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Regional Stability Analysis of Transitional Fluid Flows

Leonardo F. Toso, Ross Drummond and Stephen R. Duncan

Abstract— A method to bound the maximum energy per-
turbation for which regional stability of transitional fluid flow
models can be guaranteed is introduced. The proposed method
exploits the fact that the fluid model’s nonlinearities are both
lossless and locally bounded and uses the axes lengths of the
ellipsoids for the trajectory set containment as variables in the
stability conditions. Compared to existing approaches based on
quadratic constraints, the proposed method leads to an average
increase in the maximum allowable energy perturbation of
≈ 29% for the Waleffe-Kim-Hamilton (WKH) shear flow model
and of ≈ 38% for the 9-state reduced model of Couette flow.

Index Terms— Fluid flows, regional stability analysis,
semidefinite programming.

I. INTRODUCTION

Determining the stability properties of fluid flows remains

a longstanding open problem tracing its roots back to Os-

borne Reynolds’ 1883 experiments on the transition to tur-

bulence in pipe flow [1]. The issues faced in predicting fluid

stability are widely believed to be a result of the complex

nature of the Navier-Stokes equations, which has forced prac-

titioners to either solve these equations numerically using

computational fluid dynamics (CFD) or adapt experimental

results to predict a fluid’s response. Both methods have their

limitations; CFD simulations are computationally demanding

and require expertise to run, while experimental results can

be expensive and are also typically designed for demon-

strative situations that may not generalise well to the flows

found in practice. As a result, the design of many fluid-based

technologies remains based upon significant experimental

know-how and large computation power, an expensive and

non-scalable situation.

The limitations of CFD simulations and experimental

characterisations have led to the development of several

reduced-order fluid models for particular flows, which have

been shown to, at least qualitatively, give an indication of

flow stability while being significantly simpler to resolve

than the general Navier-Stokes equations. Examples include

the 4-state Waleffe-Kim-Hamilton (WKH) model [2], [3]

for shear flow and the 9-state reduced-order model [4] for

Couette flow bounded by two plates. The apparent success

of these reduced-order fluid models in capturing the main

features of the flow has prompted research into their stability

analysis, with the long term goal of this line of research being

to generalise the lessons learned from these simpler systems

to develop scalable and non-conservative techniques for the

analysis of more complex fluid models.
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The stability analysis of even these reduced-order models

can still be challenging, owing to their nonlinear dynamics

and non-normal state-transition matrices [5], [6]. However,

progress has been made, notably in [7]–[9] where it was

observed that the nonlinear model dynamics exhibit some

structure that can be exploited. These studies observed that

the model dynamics could be understood in terms of the

feedback interconnection of a linear system with an energy

persevering or lossless nonlinear gain, as shown in Figure

1, allowing the powerful and scalable techniques of passive

systems theory [10, Chapter VI] to be applied. However,

stability certificates based upon passive systems theory have

been found to be conservative, and the maximum energy

flow perturbation for which stability can be certified is

significantly lower than that predicted by simulation (see

Section VII). Reducing this conservatism will be necessary

if these methods are to be deployed in practical applications

involving more complex fluid flows.

Contribution: Motivated by the passive systems theory re-

sults [7]–[9], this paper extends the approach by introducing

an algorithm that allows the axes lengths of the ellipsoids

bounding the state trajectories to be defined as matrix vari-

ables to be optimised over. To evaluate the performance of

the method, the obtained stability conditions were applied

to both the 4-state WKH model for shear flow and the 9-

state model of Couette flow and demonstrated a reduction in

conservatism compared to [7]–[9] (see Section VII).

Paper structure: The paper is structured as follows. Sec-

tion II introduces the two transitional fluid flow models, and

Section III considers these models as the feedback intercon-

nection of a linear system with a lossless nonlinearity, which

allows passive systems theory to be applied to their analysis.

Sections IV and V formulate bounds for the nonlinear flow

interactions by exploiting the fact that the system’s state

trajectories can be bounded within an ellipsoidal region. By

exploiting these local quadratic bounds, a method to certify

the regional stability of these fluid models is developed

in Section VI, with the main result presented in Theorem

1. Numerical results estimating the region of attraction of

the Waleffe-Kim-Hamilton (WKH) model and the 9-state

reduced-order model of Couette flow are described in Sec-

tion VII to illustrate the potential of the approach.

