploit AED with permutation

vectors from the automorphism group of the considered QC

LDPC code, i.e., quasi-cyclic shifts of the code symbols.

Thus, our proposed decoding algorithm can be directly applied

to standardized state-of-the-art QC LDPC codes without any

special code design constraint (i.e., no changes on the encoder

side, when compared to [14], [15]). Standardized codes are

usually flexible in codelength by specifying different proto-

graph lifting factors and, thus, many receiver architectures

already provide parallel hardware resources used only for large

block-lengths. AED may exploit these additional resources as

independent parallel decoders and, thus, promises gains with

minimal hardware overhead and low latency.

1Note that all of the presented error-rate performance gains are attributed
to the enhanced decoding algorithm itself (not to be confused with gains due
to better code design).
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II. PRELIMINARIES

A. Structure of LDPC Codes

LDPC codes were originally introduced by Gallager [16]

as codes that could be conventionally represented by its

corresponding (M × N) parity-check matrix H = [h ji]M×N
,

where N is the number of variable nodes (VNs) (i.e., also

the code block-length) and M represents the number of check

nodes (CNs). Therefore, the information bit block-length is

K = N − rank(H). Accordingly, the actual code rate2 is desig-

nated by Rc =K/N. Additionally, there exists a corresponding

graphical representation, namely the Tanner graph, where the

bipartite sets of nodes, namely, VNs and CNs, are connected

according to H (i.e., a VN vi is connected to a CN c j if h ji = 1,

with i ∈ {0, . . . ,N − 1} and j ∈ {0, . . . ,M− 1}).

B. BP Decoding

Alongside LDPC codes, Gallager introduced a suitable

iterative decoding scheme [16] whose modified version is

today known as the BP algorithm (also known as SPA). The

algorithm passes messages, in form of extrinsic LLRs, along

the edges of the Tanner graph. The result is an iterative update

process at the VNs and CNs. Each VN can be interpreted as

a repetition code and, thus, the update equation is

Lvi→c j
= Lch,i + ∑

j′ 6= j

Lc j′→vi
(1)

where Lvi→c j
is the outgoing message from the VN vi to the

CN c j, Lch,i is the i-th channel output LLR and Lc j→vi
is the

incoming message from the CN c j to the VN vi. In contrast,

each CN can be seen as a single parity-check code which

yields the update equation

Lc j→vi
= 2 · tanh−1

(

∏
i′ 6=i

tanh

(

Lvi′→c j

2

)

)

. (2)

In the final VN calculation, all incoming messages are summed

up to obtain the total LLRs. An implementation friendly

variant of BP is so-called layered decoding, where CNs are

processed sequentially, incorporating the output of previous

CNs already within the same iteration, resulting in faster

convergence. For more details about LDPC codes and BP

decoding, we refer the interested reader to [17].

III. CODE SYMMETRY VS. DECODER SYMMETRY

The key aspect to enable AED for LDPC codes is the

relationship between symmetries of the code and symmetries

of the decoder.

A. Code Symmetry

The permutation symmetries of a code C with length N

are given by its automorphism group Aut(C ). It is defined

as the set of codeword symbol permutations that map every

codeword onto another (not necessarily different) codeword:

Aut(C ) = {π ∈ SN : π(c) ∈ C ∀c ∈ C } , (3)

where SN denotes the symmetric group of N elements [18].

2An actual code rate could be potentially higher than the so-called design
rate rd = (N −M)/N.
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Fig. 1: Block diagram of automorphism ensemble decoding (AED) of a noisy
codeword y with L identical BP-based constituent decoders.

B. Automorphism Ensemble Decoding

Let Dec(·) : Y N → C denote the decoding function, where

Y is the set of possible channel outputs. For instance Y is

the set of real numbers R in case of the binary-input additive

white Gaussian noise (BI-AWGN) channel. AED [11] attempts

to decode multiple, differently permuted versions of the noisy

codeword y, using a subset P ⊆ Aut(C ) of L permutations.

