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Abstract—Over-the-air computation (AirComp) enables fast
wireless data aggregation at the receiver through concurrent
transmission by sensors in the application of Internet-of-Things
(IoT). To further improve the performance of AirComp under
unfavorable propagation channel conditions, we consider the
problem of computation distortion minimization in a recon-
figurable intelligent surface (RIS)-aided AirComp system. In
particular, we take into account an additive bounded uncertainty
of the channel state information (CSI) and the total power
constraint, and jointly optimize the transceiver (Tx-Rx) and the
RIS phase design from the perspective of worst-case robustness
by minimizing the mean squared error (MSE) of the computa-
tion. To solve this intractable nonconvex problem, we develop
an efficient alternating algorithm where both solutions to the
robust sub-problem and to the joint design of Tx-Rx and RIS
are obtained in closed forms. Simulation results demonstrate the
effectiveness of the proposed method.

Index Terms—Reconfigurable intelligent surface, over-the-air
computation, transceiver design, data aggregation.

I. INTRODUCTION

A
S the most prominent characteristic of the developing

information age, massive data with astounding growth

is of critical significance in facilitating the Internet-of-Things

(IoT) applications. However, it has become harder for data

collection from increasing smart devices of IoT. Meanwhile,

it is even more challenging for information fusion of massive

data, also known as data aggregation, from the numerous sen-

sor devices with limited spectrum and low latency constraint.

To address this issue, a promising solution, namely over-the-

air computation (AirComp), was proposed by leveraging the

superposition property of wireless multiple access channels

(MAC) [1]. Through concurrent transmissions by sensors

and a weighted average function for the distributed local

computing, fast data aggregation can be achieved by AirComp

at the receiver, realizing a low transmission latency that is

independent of the number of IoT devices. Recently, AirComp

has attracted much attention in many areas like information

theory [1], signal processing [2], and transceiver design [3].

It has been proved that AirComp can effectively improve

communication efficiency and reduce the required bandwidth

[4]. However, the advantages of the AirComp are promised

upon that the propagation channel conditions are favorable.

To solve this problem, reconfigurable intelligent surface

(RIS), emerging as a complementary technology [5], is be-

lieved to improve signal propagation conditions by reflecting

incident signals at favorable angles utilizing the passive re-

flecting elements [6][7]. A RIS assisted AirComp system is

proposed in [8] to boost the received signal power and mitigate
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the performance bottleneck by reconfiguring the propagation

channels. Thus with the assistance of using the RIS, energy

focusing and nulling at desired locations can be realized in a

AirComp system, shaping favorable propagation links for data

collection. To reduce the mean squared error (MSE) of Air-

Comp, the authors in [9] developed an alternating difference-

of-convex (DC) programming algorithm by optimizing the

transceiver and the RIS phase shifts. Besides, the authors in

[10] tackled the non-convex optimization problem with the

matrix lifting and concave convex procedure, solving the DC

problem and designing the RISs phases and a linear detector

for the RIS-aided cloud radio access network (C-RAN).

However, the assumption of perfect CSI in these studies for

AirComp is hard to achieve in practice, resulting in noticeable

performance degradation due to CSI inaccuracy in practical

scenarios, not to mention the worst-case condition. To the best

of our knowledge, one exception is [11], which proposed an

efficient iterative algorithm to obtain a suboptimal solution for

maximizing the system sum-rate considering the robustness

against the impact of CSI imperfection. In addition, the wire-

less sensors of an AirComp system are usually powered by

limited-power beacons [12], leading to a sum-power constraint

of all the sensors.

Compared with these existing studies, in this paper we

consider the optimization problem of transceiver design and

RIS phase selection in a RIS-aided AirComp system under the

sum-power constraint with imperfect CSI. Aiming to minimize

the computation MSE under the total power constraint with

CSI uncertainty, we cope with the joint design problem

under the worst-case robustness for the AirComp. To solve

this complicated nonconvex problem, we fortunately obtain

closed-form solution to the subproblem of the robust design,

and derive the closed-form solutions to the joint design of

transceivers and RIS phases in an alternating optimization

manner.