Notation: The identity matrix of dimension n is In and

the matrix of zeros of dimension n×m is 0n×m. If a matrix

A of dimension n is positive definite then A ∈ S
n
≻0, if it

symmetric then A ∈ S
n and if it is diagonal with positive

elements then A ∈ D
n
++. The ρ-level sets of a function V (x)

are defined as E(V, ρ) := {x : V (x) = ρ}.



II. TRANSITIONAL FLUID FLOW MODELS

The transitional fluid flow models considered in this paper

characterise the transition to turbulence in shear flows and

are described by ordinary differential equations (ODEs).

A. General form

Both considered transitional fluid flows models can be

expressed in the general form

ẋ(t) = Ax(t) + ϕ(x) (1)

where x ∈ R
n is the system’s state, A ∈ R

n×n is the Hurwitz

state transition matrix depending on the Reynolds number

(Re), and ϕ(x) = Fx ∈ R
n → R

n describes the nonlinear

interactions of the fluid flow. The nonlinearity ϕ(·) can be ex-

pressed as a quadratic form ϕ⊤(x) =
[
x⊤S1x, . . . , x

⊤Snx
]

with symmetric matrices S1, . . . , Sn.

B. Waleffe-Kim-Hamilton (WKH) shear flow model

The WKH model refers to the low-order fluid flow

model formulated in [3] for characterising the transition

to turbulence in shear flows. The model’s equations were

derived from observing direct numerical simulations (DNS)

of Couette flow- a type of wall-bounded shear flow where

the flow is driven by the relative motion of two plates, one

moving and the other stationary. The model equations are
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where x1, x2, x3 and x4 describe four modes of flow insta-

bility: streaks x1, rolls x2, inflectional streaks x3 and mean

shear x4. The positive constants λ, µ, σ and ν concern the

viscous decay rates, whereas τ and δ are positive nonlinear

interaction coefficients.

A main feature of the WKH model is its ability to describe

sustained turbulence [3]. This can be seen from simulations

starting from the initial condition [1, 0, 1, 0]⊤. From this

point, the model equations force the streaks to become

increasingly inflectional, leading to a build-up in the rolls

and energy being transferred between the various instability

modes, prolonging the turbulence. See [3, Figure 6] for a

more detailed description of this behaviour.

C. 9-state reduced model of Couette flow

The 9-state reduced-order model of Couette flow is a low-

dimensional model generalised from the eight-mode model

of [11] to capture variations in the main fluid velocity

profile during the transition to turbulence. The nine ordinary

differential equations of the model are detailed in [4] and

are obtained by projecting the Navier-Stokes equations onto

a set of finite-dimensional basis functions (specifically a set

of nine normalised and orthogonal Galerkin modes [12]) over

the spatial domain 0 ≤ b ≤ Lb, −1 ≤ c ≤ 1 and 0 ≤ d ≤ Ld.

With b, c and d representing the downstream, shear and span-

wise spatial directions, respectively. The nine modes of this

ẋ = Ax+ v

ϕ(·)

v x
+

Fig. 1. Feedback interpretation of (1) in terms of a linear system with a

lossless nonlinearity.

model describe the mean velocity, streaks, instabilities of

streaks, downstream vortices, and the nonlinear interaction

between those variables. See [4, Figure 1] and [9, Figure 6]

for further details on the model’s configuration.

III. FEEDBACK INTERCONNECTION OF THE MODELS

Accounting for the nonlinear terms ϕ(·) in (1) is the

main source of difficulty in the stability analysis of these

models. However, for the transitional flow models considered

here, these nonlinear terms exhibit properties that can be

exploited. Specifically, well-established theory on the incom-

pressible Navier-Stokes equations [13] (highlighted through

the Leray formulation [14]) means that for many wall-

bounded transitional fluid flow models, including [2] and

[4], the nonlinearity ϕ(x) is memoryless, meaning that the

mapping F : Rn → R
n does not vary with time, satisfies

ϕ(0) = 0, and is lossless.

Definition 1: (Losslessness [10]) A nonlinear real func-

tion ϕ(x) = Fx, with F : Rn → R
n, is said to be lossless

if x⊤ϕ(x) = 0, ∀x ∈ R
n.