Each permutation πi ∈P contributes one codeword candidate

ĉ j = π−1
j (Dec(π j(y))), (4)

from which the final AED codeword estimate is chosen using

the ML criterion

ĉAED = argmax
ĉ j , j∈{1,2,...,L}

P(ĉ j|y). (5)

Fig. 1 shows the block diagram of AED with constituent BP

decoders and a selection criterion based on Euclidean distance,

which is the ML criterion for the BI-AWGN channel. It is

easy to see that permuted decoding with permutation π and

parity-check matrix H is identical to decoding on the column-

permuted parity-check matrix

H′ = π−1(H). (6)

Therefore, AED with BP decoders is a special case of

MBBP [8], where the used H-matrices only differ by column

permutations out of the automorphism group of the code. In

this work, we use the notation AED-L to denote an AED with

ensemble size L.

C. Decoder Symmetry

Not all permutations are useful for AED, as they result in the

same codeword candidates. To analyze this, we say a decoder

is equivariant to a permutation π , if permuting its input y

is the same as permuting its output ĉ. In other words, the

permutation operation commutes with the decoding operation:

Dec(π(y)) = π (Dec(y)) ∀y ∈ Y
N . (7)

We say that π is absorbed by Dec(·) [11]. Each absorbed

permutation π induces sets {π ◦σ |σ ∈ Aut(C )} of equivalent
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(b) H′-matrix after QC column permutations

⇒

(c) H-matrix is restored after row reordering

Fig. 2: Decoder equivariance: The conventional parity-check matrix of a QC LDPC code absorbs quasi-cyclic permutations of the columns. While the
highlighted elements change positions, the overall H-matrix remains unchanged.

automorphisms. Let π ,σ1 ∈ Aut(C ) and π be absorbed by

Dec(·). Then the codeword estimate from σ2 = π ◦σ1 is

σ−1
2 (Dec(σ2(y))) = σ−1

1

(

π−1 (Dec(π (σ1(y))))
)

= σ−1
1 (Dec(σ1 (y))) , (8)

i.e., equivalent permutations σ1 ∼ σ2 always result in the same

codeword candidate under permuted decoding. It can be shown

that equivalent permutations form equivalence classes which

are themselves subgroups of Aut(C ) [19]. Therefore, decoder

symmetries reduce the number of equivalence classes and,

thus, also reduce the number of usable automorphisms for an

ensemble decoder.

D. Quasi-Cyclic Codes and Decoders

A code C of length N = nZ is called quasi-cyclic, if all

permutations of the form

πd,Z(i) =

{

i+ d−Z if i mod Z + d ≥ Z

i+ d else
(9)

with 0 ≤ d < Z are automorphisms of C . Therefore, Aut(C )
is at least the quasi-cyclic group of size Z

QZ =
{

πd,Z : d = 0,1, . . . ,Z − 1
}

. (10)

Prominent representatives of the class of QC codes are QC

LDPC codes [20]. However, in this case, the QC property

mainly serves the ease of construction and implementation.

A QC LDPC code is characterised by its parity-check matrix

being expanded from a so-called protograph by a lifting factor

Z. In the lifting process, the elements of the protograph matrix

are replaced by circulant submatrices of size Z × Z. Their

encoding can be thus realised by a set of shift registers, with

the linear complexity with respect to the total code length [21].

Moreover, various code lengths can be easily realized from a

single protograph using different lifting factors Z.

The (Zm×Zn) QC LDPC code H-matrix can be written as

H =











H0,0 H0,1 · · · H0,n−1

H1,0 H1,1 · · · H1,n−1

...
...

. . .
...

Hm−1,0 Hm−1,1 · · · Hm−1,n−1











,

where submatrices Hi, j of size (Z ×Z) are circulant.