Notations: Throughout this paper, (·)H, (·)T, (·)∗, and

(·)† denote the conjugate transpose, transpose, conjugate, and

Moore-Penrose inverse, respectively. R(C) and E{·} represent

the space of real (complex) numbers and the expectation oper-

ator. |·| denotes the modulus of a scalar. CN (0, 1) represents

the distribution of a circularly symmetric complex Gaussian

variable with zero mean and unit variance. U [0, 2π) represents

the uniform distribution drawn from 0 to 2π. The kth entry of

vector x and the (i, j)th element of matrix X are represented

by [x]k and [X]ij , respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the uplink of a RIS-assisted AirComp system,

which is composed of K single-antenna sensors and one

single-antenna receiver. As shown in Fig. 1, assume that the

direct links of sensor-receiver are blocked due to unfavorable

http://arxiv.org/abs/2206.06936v1
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Fig. 1. Over-the-air computation with RIS.

propagation conditions, such as large obstacles [5][13], and are

thus neglected. Each RIS with N passive reflecting antenna el-

ements helps the communication from the sensors in a specific

serving area to the receiver. Since the geometric locations of

these RISs are relatively far from each other, the signal from

one sensor is dominantly reflected by the RIS in the serving

area, while propagations via the other RISs are ignorably weak

due to large path loss. In a certain time slot, the RIS in each

area only provides auxiliary reflection communication service

for data uploading from a single scheduled sensor.

A. Processing of Air Computation

In the RIS-assisted AirComp system, each sensor pre-

processes its own measurement signal and then sends it to the

receiver for further calculation. Let xk ∈ R, ∀k ∈ {1, ...,K}
denote the pre-processed original signal of sensor k, which

without loss of generality is assumed to have a normalized

variance. Let ψk : R → R, ∀k ∈ {1, ...,K} denote a pre-

processing function of sensor k and function ϕ : R → R

denotes the receiver’s post-processing operation. Then, the

received computation signal at the receiver is expressed as

y = ϕ

( K∑

k=1

ψk(xk)

)

. (1)

From (1), by the pre-processing operation ψk by each

sensor and the post-processing operation ϕ at the receiver, the

receiver obtains the desired signal summation directly instead

of requesting one-by-one transmissions of xk and a specific

computation [14]. By integrating computation and commu-

nication exploiting the signal superposition property of the

wireless multiple-access channel, AirComp is accomplished

via this concurrent transmission.

As to practical applications, for example, a central controller

collects and computes the average real-time data (e.g., veloc-

ity, acceleration, temperature, humidity) sent by distributed

sensors. By post-processing the operator like an averaging

function of ϕ, the overall state of the environment is acquired.

B. Computation Model

In this system, each sensor data is linearly scaled by a

factor tk ∈ C before transmission, realizing the pre-processing

operation ψk. And the received signal is linearly scaled by a

Rx-scaling factor m realizing the post-processing operation ϕ.

Applying this to (1), the received signal becomes

y = m

( K∑

k=1

gH
k Φkrktkxk + n

)

= m

( K∑

k=1

gH
k diag{rk}

︸ ︷︷ ︸

hH

k

vktkxk + n

)

, (2)

where gk ∈ CN×1 and rk ∈ CN×1 denote the channel

between the kth RIS and the receiver and the channel between

the kth sensor and its corresponding RIS, respectively. The

diagonal matrix Φk = diag(βk,1e
jθk,1 , · · · , βk,Nejθk,N ) ∈

CN×N is defined as the reflection matrix of RIS k and vk ,

[βk,1e
jθk,1 , · · · , βk,Nejθk,N ]T ∈ CN×1 is a vector reshaped

from the diagonal elements of Φk, where βk,i ∈ [0, 1], is the

amplitude coefficient of the ith reflecting element of RIS k and

θk,i ∈ (0, 2π] is the phase coefficient for i ∈ {1, 2, · · · , N}.

