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String Stability in Microgrids using Frequency
Controlled Inverter Chains

Guilherme F. Silva, Student Member, IEEE , Alejandro Donaire, Member, IEEE , Maria M. Seron, Aaron
McFadyen, Member, IEEE , and Jason Ford

Abstract— In this paper we identify, and propose a solu-
tion for, the string stability problem that may arise in fre-
quency droop control schemes for a type of inverter-based
microgrid. We consider a previously proposed frequency
droop control with secondary control loop and we investi-
gate the effect on the performance due to an increase in the
number of inverters connected to the microgrid. To mitigate
the observed performance deterioration, we propose a new
controller that guarantees string stability of the inverter-
based microgrid and show its performance via simulations.

Index Terms— Agents-based systems, distributed con-
trol, smart grid.

I. INTRODUCTION

THE decentralisation of energy generation introduced the
concept of microgrids, that is, energy networks that can

operate disconnected from the main grid. Most decentralised
generators operate in DC, and power inverters are used to
convert from DC to AC voltage. Inverters are key elements of
the microgrids since they can be controlled to ensure a high
network performance by synchronising frequencies/voltages
and sharing active/reactive power between inverters.

The hierarchical control of inverter-based microgrids is done
in three levels: primary, secondary, and tertiary levels [1]. The
control design for each level considers the frequency control
and the voltage control. The primary level is performed by a
droop controller, which is responsible for active/reactive power
sharing, and synchronisation of inverters frequencies/voltages.
The secondary level, usually an integral-type controller, is
responsible for compensating frequency/voltage steady-state
errors while preserving active/reactive power sharing. The
third level typically manages the power flow between the
microgrid and the main grid, when the microgrid is in grid-
connected mode.

In recent years there has been considerable research interest
in studying theoretical properties of the frequency control and
voltage control of inverter-based microgrids [2], [3], such as
frequency and voltage synchronisation of the inverters [4],
active and reactive power sharing so that the inverters operate
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close to their power ratings, boundedness of trajectories [5],
frequency and voltage regulation [6]–[8]. A common strategy
in the treatment of these problems is to separate the analysis
into frequency/active-power (ω-P ) control and voltage/reactive
power control (V -Q) [5], [9].

In this work, we focus our attention on ω-P control as-
suming the voltages of the inverters are constant (see [10]
for a discussion on this “decoupling approximation”). The ω-
P droop controller with secondary layer is always stable for
any gain choice and preserves power sharing while eliminating
frequency steady-state errors [11]. However, previous research
in this area has not considered the problem of string instability.
That is the amplification of disturbances, such as active power
increase due to load changes, from inverter to inverter, and
performance degradation when the number of inverters in the
microgrid increases. We show that string instability behaviour
might arise for some configurations, system characteristics
and model parameters. We then propose a control design that
guarantees string stability while maintaining a good transient
performance and power sharing.

Our main contributions are then: i) the identification of
string instability behaviour that can arise in inverter-based
microgrids, and ii) to propose a control structure for which
we can select controller gains that ensure string stability for a
“chain” of inverters.

The rest of the paper is organised as follows. In Section 2,
we present the network dynamics and the problem formulation.
The control objectives, the sufficient conditions for disturbance
string stability (DSS), and control design are presented in
Section 3. We present simulation results in Section 4 and
conclusions in Section 5.

II. NETWORK MODEL

In this section, we present the network model of an inverter
“chain” with the standard primary frequency droop control,
which regulates local frequency, and the secondary control
loop, which compensates for regulation errors and synchro-
nises the frequency to the desired reference value. We also
discuss the potential performance deterioration of the network
due to the increase of the number of inverters, a phenomenon
known as string instability in the literature related to automated
car platoons.

We consider a network of voltage source inverters inter-
connected via purely inductive lines (justified as the inverter
output impedances are controlled to dominate over the network
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impedances, see [10], [12] for further discussions on this
assumption), and define the set N , {1, 2, . . . , n}, where
n ∈ N is the total number of inverters. Nevertheless, note that
the approach proposed in our paper can be similarly applied
to non-inductive lines. The inverters are interconnected in a
radial network topology, that is a “chain” of inverters, where
each node i ∈ N is connected to 2 neighbouring nodes j ∈ Ni
as follows: N1 = {2}, Ni = {i−1, i+1}, for i = 2, . . . , n−1,
and Nn = {n− 1}.