It can be seen that both the rows and columns of the parity-

check matrix fulfill the quasi-cyclic property. While quasi-

cyclicity of the columns creates the automorphism group,

quasi-cyclic rows result in decoder equivariance to these

permutations. As shown in [14], permuted BP decoding (with

the permutation πd,Z) is equivalent to BP decoding on the

column-permuted parity-check matrix

H′ = π−1
d,Z(H) = πZ−d,Z(H), (11)

which is just a row-permuted version of H (as visualized in

Fig. 2). For that reason, the column-permuted parity-check ma-

trix shows exactly the same decoding behaviour in a flooding

decoder as the original parity-check matrix. The same applies

to layered decoding with a regular schedule, as the permutation

only affects sets of independent checks. Therefore, AED using

the standard H-matrices and QC permutations does not result

in any performance gain for QC LDPC codes.

IV. BREAKING DECODER SYMMETRY

To successfully apply AED to QC LDPC codes, one can

either design codes whose automorphism group is larger

than QZ (such as the codes proposed in [14]), or break the

symmetry group of the constituent decoders to be smaller than

QZ . We propose the latter method, as it does not require a

specific code design and hence is compatible with standardized

QC LDPC codes. We still apply the conventional BP decoding

algorithm as introduced in Sec. II-B, however, on a different

Tanner graph (H̃) which is not quasi-cyclic. As the original

Tanner graph is designed to optimize the performance under

BP decoding, it serves as a natural starting point. We propose

three methods to break the symmetry by modifying the original

Tanner graph (i.e., three methods of finding the H̃-matrix):

1) Row operations: Elementary row operations on the parity-

check matrix do not change the code but result in different

Tanner graphs. In the case of binary codes, the only

interesting row operation is adding a row onto another.

2) Adding Auxiliary Checks (“overcomplete”): One can add

a single or multiple auxiliary checks to the parity-check

matrix. The added checks should be linear combinations

of the original checks, such that the resulting matrix is

still a valid, overcomplete, parity-check matrix H̃.
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Fig. 3: Comparison of the proposed parity-check matrix modifications for the
(N = 132, K = 66) 5G LDPC code. All iterative decoders use 32 iterations.

3) Removing Checks (“undercomplete”): We propose to re-

move some checks, resulting in an undercomplete parity-

check matrix H̃, which strictly-speaking means changing

the considered code. This matrix belongs to a code that

contains, besides the codewords of the original code,

further invalid codewords. AED must detect when a con-

stituent decoder converged to such an invalid codeword.

Therefore, the original H-matrix is used to check “code

membership” and only valid candidates are included in

the ML-in-the-list selection, as shown in Fig. 1.

Note that all proposed methods operate on the full, lifted

parity-check matrix rather than the protograph.

V. RESULTS

A. Error Rate Performance

We evaluate the performance of the proposed methods on

various QC LDPC codes from communications standards.

Table I lists the used code parameters. All BP decoders are

implemented as floating point SPA with flooding schedule and

are simulated using an BI-AWGN channel with binary phase

shift keying (BPSK) modulation. If available, we also plot

the ML performance of the corresponding code [22] or, if

computationally feasible, an approximation using OSD [23],

where OSD-t denotes OSD with order t.

Table I: Parameters of the considered LDPC codes

Code N K Rc Z

802.11n 648 540 5/6 27
5G, BG 2 132 66 1/2 11
5G, BG 2 264 132 1/2 22
CCSDS 128 64 1/2 16
CCSDS 256 128 1/2 32

We first compare the three proposed methods in their error-

rate performance using the (132,66) 5G LDPC code. While

there exist infinite ways to combine and extend the alteration

methods, we only change, add or remove a single check to

demonstrate the capability of the method. The first modifica-

tion adds check 0 onto check 1, i.e., changing the check 1.