In this paper, we assume βk,i = 1 without loss of generality.

Scalar n ∈ C is the additive white Gaussian noise (AWGN)

following CN (0, σ2), and hH
k , gH

k diag{rk} ∈ C1×N is the

cascaded equivalent channel. Especially in (2), the sum power

of all the K sensors in the AirComp system is limited to

P ,
∑K

k=1 |tk|
2

for energy saving.

Then, the computation distortion in terms of the AirComp

MSE, as defined in [12], is evaluated as

MSE , E

{
∣
∣
∣
∣
∣
y −

K∑

k=1

xk

∣
∣
∣
∣
∣

2 }

=

K∑

k=1

∣
∣mhH

k vktk − 1
∣
∣
2
+ σ2|m|2. (3)

Note that the MSE depends on the instantaneous CSI which

can be obtained by channel estimation [13, 15] rather than the

stochastic nature of gk and rk. However, the obtained CSI is

always noisy, which follows the deterministic CSI error model

[16] and is mathematically formulated as

∆hk
= hH

k − ĥH
k , (4)

where hk, for ∀k ∈ {1, 2, · · · ,K}, is the nominal channel for

the K links, and the CSI error ∆hk
is bounded , i.e.,

‖∆hk
‖2 ≤ ε, (5)

which means that the CSI uncertainty region is confined within

a region of radius ε. By substituting (4), the MSE in (2)

conditioned on the CSI estimate, ĥk, is rewritten as

MSE =

K∑

k=1

∣
∣
∣m(ĥH

k +∆hk
)vktk − 1

∣
∣
∣

2

+ σ2|m|2. (6)

C. Problem Formulation

The aim of our work is to minimize the AirComp MSE in

(6) subject to the sum power constraint under the worst-case

CSI error by jointly optimizing the design of the transceiver
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and the RISs’ reflection matrices. Now we are ready to

formulate the optimization problem as follows

min
m,{tk},{vk}

max
∆

hH

k

K∑

k=1

∣
∣
∣m(ĥH

k +∆hk
)vktk − 1

∣
∣
∣

2

+ σ2|m|2

(7a)

s.t.

K∑

k=1

|tk|
2 ≤ P, (7b)

|vk(n)|
2 = 1, ∀n ∈ {1, · · · , N}, (7c)

‖∆hk
‖2 ≤ ε. (7d)

In particular, (7b) indicates the sum power constraint of all

the K sensors, (7c) describes the unit-modulo constraints of

the phase-shift element of RIS, and (7d) corresponds to the

CSI error bound in (5). Observing this optimization problem,

we find that it is hard to obtain the globally optimal solution,

especially when coping with the nonconvex objective under

the nonconvex unit-modulus constraint.

III. PROPOSED WORST-CASE DESIGN FOR RIS-AIDED

AIRCOMP SYSTEM

In this section, we tackle the optimization problem in (7) by

jointly optimizing the design of the scaling factors m, {tk} and

the RISs’ reflection matrices {vk} with the goal of minimizing

the worst-case MSE in (7). We adopt the idea of alternative

optimization, which is to alternately fix some variables while

optimizing the others. We start with the robust design with

m, {tk} and {vk} fixed, which allows us to facilitate the

problem solving and fortunately gives a closed-form solution

for this worst-case solution.

A. Robust Design for the Worst-Case CSI Error

Assuming that m, {tk} and {vk} are fixed, problem (7) is

equal to

max
∆hk

,∀k

K∑

k=1

∣
∣
∣m(ĥH

k +∆hk
)vktk − 1

∣
∣
∣

2

+ σ2|m|2 (8a)

s.t. ‖∆hk
‖2 ≤ ε. (8b)

Then, the above problem in (8a) can be decoupled into K
subproblems as follows. For each k ∈ {1, 2, · · · ,K}, we have

min
∆hk

−
∣
∣
∣mtk(ĥ

H
k +∆hk

)vk − 1
∣
∣
∣

2

(9a)

s.t. ‖∆hk
‖2 − ε ≤ 0. (9b)