We denote the voltage phase angle by δi ∈ R and magnitude
by Vi ∈ R+, at each node i = 1, . . . , n, and the electrical
frequency is given by

δ̇i = ωi ∈ R. (1)

The total active power flow Pi, at each node, is (see [9])

Pi = PL,i + PI,i

= PL,i +
∑
j∈Ni

|Bij |ViVj sin(δi − δj), (2)

where PL,i is the active power demand of the load connected
to the ith inverter node and PI,i is the injected active power in
inverter i. The susceptance of the line between i and j nodes
is Bij < 0, and we define Bii =

∑
j∈Ni

Bij + B̂ii, where
B̂ii < 0 is the shunt (load) susceptance at node i. Also, as in
[10], [12] we consider Vi constant and define

αij = |Bij |ViVj , i, j = 1, . . . , n, i 6= j. (3)

A. Primary and secondary control
We now formulate the primary and secondary control to

derive the closed-loop system dynamics.
1) Frequency Droop Control: The ω-P droop control for

inductive lines regulates the local frequency using a term
proportional to the active power balance as follows [1]

ωi = ω∗ − ηi(Pmi − P ∗i ) (4)

where ω∗ and P ∗i are the frequency and power set-points,
respectively, and Pmi is the measured active power obtained
from a first-order filter applied to Pi in (2), that is

τiṖ
m
i = −Pmi + Pi (5)

where τi > 0 is the time constant of the filter.
Combining (4) and (5), we obtain the primary control loop

dynamics, which has the form

δ̇i = ωi, (6)

ω̇i = −τ−1
i (ωi − ω∗ − ηi(Pi − P ∗i )) . (7)

2) Secondary Control Loop: As the frequency droop con-
trol provides only proportional control action, it does not
ensure zero steady-state regulation error and the synchronised
frequency might not achieve the desired value. Thus, it is
common to add integral action through a secondary control
loop. We consider the consensus algorithm described in [11]

kiξ̇i = −(ωi − ω∗)−
n∑
j=1

gij(ξi − ξj) (8)

where ξi is the state of the secondary controller, the constants
ki are the secondary control gains, and gij = gji are the
entries of the weighted adjacency matrix of a connected graph
representing the communication between inverters.

The Laplacian of the communications graph is

G =


g1,1 −g1,2 · · · −g1,n

−g1,2 g2,2 · · · −g2,n

...
...

. . .
...

−g1,n · · · −gn−1,n gn,n

 (9)

where

gii ,
n∑

j=1,j 6=i

gij . (10)

Next, we incorporate the secondary control loop to the
primary control by adding the integral state to the local
frequency (4) with a small modification to filter the secondary
control state as done in (5) for the active power. The proposed
correction to (4) using the secondary controller is then

ωi = ω∗ − ηi(Pmi − P ∗i ) + ξmi , (11)

τiξ̇
m
i = −ξmi + ξi. (12)

We obtain the dynamics of the closed-loop system that in-
cludes the primary and secondary control loops by combining
(6)–(12)

δ̇i = ωi, (13)

ω̇i = τ−1
i

(
− (ωi − ω∗i )− ηi(Pi − P ∗i ) + ξi

)
, (14)

ξ̇i = k−1
i

(
− (ωi − ω∗)−

n∑
j=1

gij(ξi − ξj)
)
. (15)

We can also express the closed-loop system (13)-(15) in
matrix form. We denote the vector V = [vi] ∈ Rn as the
column concatenation of scalars vi, with i = 1, . . . , n. Thus,
we define ∆ = [δi], Ω = [ωi], Ξ = [ξi], P ∗ = [P ∗i ], and
PL = [PL,i]. And let N , diag{ηi}, T , diag{τi}, and
K , diag{ki}. Then, the closed-loop dynamics is ∆̇

T Ω̇

KΞ̇

 =

0 I 0
0 −I I
0 −I −G

 ∆
Ω− Ω∗

Ξ

+

 Ω∗

NF (∆) +N(P ∗ − PL)
0

 (16)

where vector F (∆) has entries −
∑
j∈Ni

αij sin(δi−δj). Note
the trigonometric function comes from Pi in (14).

3) Synchronised Motion: As done in [4], we assume that
there exist values for the angle differences, frequencies, and
secondary control variables such that the closed loop (16) has
a synchronised equilibrium motion.

Assumption 1: First, define the set

D , {δ ∈ [0, 2π)n | |δi − δj | < π/2, i ∈ N , j ∈ Ni}. (17)

For given values of PL,i and ηi, there exists constants δs ∈
D, ωs ∈ R, and ξs ∈ R, i ∈ N , such that

1nω
s = 1nω

∗ +N(P − P ∗) + 1nξ
s, (18)
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where 1n is the vector of ones, and P = [Pi] ∈ Rn.
Under Assumption 1, there exists a synchronised motion

for the controlled system, with Ω = 1nω
s, Ξ = 1nξ

s, and
∆ = mod2π{δs + 1nω

st}, for i ∈ N , where the operation
mod2π(·) is performed element-wise [13]. A special case of
Lemma 1, presented later, shows that the desired frequency
ω∗ is an equilibrium of the system (16), as ωs = w∗.