For the overcomplete case, we appended an additional check

which is the mod-2-sum of checks 51, 53, 58 and 71 (counting

from 0). This combination was chosen randomly, however,
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Fig. 4: Results of the Wi-Fi 802.11n code. The flooding BP decoders use
32 iterations, while the check-node layered decoders use 16 iterations. An
undercomplete parity-check matrix H̃ is used in the AED simulations.

with the constraint that the number of involved variable nodes

is relatively low. In this case, the degree of the auxiliary check

is 11. Lastly, we use an undercomplete H̃-matrix where the

zeroth check has been deleted. Fig. 3 shows the block error

rate (BLER) performance of the proposed methods. To fully

exploit the capability of AED, we use all Z = 11 available

quasi-cyclic permutations, i.e., L = Z.

It can be seen that while all modifications slightly degrade

the performance compared to the original parity-check matrix,

in all cases, the ensemble of L = Z decoders outperforms

this baseline decoder by a significant margin. To our surprise,

all methods show virtually identical gains. Therefore, in the

following, we focus on the undercomplete H̃ variant, as its

implementation is the easiest. In fact, a conventional decoder

may be used with a single check being deactivated.

In Fig. 4 we show results for the (648,540) Wi-Fi code.

The AED uses an undercomplete H̃-matrix with the zeroth

check removed. Even though the code is of moderate length

and, thus, the gap to its ML performance is already less than 1

dB at a BLER of 10−4, the proposed ensemble decoder (AED)

produces gains of approximately 0.2 dB. We also show results

for a check-node layered decoding with 16 iterations, where

even larger gains are achieved by AED.

In Fig. 5 we show results for different rate-half 5G LDPC

codes. Again, the AED uses an ensemble of L= Z BP decoders

using an undercomplete parity-check matrix (H̃-matrix) with

the zeroth check removed. For both block lengths, at a BLER

of 10−3, we see gains of 0.3 dB and 0.2 dB, respectively.

In Fig. 6, we plot results for rate-half CCSDS codes and the

same AED parameters. For both block lengths, AED achieves

a gain of approximately 0.2 dB at a BLER of 10−4 when

compared to conventional BP decoding (i.e., gain due to the

enhanced decoding algorithm). Moreover, we compare to SBP

with the same number of constituent decoders, i.e, S = 4 for

Z = 16 and S = 5 for Z = 32. We see that the performance of

AED is very similar to that of SBP, while in the higher SNR

regime, AED can slightly outperform SBP. Note that to make

the comparison fair, we use full SPA decoders rather than the

min-sum approximation as proposed in [7].
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B. Latency

Compared to conventional BP decoding, AED has a lower

worst case latency, as the number of iterations required to

reach the same BLER performance is reduced. For example,

for the (128,64) CCSDS code, 256 single BP iterations are

required to match the AED performance with 32 iterations.

Compared to SBP, a lower worst case latency is expected,

as the dynamic preprocessing of finding the least reliable

positions is not required. In terms of average latency, i.e.,

with early stopping, we find that AED with an average of

3.4 iterations significantly improves over SBP requiring 28.5

iterations at Eb/N0 = 4 dB. This is because in SBP, only an

average of 1.49 of the 16 constituent decoders converge at

all. Note that for this analysis, in case of AED we require

all constituent decoders to be done before an overall decoding

result is available, while for SBP the decoding is stopped once

3 decoders have converged, as proposed in [7].

VI. CONCLUSION

In this work we demonstrated that breaking the symmetry

in the parity-check matrix on the decoder side can enable

AED for QC LDPC codes. Even without any optimization

of how exactly the parity-check matrix is altered, consistent

gains between 0.2 dB and 0.3 dB over conventional BP

decoding could be achieved. Larger gains are indeed expected

when further optimizations are applied. Additionally, many

more ways of breaking the decoder symmetry remain to be

explored, such as non-standard schedules, which has been

already successfully applied to polar codes in [24].
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[5] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat,
“Pruning and Quantizing Neural Belief Propagation Decoders,” IEEE J.

Sel. Areas Commun., vol. 39, no. 7, pp. 1957–1966, Jul. 2021.
[6] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief prop-

agation decoding of low-density parity check codes,” IEEE Transactions

on Communications, vol. 55, no. 7, pp. 1308–1317, 2007.
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