Losslessness of ϕ can also be encoded in a matrix form

η⊤
[
0n×n In
In 0n×n

]

︸ ︷︷ ︸

F0

η = 0, ∀x ∈ R
n, (3)

with η⊤ = [x⊤, ϕ⊤(x)], since x⊤ϕ(x) = ϕ⊤(x)x = 0.

By introducing the additional variable v, the model dy-

namics (1) can be equivalently written as

ẋ = Ax+ v, (4a)

v = ϕ(x). (4b)

As illustrated in Figure 1, this system can be understood as

the feedback interconnection of a linear system with transfer

function (sI − A)−1 mapping v → x where v is the output

from mapping the state x through the nonlinear, but lossless,

gain ϕ(·). The losslessness property of ϕ(·) means that the

feedback system’s stability can be inferred using passive

systems theory [10].

IV. LOCAL QUADRATIC BOUNDS FOR ϕ

Globally, when considering x ∈ R
n, losslessness is one

of the only properties satisfied by ϕ(x); however, when

considering a regional analysis with x ∈ E ⊂ R
n, the

nonlinearity ϕ(x) can be locally bounded. The benefits of in-

troducing local bounds for ϕ(·) was identified in [7], with the

bounds obtained from the Cauchy-Schwartz Lemma allowing

the conservatism of their stability certificates to be reduced



compared to the earlier results of [8] and [9]. However, in

general, bounds produced by the Cauchy-Schwartz Lemma

are not tight, which suggests that there may be room to

reduce this conservatism still further. Here, it is shown how

by inspecting the various terms of the nonlinear term directly

and bounding them, additional quadratic bounds for products

of the nonlinear terms can be specified.

A. Local quadratic bounds

For the WKH model of (2), assume the states are bounded

within the regions

x1
2 ≤ γx1,k, x2

2 ≤ γx2,k, x3
2 ≤ γx3,k, x4

2 ≤ γx4,k (5)

for k = 0, 1, . . . ,K with K being the total number of

local quadratic bounds and define γ̂x1,k = λkγx1,k, γ̂x2,k =
λkγx2,k, γ̂x3,k = λkγx3,k and γ̂x4,k = λkγx4,k. With the

states restricted as such, quadratic products of the nonlinear

terms ϕ(.) can be bounded explicitly, as illustrated by the

following example.

Example: Consider the cross-product between the nonlin-

earities ϕ1(x) and ϕ4(x) from (2),

ϕ1(x)ϕ4(x) = −x2
2x4x1 + τx3

2x2x1, (6a)

=
x2

2

2

(
(x4 − x1)

2 − x4
2 − x1

2
)

(6b)

+
τx3

2

2
((x2 + x1)

2 − x2
2 − x1

2),

≤
x2

2

2
(x4 − x1)

2 +
τx3

2

2
(x2 + x1)

2. (6c)

Multiplying both sides of the above expression by λk and
applying the state bounds (5) gives the local quadratic bound

λkϕ1(x)ϕ4(x) ≤
τ γ̂x3,k

2
(x2 + x1)

2 +
γ̂x2,k

2
(x4 − x1)

2
, (7a)

= x
⊤
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2
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2
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2
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2
0 0

0 0 0 0

−
γ̂x2,k

2
0 0

γ̂x2,k

2








︸ ︷︷ ︸

Γ̂k(γ̂x2,k,γ̂x3,k)

x.

(7b)

By applying similar manipulations as (6), the WKH
model’s other nonlinear terms can also be bounded. For
example

λ1ϕ2(x)
2
≤ δ

2
x3

2
γ̂x3,1, (8a)

λ2ϕ3(x)
2
≤ γ̂x3,2(τ

2
x1

2 + τδ(x1 − x2)
2 + δ

2
x2

2), (8b)

λ3ϕ4(x)
2
≤ γ̂x2,3x1

2
, (8c)

λ4ϕ1(x)ϕ4(x) ≤
τ γ̂x3,4

2
(x2 + x1)

2 +
γ̂x2,4

2
(x4 − x1)

2
, (8d)

λ5ϕ3(x)ϕ4(x) ≤
τ γ̂x1,5

2
(x3 − x2)

2 +
δγ̂x2,5

2
(x3 + x1)

2
, (8e)

with these inequalities parameterised by the state bounds

of (5) and the nonlinear interaction coefficients τ and δ,

and with the value of these coefficients influencing the

tightness of the local quadratic bounds, and, consequently,

the conservatism of the stability results.