Theorem 1. The optimal solutions of ∆hk
, and the optimized

objective of problem (9) are given by the closed-form expres-

sions as

∆hk
=

|t̂k|2ĥH
k vkv

H
k − t̂kv

H
k

λk − |t̂k|2N
, (10)

MSE⋆ =

K∑

k=1

∣
∣
∣
∣
∣

t̂kĥ
H
k vk − 1

1− λ−1
k |t̂k|2vH

k vk

∣
∣
∣
∣
∣

2

+ σ2|m|2, (11)

where t̂k , mtk.

Proof: See Appendix A.

This theorem successfully copes with the worst-case CSI

uncertainty in the system design.

B. Joint RIS Reflection and Transceiver Design

From the above subsection, we obtain the optimal solution

in a closed form which achieves the worst-case MSE. Observ-

ing (11) and using v
H
k vk = N , it is equivalent to rewrite the

problem in (11) as

min
{t̂k},{vk}

K∑

k=1

∣
∣
∣
∣

t̂kĥ
H
k vk − 1

1− λ−1
k |t̂k|2N

∣
∣
∣
∣

2

+ σ2|m|2

s.t.

K∑

k=1

|tk|
2 ≤ P,

|vk(n)|
2 = 1, ∀n ∈ {1, · · · , N}. (12)

It is obvious that the sum power constraint is active since

the larger tk is, the smaller the MSE is. Then, it is safe to

rewrite the constraint in (12) as the equality constraint, i.e.,
∑K

k=1 |tk|
2 = P . The problem in (12) becomes

min
{t̂k},{vk}

K∑

k=1

∣
∣
∣
∣

t̂kĥ
H
k vk − 1

1− λ−1
k |t̂k|2N

∣
∣
∣
∣

2

+
σ2

P

K∑

k=1

|t̂k|
2

s.t. |vk(n)|
2 = 1, n ∈ {1, · · · , N}. (13)

Note that the problem in (13) is equivalent to the original

problem in (7), but with respect to a reduced number of

optimization variables including tk and m. However, the prob-

lem is still less tractable due to the unit-modulus nonconvex

constraints and the coupling variables. Since the problem in

(13) can be decoupled into K subproblems for the independent

variables with subscript k, without loss of generality, we focus

on the kth subproblem and simplfy the MSE objective in (11)

as

MSEk ,

∣
∣
∣
∣

t̂kĥ
H
k vk − 1

1− λ−1
k |t̂k|2N

∣
∣
∣
∣

2

+
σ2

P
|t̂k|

2
. (14)

Then we apply the idea of alternating optimization and

temporarily relax the unit-modulus constraint. Firstly, for

any fixed m and tk, we minimize the MSE by solving the

following equality

∂(MSEk)

∂v∗
k

=
|t̂k|2ĥkĥ

H
k vk − t̂∗kĥk

(
1− λ−1

k N |t̂k|2
)2 = 0, (15)

which yields

vk =
1

t̂k

(
ĥkĥ

H
k

)†
ĥk. (16)

Considering the unit-modulus constraint which is temporarily

relaxed, we can extract the phase parameters of (16) by

normalizing the amplitude, and thus the unit-modulus solution

for vk becomes irrelevant to t̂k. Then for the solution of t̂k,

we have the following theorem.

Theorem 2. The optimal solutions for the scaling factors m
and tk, equivalently t̂k in (12) are given as

m =

√
√
√
√ 1

P

K∑

k=1

|t̂k|2, (17)

tk = t̂k

√

P
∑K

k=1 |t̂k|
2
, (18)
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where |t̂k|2 =

3

√

2λ
−1

k
NP |ĥH

k

(
ĥkĥH

k

)†
ĥk−1|2

σ2
+1

λ
−1

k
N

.