The limitation we observed with this controller configura-
tion is that the closed-loop dynamics (16), under some system
characteristics, may suffer from string instability and the per-
formance of the network degrades as the number of inverters n
increases. In the next section, we present a definition of string
stability and a control design that guarantees string stability
properties for the inverter network.

III. CONTROL OBJECTIVES AND DESIGN

Our objective is to design a frequency controller for the
interconnected inverters that ensures string stability. To present
the string stability property proposed by Besselink and Jo-
hansson in [14], we consider a network of n agents whose
dynamics can be written in the general compact form

ẋi = fi(xi, xi−1, xi+1) + di(t) (19)

where xi is the state vector of the ith agent, the function fi
describe its dynamics, and di ∈ R3 is the disturbance vector.

Definition 1 (Disturbance String Stability): Consider the
system (19) and assume that x?i is a solution to its unperturbed
dynamics. Then, the equilibrium x?i is said to be disturbance
string stable if there exists a KL function β and a K∞
function γ such that, for any disturbance di and initial
conditions the estimate

sup
i
|xi(t)− x?i (t)|2 ≤ β

(
sup
i
|xi(0)− x?i (0)|2 , t

)
+ γ

(
sup
i
‖di(t)‖∞

) (20)

is verified ∀t > 0 and n ∈ N. The functions β(·, ·) and γ(·)
are independent of n, and thus the inequality of the state error
norm is the same for all inverters, regardless of the number
of inverters. Notice that (20) ensures asymptotic stability for
the undisturbed case (see [15, Section 2.5]), which implies
xi → x?i as t→∞.

A. Sufficient Conditions for DSS

For our control design, we will make use of the sufficient
conditions for DSS of (19) proposed in [16], which are

C1 fi(x
?
i , x

?
i−1, x

?
i+1) = 0

C2 for some c 6= 0 and b > 0

µ2

(
∂fi(xi)

∂xi

)
≤ −c2,

max

{∥∥∥∥∂fi(xi)∂xi−1

∥∥∥∥
2

,

∥∥∥∥∂fi(xi)∂xi+1

∥∥∥∥
2

}
≤ b,

for all xi, xi−1, xi+1 ∈ R3;

(21)

C3 2b < c2.

where x?i = [δsi +ω∗t ω∗ ξ∗]T is the equilibrium of the system,
µ2(A) = maxi (λi[A]s), [A]s is the symmetric part of A, and
λ(A) is the vector of eigenvalues of A.

If C1-C3 are satisfied, then the system (19) is DSS with

sup
i
|xi(t)− x?i (t)|2 ≤ e

−c̄2t sup
i
|xi(0)− x?i (0)|2

+
1− e−c̄2t

c̄2
sup
i
‖di(t)‖∞

(22)

where c̄2 = c2 − b(1 + maxi εi).
As the dynamics of the networked inverters (13), (14), (15)

can be written in the compact form (19), the conditions C1-
C3 are instrumental to select the control gains that ensure the
string stability property of the closed-loop system. However,
the search for these gains is sometimes difficult or the suffi-
cient conditions cannot be satisfied. We observed this problem
for examples of “chains” of inverters under the primary and
secondary control loops discussed in Section II, and thus DSS
could not be guaranteed.

B. DSS Inverter Networks
In this section, we present a control structure that enables us

to ensure DSS of the inverter chain. We propose an alternative
consensus algorithm for the secondary controller so that the
closed-loop dynamics can be written as

δ̇i = ωi, (23)

ω̇i = τ−1
i

(
− (ωi − ω∗)− ηi(Pi − P ∗i ) + ξi

)
, (24)

ξ̇i = k−1
i

(
− (ωi − ω∗)−

n∑
j=1

(
gij(ξi − ξj) + lij(δi − δj)

))
.

(25)

where lij are the elements of a connected graph L, which
represents the communication of the inverter voltage angles.
The coefficients lij are selected to verify L = κG for some
constant κ ∈ R.

Notice that, compared to (8), the new protocol of the
secondary control (25) incorporates a term that is proportional
to the difference between the voltage angles of neighbour
inverters.