Using a similar approach, additional bounds can be gen-

erated for the nonlinearities ϕ(·) of the WKH and 9-state

Couette flow models. The total number of bounds included

in the analysis is defined as K, with a large K giving, in

general, a tighter characterisation of the quadratic products of

ϕ(.) but also an increase in computing time of the analysis,

since it also increases the dimension of the search space for

the Lagrange multiplier bounds, as explored in Algorithm 1.

Moreover, the approach detailed in the above example can

be automated, in some cases, to higher order polynomials

than that considered in (6), for example via inequalities such

as x1
4 ≤ γx1,kx1

2.

B. Matrix Inequalities

The local quadratic bounds of each models’ nonlinearities

can be expressed in a matrix form

η⊤
[

Γ̂k(γ̂xj ,k) 0n×n

0n×n −λkMk

]

︸ ︷︷ ︸

Fk(Γ̂k, λk)

η ≥ 0, ∀x ∈ E , (9)

with Mk being a symmetric matrix corresponding to the kth

bound, with k = 0, . . . , K and the matrix Γ̂k(γ̂xj ,k) ∈ S
n

being a symmetric matrix parameterised by the state bounds

γ̂xj ,k. Equation (7b) details an example Γ̂k(γ̂xj ,k) matrix for

a local quadratic bound. By incorporating these local bounds

using the S-procedure [15], local information on ϕ(·) can be

included within the stability analysis, helping to reduce the

conservatism.

As described in [7, Lemma 1], the nonlinearity ϕ(x) can

also be bounded by

η⊤
[
Si∆iSi 0n×n

0n×n −λK+ie
T
i ei

]

︸ ︷︷ ︸

Mi(∆i, λK+i)

η ≥ 0, ∀x ∈ Gξ (10)

for all i = 1, . . . , n, with Gξ = {x ∈ R
n : x(t)⊤Gx(t) ≤ ξ2}

defining an ellipsoid over Rn and with ei ∈ R
n being the ith

standard basis vector. Contrasting with the formulation of [7],

in this paper, the matrices ∆i = λK+iξ
2G−1 are defined as

matrix decision variables in the optimisation problem of the

stability conditions instead of being fixed at each iteration.

V. ELLIPSOIDS FOR THE SET CONTAINMENT

For the local quadratic bounds on the nonlinear terms

to hold, the state trajectories must be constrained to the

local region x ∈ E for all initial conditions considered.

The following proposition allows the ellipsoidal sets for

this set containment to be posed in terms of linear matrix

inequalities.

Proposition 1: Consider a Lyapunov function V (x) :
R

n → R+ = x(t)⊤Px(t) with P ∈ S
n
≻0. For k =

0, 1, 2, . . . , K, with K being the total number of bounds

for ϕ(x) (Section IV), define ellipses Ek(x) = xTΛk
−1x =

∑n
j=1 γxj ,k

−1xj
2 where γxj ,k > 0, and the matrix Λ̂−1

k =
1
λk

Λk
−1. If

[

P λ̄
1/2
k In

λ̄
1/2
k In Λ̂k

]

≻ 0, ∀k = 0, 1, . . . , K, (11a)

λ̄k ≥ λk > 0, ∀k = 0, 1, . . . , K, (11b)



then E(V, 1) ⊆ E(Ek, 1) where E(V, 1) := {x ∈ R
n :

V (x) ≤ 1} and E(Ek, 1) := {x ∈ R
n : x⊤Λk

−1x ≤ 1}.

Proof: From the Schur complement, (11a) is equivalent
to

P − (λ̄k)
1/2

In(Λ̂k)
−1

In(λ̄k)
1/2

= P −
λ̄k

λk
Λk

−1
≻ 0. (12)

Since λ̄k ≥ λk > 0, then (12) implies P − Λk
−1 ≻ 0.

Multiplying this matrix inequality on the left by x⊤ and on

the right by x gives Ek(x) ≤ V (x). We then have the set

containment E(V, 1) ⊆ E(Ek, 1).

VI. REGIONAL STABILITY OF TRANSITIONAL FLOW

MODELS

Conditions to estimate the regional stability analysis can

be formulated using the set containment of Proposition 1.