Proof: By substituting (16), the (14) becomes

MSEk ,

∣
∣
∣
∣

ĥH
k

(
ĥkĥ

H
k

)−1
ĥk − 1

1− λ−1
k |t̂k|2N

∣
∣
∣
∣

2

+
σ2

P
|t̂k|

2
. (19)

Observing the MSEkin (19), it is easy to check that

∂2MSEk

∂(|t̂k|2)2
=

6(λ−1
k N)2|ĥH

k

(
ĥkĥ

H
k

)−1
ĥk − 1|2

(1− λ−1
k N |t̂k|2)4

> 0, (20)

which allows us to obtain the optimal solution by forcing the

following derivative to zero. It follows

∂MSEk

∂(|t̂k|2)
=

2λ−1
k N |ĥH

k

(
ĥkĥ

H
k

)†
ĥk − 1|2

(1− λ−1
k N |t̂k|2)3

+
σ2

P
= 0, (21)

and thus

|t̂k|
2 =

3

√

2λ−1

k
NP [ĥH

k

(
ĥkĥ

H

k

)†
ĥk−1]2

σ2 + 1

λ−1
k N

. (22)

Using the equalities mtk = t̂k and
∑K

k=1 |tk|
2 = P , we are

able to get the closed-form solutions in (17) and (18) for m
and tk, respectively.

Now we have obtained the optimal closed-form solutions for

m in (17) and {tk} in (18). By using (16), we also obtain the

solution for the RISs’ reflection matrices {vk}. In summary,

the proposed solution for solving the original problem in (7)

is described in Algorithm 1.

Note that the computational complexity of the proposed

algorithm for solving problem (7) is dominated by the com-

putations of matrix inversions and matrix multiplications.

Concretely, the complexity of the calculations in ‖∆hk
‖2 = ε2

is O(N), and the complexity of the calculations in (16)

is O(N3). For calculating (17) and (18), the dominating

complexity is the calculation of the intermediate variables t̂k,

which is O(N3). Then for each iteration in Algorithm 1, the

overall computational complexity amounts to O(KN3).

IV. SIMULATION RESULTS

In this section, we present the numerical results for the

proposed algorithm. We define the CSI error level, ε =
s ‖hk‖2, where s represents the CSI uncertainty coefficient

which is a metric for evaluating the relative amount of the

CSI uncertainty. For simulation, s is set as 0.4 and 0.6, and

the channel coefficients σ2
h is set as 0.5. We evaluate the

performance in terms of the normalized mean squared error

(NMSE) of the computation distortion at the receiver and the

signal-to-noise ratio (SNR) is defined as 10log10(P/σ
2
n).

Fig. 2 evaluates the effectiveness of our proposed scheme

compared with the non-robust scheme in [12], where N = 16,

K = 10 and P = 10. It is obvious that the proposed method

achieves better performance than the non-robust scheme.

Meanwhile, CSI uncertainty coefficient s is correlated with

the computation MSE, indicating that CSI error confined even

within a smaller region results in lower MSE. In addition, we

exploit the method by using many random initial values to

acquire the globally optimum (approximate) in a numerical

Algorithm 1: Proposed algorithm for solving (7)

Input: Threshold δ > 0
1 initialization: n = 1;

2 for k to K do

3 initialize v
(1)
k satisfying (7c);

4 m(1) = 1, t
(1)
k = P/K;

5 end

6 do

7 for k to K do

8 Calculate λ
(n)
k by solving the equation

‖∆
(n)
hk

‖2 = ε2;

9 Update v
(n+1)
k according to (16) and normalize

the amplitude;

10 Update m(n+1) according to (17);

11 Update t
(n+1)
k according to (18);

12 end

13 n = n+ 1;

14 while
∑K

k=1 ‖v
(n)
k − v

(n−1)
k ‖22 + |t

(n)
k − t

(n−1)
k |2 +

|m(n) −m(n−1)|2 ≤ δ;

Output: m = m(n−1), {tk} = {t
(n−1)
k },

{vk} = {v
(n−1)
k }

way with tractable complexity. It is encouraging that the per-

formance of the proposed method is close to the performance

of a globally optimal solution.