The closed-loop dynamics can be written compactly as∆̇

Ω̇

Ξ̇

 =

 0 I 0
0 −T−1 T−1

−K−1L −K−1 −K−1G

 ∆
Ω− Ω∗

Ξ

+

 Ω∗

T−1NF̃ (∆) + T−1N(P ∗ − PL)
0

 (26)

where F̃ (∆) has entries −
∑
j∈Ni

αij sin(δi − δj).
Lemma 1: Consider that Assumption 1 holds and L = κG

for some constant κ ∈ R, then the desired frequency ω∗ is an
equilibrium of the system (26) as ωs = ω∗.

Proof: Consider the equilibrium point (Ωs,Ξs). From the
last row in (26), we have

Ωs − Ω∗ = Ωs − 1nω
∗ = −L∆s −GΞs, (27)

1n(ωs − ω∗) = −G(κ∆s − Ξs), (28)
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where κ = lii
gii

. To obtain (28), we used the fact that L = κG.
First, we notice from (9) that the vector 1n is in the

nullspace of the matrix G, that is G1n = 0. Hence the
column space of G does not contain the vector 1n. Thus, if
a synchronised solution exists Ωs = 1nω

s, it must be equal
to the set-point, that is 1nω

s = 1nω
∗ and ωsi = ω∗, i ∈ N ,

which concludes the proof.
We present the following theorem, which follows the idea in

[17], to show that the changes in the structure of the secondary
controller (25) allow us to guarantee string stability of the
closed-loop system (26).

Theorem 1: Consider the proposed secondary controller
and the resulting closed-loop dynamics (23)-(25), such that
the following conditions are satisfied:

C1* fi(x
?
i , x

?
i−1, x

?
i+1) = 0

C2* for some c 6= 0 and b > 0

µ2 (Ji,i) ≤ −c2,
max

{
‖Ji,i−1‖2 , ‖Ji,i+1‖2

}
≤ b,

for all xi, xi−1, xi+1 ∈ R3;

(29)

where Ji,i = Γ
∂fi(xi)

∂xi
Γ−1, and Ji,i±1 = Γ

∂fi(xi)

∂xi±1
Γ−1

C3* 2b < c2.

where Γ ∈ R3×3 is a constant matrix to be selected. Then, the
closed loop (23)-(25) is DSS.

Proof: Consider the state transformation zi = Γxi. Then,
the transformed dynamics can be written as

żi = Γ fi(Γ
−1zi,Γ

−1zi−1,Γ
−1zi+1,Γ

−1zn) + Γdi. (30)

If conditions C1*-C3* are satisfied, the transformed system
is DSS and the states are bounded as follows

sup
i
|zi(t)− z?i (t)|2 ≤ e

−c̄2t sup
i
|zi(0)− z?i (0)|2

+
1− e−c̄2t

c̄2
sup
i

∥∥∥d̃i(t)∥∥∥
∞
,

(31)

where d̃i = Γdi.
Substituting xi = Γ−1zi in (31) and using the minimum

and maximum singular value of Γ, we obtain

sup
i
|xi(t)− x?i (t)|2 ≤ Ke

−c̄2t sup
i
|xi(0)− x?i (0)|2

+K
1− e−c̄2t

c̄2
sup
i
‖di(t)‖∞ ,

(32)

where K = maxi(σmax(Γ))
mini(σmin(Γ)) , and σmin(Γ) and σmax(Γ) denote

the minimum and maximum singular value of Γ. From the
DSS inequality (32), we conclude that the closed-loop system
with the proposed controller is DSS.

The transformation matrix Γ adds an extra degree of
freedom to find the controller gains that satisfy the DSS
conditions. Without the transformation, we were not able to
find gains that satisfy C1-C3 for the closed loop dynamics in
(26), in the original coordinates.

TABLE I
CONTROLLER GAIN VALUES.

Gain DSS Controller C1 Standard Controller C2

τi 1.4895 1
ηi 6.3509× 10−4 3× 10−3

ki 4.9481 1
gi,i±1 0.0213 1
li,i±1 0.0043 0

TABLE II
NETWORK PARAMETERS AND INVERTERS INITIAL CONDITION.

Parameter Values

V 325.3 V
ω∗ 50 Hz
bij {−0.0056,−0.0112,−0.0039,−0.0112}
P ∗i 1260 W
PL,i 1260 W
δi(0) 0
ωi(0) 50 Hz
ξi(0) 0

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulations of the closed-loop
system (26), which is obtained by using the DSS controller
proposed in this paper and denoted as C1. We compare the
results against the closed-loop system (16), denoted C2, which
uses a standard controller (e.g. [11]).