In keeping with recent results, e.g., [7]–[9], these conditions

enable inner estimates of the maximum energy perturbation

guaranteeing asymptotic stability to be computed.

Theorem 1: Consider the system (1). For given ϵ > 0
and λ̄ ∈ R

n+K
≥0 , if there exists positive-definite matrices

P ∈ S
n
≻0, Λ̂k ∈ D

n
++, ∆i ∈ S

n
≻0, Γ̂k ∈ S

n and Lagrange

multipliers ζ0 ∈ R, λl ∈ R
n+K
≥0 that solves

β
∗ =

1

(R∗)2
= min

P, β,∆, Λ̂(γ̂xj,k
), λ, ζ0

β =
1

R2
(13a)

subject to

[

A⊤P + PA P
P 0n×n

]

+ ζ0F0 +

K∑

k=0

Fk(Γ̂k, λk)

+

n∑

i=1

Mi(∆i, λK+i) ⪯ −

[
ϵIn×n 0n×n

0n×n 0n×n

]

, (13b)

[

P λ̄
1/2
k In

λ̄
1/2
k In Λ̂k(γ̂xj ,k)

]

≻ 0, ∀k = 0, . . . , K, (13c)

[

P λ̄
1/2
K+iIn

λ̄
1/2
K+iIn ∆i

]

≻ 0, ∀i = 1, . . . , n, (13d)

0 ≺ P ⪯ βIn, (13e)

λ̄ℓ ≥ λℓ > 0, ∀ℓ = 1, . . . , K + n, (13f)

Λ̂k(γ̂xj ,k) ⪰ 0, ∀k = 0, . . . , K, (13g)

∆i ⪰ 0, ∀i = 1, . . . , n, (13h)

then the system is asymptotically stable for all initial

conditions x(0) ∈ R := {x(0) ∈ R
n : x(0)⊤x(0) ≤ (R∗)2}

with the trajectories satisfying the set containment x ∈ R ⊆
E(V, 1) ⊆ E(Ek, 1).

Proof: With the Lyapunov function V (x(t)) =
x(t)⊤Px(t), condition (13b) implies V̇ (x(t)) < 0 ∀x ∈
E(Ek, 1). It is then required to show that the state tra-

jectories remain within E(Ek, 1) at all times. For this, it

is noted that (13c) and (13f) imply via Proposition 1 that

E(V, 1) ⊆ E(Ek, 1). Similarly to the proof of Proposition 1,

the constraints (13d) and (13f) imply that E(V, 1) ⊆ Gξ if

V (x) ≤ 1. From (13e), then 0 ≤ V (x) ≤ βx(t)⊤x(t) when

x(0)⊤x(0) ≤ R2, so V (x(0)) ≤ 1. Condition (13b) means

that the sublevel sets of E(V, 1) are positive invariant, giving

asymptotic stability.

Remark 1: Theorem 1 allows the axes lengths of the

ellipsoids for the set containment (incorporated through the

matrices Γ̂(γ̂xj ,k) and ∆̂) to be decision variables in the

problem. This formulation contrasts with [7, Algorithm A]

where the ellipses are fixed at each iteration. However, to

convexify the problem, the upper bound λ̄ for the Lagrange

multipliers λ have to be fixed when variable axes lengths are

used. ⋆

Algorithm 1 Compute maximum energy perturbation R∗

1: Set-up: Obtain A, α{m} = ϵα, θ{m} = ϵθ and tolerances

ϵ, ϵβ . Set m = 0
2: Initialisation:

(
P {0}, λ{0}, β∗{0}) ← Solve Theorem 1

with (13f) replaced by (14)

3: λ̄{0} = λ{0}

β∗{0} max
(
eig(P {0})

)