Fig. 3 compares the computation NMSE at the receiver with

different numbers of RIS reflecting elements, where K = 8,

s = 0.4, and P = 100. It is observed that with increasing

RIS reflecting elements, the NMSE gradually improves. The

reason is that with the growth of the RIS reflecting elements

which can be regarded as more antennas, an extra channel gain

is provided. However, with the increase of the RIS elements,

the cost and power consumption problem will not be ignored,

making it critical for the tradeoff design.

Fig. 4 evaluates the effect of the number of sensor devices

on the performance of the system with N = 64, P = 100, and

s = 0.4. As we can see in Fig. 4, the performance deteriorates

when more and more sensors are getting accessed. With an

increasing number of sensors under the total power constraint,

the performance gain of the proposed robust design becomes

more pronounced.

V. CONCLUSION

In this paper, we consider the joint optimization of

transceiver and the RIS phase design for a RIS-aided AirComp

system with imperfect CSI. The complicated optimization

problem is equivalently transformed into a subproblem of

robust design and joint design of the system. We solve the

joint design problem under the worst-case robustness for CSI

error model and obtain the closed-form solutions by utilizing

efficient alternating algorithms and solving the Karush-Kuhn-

Tucker conditions.
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APPENDIX A

PROOF OF THEOREM 1

By applying the Karush-Kuhn-Tucker (KKT) conditions

[17], it is equivalent to solve the following conditions as

min
∆hk

,λk

L(∆hk
, λk)

= −
∣
∣
∣m(ĥH

k +∆hk
)vktk − 1

∣
∣
∣

2

+ λk(‖∆hk
‖2 − ε2)

s.t.
∂L(∆hk

, λk)

∂∆∗
hk

= 0,

λk(‖∆hk
‖2 − ε2) = 0,

‖∆hk
‖2 − ε2 ≤ 0,

λk ≥ 0,
(23)

where λk , for k = 1, 2, · · · ,K , are the KKT multipliers.

Letting t̂k = mtk, and from (23), we have

∂L(∆hk
, λk)}

∂∆∗
hk

=− |t̂k|
2ĥH

k vkv
H
k + t̂∗kv

H
k − |t̂k|

2∆hk
vkv

H
k

+ λk∆hk
. (24)

Forcing (24) to zero, we obtain

∆hk
=(|t̂k|

2ĥH
k vkv

H
k − t̂∗kv

H
k )(λkIN − |t̂k|

2
vkv

H
k )

−1

=− ĥH
k + (λkĥ

H
k − t̂∗kv

H
k )(λkIN − |t̂k|

2
vkv

H
k )

−1

(a)
= − ĥH

k + λkĥ
H
k (λ

−1
k IN −

−λ−2
k |t̂k|2vkv

H
k

1− λ−1
k |t̂k|2vH

k vk

)

− t̂∗kv
H
k (λkIN − |t̂k|

2
vkv

H
k )

−1

(b)
=
λ−1
k |t̂k|

2ĥH
k vkv

H
k

1− λ−1
k |t̂k|2vH

k vk

−
λ−1
k t̂∗kv

H
k

1− λ−1
k |t̂k|2vH

k vk

=
λ−1
k |t̂k|2ĥH

k vkv
H
k − λ−1

k t̂∗kv
H
k

1− λ−1
k |t̂k|2vH

k vk

, (25)

where (a) uses the matrix inversion lemma as

(A+ uvT)−1 = A−1 −
1

1 + vTA−1u
A−1uvTA−1, (26)

and (b) uses the fact that

xH(A+ τxxH)−1 =
xHA−1

1 + τxHA−1x
(27)

Substitute (25) into the KKT complementary condition in

(23), i.e., λk(‖∆hk
‖2 − ε2) = 0 and solve this equality. By

for any invertible matrix A.

removing unreasonable negative values, we get the value of

λk.

Similarly, we have the desired worst-case MSE in (11).
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