A. Simulations

We simulated “chains” of n = 4 to n = 20 inverters
connected using a communication graph in a ring topology
(i.e. the last inverter is connected to the first). The gains for the
controllers are reported in Table I and the model parameters
and initial conditions are shown in Table II.

The system set-up is similar to that in [11], but the active
power demands of the loads connected to all inverters is
PL = 1260 W. At t = 0 s, the load connected to the inverter
i = 1 is increased by 20% and the loads connected to every
even inverter i = {2, 4, . . . , n} are increased by 10%. The
loads are changed back to their rated values at t = 1500 s.
We simulated chains of inverters starting with 4 inverters and
adding 2 inverters each time up to a chain of 20 inverters.
The additional susceptance bij between the added inverters is
randomly picked from the values in Table II.

The L∞ norm of the state error (supt |xi(t)− x?i (t)|2) for
the inverters is shown in Fig. 1. It can be seen that the state
error norm remains bounded when using the DSS controller
C1 as expected. On the other hand, the norm increases when
the number of inverters increases when using the controller C2,
which suggests that string instability could happen in such a
closed-loop system. Fig. 2 and 3 show the L∞-norms of the
active and reactive power injections, supt |PI,i|2 (see (2)) and
supt |Qi|2, where Qi = |Bii|V 2

i −
∑
j∈Ni

|Bij |ViVj cos(δi −
δj). Note that the power injections are bounded for C1 whilst,
for C2, the power injections increase about 25% when the
number of inverters increases from 4 to 20, while the reactive
power increases about 300% under the same scenario.
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Fig. 1. L∞ state error norm of the simulated inverter chains using the
DSS controller (red) and the standard controller (green).

Fig. 2. L∞ norm of power injections PI,i, as in (2), of the chains using
the DSS controller (red) and the standard controller (green).

We also present the time history of some relevant variables
for the chains of 4 and 12 inverters. Figs. 4 and 5 show,
respectively, the frequency and active power at every inverter
node for a “chain” of 4 inverters, using the DSS controller.
Similarly, Figs. 6 and 7 show the frequency and active power
when the standard controller is used. The frequency and active
power for the chain of 12 inverters using the DSS controller
and the standard controller are shown in Figs. 8 to 11.

We notice that the growth of state error norm is related to
an increment in the deviation of voltage angles δi from the
desired voltage angle δ∗ = δs + ω∗t, which in turn reflects in
the L∞-norm of the active power injections, shown in Fig. 2.
This motivated the inclusion of voltage angle communication
between neighbour inverters in the DSS controller design.
Also, the standard controller provides a better power shar-
ing performance, with the inverters injecting/receiving power
symmetrically, and with groups of inverters with the same

Fig. 3. L∞ norm of the reactive power Qi for the simulated in-
verter chains using the DSS controller (red) and the standard controller
(green).

1

2

3

4

Fig. 4. Time history of the frequency for a chain of 4 inverters using the
DSS controller.

1

2

3

4

Fig. 5. Time history of the active power injections PI,i as in (2) for a
chain of 4 inverters using the DSS Controller.

1

2

3

4

Fig. 6. Time history of the frequency for a chain of 4 inverters using the
standard controller.

1

2

3

4

Fig. 7. Time history of the active power injections PI,i as in (2) for a
chain of 4 inverters using the standard Controller.

1

12

Fig. 8. Time history of the frequency for a chain of 12 inverters using
the DSS controller.

1

12

Fig. 9. Time history of the active power injections PI,i as in (2) for a
chain of 12 inverters using the DSS Controller.
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1

2

3

4

5

6

7

8

9

10

11

12

Fig. 10. Time history of the frequency for a chain of 12 inverters using
the standard controller.

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 11. Time history of the active power injections PI,i as in (2) for a
chain of 12 inverters using the standard Controller.

disturbance converging to the same value (see Fig. 7), but
the infinite norms of the active power injection and reactive
power are larger when the number of inverters increases (see
Fig. 2). The closed loop with the standard controller is stable
for any choice of positive gains. However, we observed that if
the gains are not selected carefully, the system may suffer from
string instability, preventing its scalability. The proposed DSS
controller ensures that the state errors do not grow unbounded
with the increment of inverters in the chain while maintaining
satisfactory performance.

V. CONCLUSION

We identified the problem of string instability in inverter-
based microgrids and presented a controller design that guar-
antees DSS of the frequency control in chains of inverters.
In this work, we considered that the inverters’ voltage is
constant. In future works, we will consider the voltage control
loop and investigate the scalability properties of the control
system. Finally, although the presentation was based on radial
microgrids, the proposed controller design to guarantee DSS
can be readily extended, with the appropriate modifications,
to microgrids of arbitrary topology.
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