4: Define: Directions v{j} ∈ R
n+K for j = 0, . . . , nv

5: Set β∗{0} = 0 and ω̄{0} = λ̄{0}

6: while |β∗{m+1} − β∗{m}| ≥ ϵβ do

7: for j = 0, . . . , nv do

8: β∗{m,j} ← Solve Theorem 1 with λ̄ = ω̄{j}

9: if Theorem 1 is feasible then

10: ω̄{j} = λ̄{m} + θ{m}β∗{m}v{j},

11: else

12: ω̄{j} = λ̄{m} + θ{m}α{m}v{j},

13: end if

14: end for

15: Set β∗{m+1} = minj=0, ..., nv
β∗{m,j}

16: Set λ̄{m+1} = ω̄{j} that gives minimum β∗{m,j}

17: m← m+ 1
18: end while

19: R∗ = 1/
√

β∗{m}

A. Convexification of Theorem 1

To pose Theorem 1 as convex optimisation, the upper

bounds of the Lagrange multipliers λ̄ have to be fixed. This

restriction motivates the use of an iterative algorithm to

refine the choice of λ̄. In the following, an initialisation and

update rule for λ̄ is proposed, which is then embedded within

Algorithm 1 to iteratively generate new bounds R∗ and help

reduce the conservatism of the approach.

Initialisation of λ̄: One way to initialise λ̄{m} in Algo-

rithm 1 (with the notation {m} indicating the value of the

vector λ̄ at iteration m) is to first solve Theorem 1 except

with (13f) replaced by
[

λk λ̄
1/2
k

λ̄
1/2
k 1

]

⪰ 0, ∀k = 0, . . . , K + n. (14)

The above enforces λ ≥ λ̄ > 0 instead of the upper bound

of (13f). The reason for replacing (13f) with (14) in this

modified version of Theorem 1 is because λ̄1/2 can then

be defined as a matrix variable to be searched over in step

2 of the algorithm, giving flexibility. It is stressed though

that this formulation of the problem can only be used to



initialise λ̄{0}, as it does not generate stability certificates as

(13f) would not hold.

Update of λ̄: Steps 10 and 12 in Algorithm 1 up-

dates the upper bounds for the Lagrange multipliers to

produce the iterates λ̄{m}. In these steps, candidate values

for λ̄{m} are proposed by stepping a distance θ ∈ R

in a direction v{j}, which are both defined before the

inner loop on j. In this work, the directions v were set

to be (normalised) combinations of the basis vectors of

dimension n + K and their opposite directions, for in-

stance v{1} = [0, 0, . . . , 0]⊤, v{2} = [1, 0, . . . , 0]⊤, v{3} =
[0, 1, . . . , 0]⊤, v{4} = 1√

2
[−1,−1, . . . , 0]⊤ and so on for

j = 1 . . . , nv , with the step lengths ϵθ = 1 and ϵα = 104.

The algorithm then takes the value of λ̄{m} which gave the

biggest increase in β∗ = 1
R2 , and then continues onto the

next iterate.

Remark 2: When the zero vector is included within the

set of search directions v, step 16 ensure that Algorithm 1 is

guaranteed to improve upon, or at least match, the obtained

value of β∗ computed upon each iteration m. ⋆

VII. NUMERICAL RESULTS

Numerical examples are now shown to evaluate the per-

formance of Algorithm 1 in computing inner estimates of

the region of attraction for the four and nine-state models.

For both models, the maximal achievable energy perturbation

obtained using Theorem 1 was compared against [9] and [7]

as well as an upper limit produced by simulating the system

from different initial conditions x0’s sampled from the hyper-

sphere x0
⊤x0 = R2, with the upper limit obtained by

finding the maximum value of R for which these simulated

trajectories did not converge to the origin. For both examples,

the parser CVX [16] was used along with the solver MOSEK

[17] and tolerances ϵ = ϵβ = 10−6, ϵα = 104 and ϵθ = 1.

The complete set of numerical results are detailed in Table

I, with the // symbol used in this table indicating the result

was not applicable.

A. Waleffe-Kim-Hamilton (WKH) shear flow model

Figure 2 shows the comparison for the WKH model

described in Section II with the parameter values set to unity,

as in σ = λ = . . . = δ = 1. While other parameter values

have been used for this model, notably in [2], the choice of

unity was selected to enable a direct comparison to the results

of [7]. The maximal energy perturbation R∗ was found for

Reynolds numbers (Re) in the range [5 : 5 : 25].
This figure shows the maximal energy perturbations al-

lowed for both Algorithm 1 (green), [7], [9] (black), and the

upper limit found through system’s simulations (red). The

results presented in Table I highlight how local quadratic

bounds and the flexible computation of the ellipsoidal sets

in Theorem 1 have significantly reduced the conservatism,

meaning that a higher energy perturbation is allowed. Specifi-

cally, the average improvement over [7] for the five Reynolds

numbers was ≈ 29%, while the average improvement over

[9] for the five Reynolds numbers was ≈ 482%.
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Fig. 2. Comparison between [7], [9] and Algorithm 1 for bounding the

maximum energy perturbations R
∗ of the WKH shear flow model.

Two methods were introduced in this paper to reduce the

conservatism of the stability conditions: the local quadratic

bounds of Section IV and the computation of ellipsoids for

the set containment of Section V. Table I allows the relative

impact of these two methods to be compared, with the results

for Algorithm 1 including the K = 5 bounds of the WKH

model (8) but with results also shown for the case when

K = 0, as in when no local quadratic bounds were included

within the stability analysis. This table shows that including

the local quadratic bounds only led to a modest increase in

R∗, indicating that it was the computation of the ellipsoids

for the set containment that delivered the more significant

gains.

Figure 3 compares the convergence rate of Algorithm 1

without local quadratic bounds (K = 0) against [7, Algorithm

A] for the WKH and 9-state model with different Reynolds

numbers. In this case, the figure illustrates how Algorithm

1 required solving fewer optimisation problems to converge

on its final value of R∗. As Table I shows, adding local

quadratic bounds can increase the obtained value of R∗,

but also increase the number of operations as more search

directions have to be searched over.
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Fig. 3. Convergence rates of Algorithm 1 with K = 0 and [7, Algorithm

A] for bounding the maximum energy perturbations R
∗ of the WKH model

(left-hand side axis) and 9-state model (right-hand side axis) with different

Reynolds numbers. Nop corresponds to the number of optimisation problems

solved during the algorithm run.



WKH model 9-state model

Reynolds number (Re) 5 10 15 20 25 100 125 150 175 200

Methodology Maximum energy perturbation (R∗)

Upper limit (Simulation) 0.2210 0.0480 0.0215 0.0124 0.0081 // // // // //

Algorithm 1 0.1200 0.0282 0.0121 0.0076 0.0049 0.0031 0.0019 0.0013 0.0011 0.0009

Algorithm 1 without local quadratic bounds 0.1160 0.0266 0.0103 0.0069 0.0044 0.0028 0.0017 0.0012 0.0010 0.0008

Kalur, Mushtaq, Seiler & Hemati 0.1000 0.0232 0.0100 0.0054 0.0034 0.0024 0.0015 0.0010 0.0007 0.0006

Liu & Gayme 0.0383 0.0063 0.0021 0.0010 0.0006 0.0010 0.0006 0.0004 0.0003 0.0002

TABLE I

MAXIMUM ENERGY PERTURBATIONS R
∗ OF BOTH THE WKH AND THE 9-STATE COUETTE FLOW MODELS.

B. 9-state reduced-order model of Couette flow

A flow domain of Lb = 1.75π and Ld = 1.2π was defined

for the numerical evaluation of the 9-state reduced-order

model of Couette flow, with K = 9. Figure 4 compares

the maximum achievable energy perturbation R∗ for which

stability could be verified, comparing Algorithm 1 (green)

against [7] and [9] (black). Unlike for the WKH model,

no upper limit for R∗ could be found with this model at

the considered Reynolds numbers using the method detailed

at the start of this section; as in the simulated model’s

trajectories were observed to converge to the origin for all

sampled initial conditions in the hyper-sphere x0
⊤x0 = R2

even for large R. The benefits of Theorem 1 were more

striking for this model compared against the WKH model,

with the improvement averaged across Re = [100 : 25 : 200]
being ≈ 38% over [7] and ≈ 253% over [9].
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Fig. 4. Comparison between [7], [9] and Algorithm 1 for bounding the

maximum energy perturbations R
∗ of the 9-state Couette flow model.

VIII. CONCLUSIONS

The regional stability analysis of transitional fluid flow

models was considered. By exploiting the fact that the

nonlinearities of these models are lossless and can be locally

bounded, a method was proposed to determine the maximum

energy perturbation in the flow field for which stability could

be guaranteed. The potential of the proposed method was

demonstrated through numerical examples which showed

that the proposed method could reduce the conservatism in

the stability guarantees compared against the current state-of-

the-art for quadratic Lyapunov functions without sacrificing

on computational efficiency. Future work will explore adapt-

ing the method for generic candidate Lyapunov functions and

developing more effective ways to convexify the problem

than the proposed method involving the λ̄ bounds.
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