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Local Averaging for Consensus Over
Communication Links with Random Dropouts

Robert C. Ballam, Student, IEEE , Aaron McFadyen Member, IEEE , Daniel E. Quevedo Fellow, IEEE

Abstract— This letter proposes a mechanism for con-
sensusability of multi-agent systems which communicate
through packet loss channels. A distinguishing feature of
our approach is that we assume that each agent may act
on an estimate of the state of its neighbours when packet
losses occur. A system using the proposed compensation
method subject to nonidentical Markovian dropouts is anal-
ysed and conditions for consensusability are proposed.
Simulation results are provided which verify the proposed
conditions and show that it allows for consensusability
over a wider range of dropout probabilities than methods
previously documented in the literature.

Index Terms— Control over communications, Distributed
control, Markov processes

I. INTRODUCTION

W ITH the rise of computing abilities and ubiquity
of wireless communication devices, coordination of

multi-agent systems (MASs) to achieve a shared objective
has become an increasingly well-studied problem. Allowing
multiple agents to achieve a shared state allows for complex
coordinated tasks to take place, such as formation flight,
coordination of groups of autonomous ground vehicles, or
shared headings for satellites.

Substantial fundamental work has been done to understand
stability conditions for MASs [1] and how to design optimal
controllers [2]. With perfect communications these issues are
generally well understood [3]. Recent results extend to large
scale multi-agent systems. Mean-field game theory [4] has
been used to study such systems, with recent work analysing
optimal control of nonlinear agents with unstable dynamics
[5]. Extension of theoretical results for consensus of MASs
subject to changing network conditions (e.g. packet dropouts)
is both technically substantial and practically valuable as
assumptions of perfect network conditions are typically un-
realistic [6], [7], [8].

Stochastically switching systems are well studied in the
single-agent sense through the framework of Markov Jump
Linear systems [9]. The problem of packet dropouts over
networks has been studied for the problem of Kalman filtering.
It has been shown that a critical packet dropout probability
exists, which when exceeded results in Kalman filter covari-
ance being unbounded [10]. Other results investigate applying
zero input or holding the last input for a networked control
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system with packet dropouts, and in the scalar case it was
found neither can be considered superior [11].

These results for single-agent systems are fundamental in
informing research on multi-agent systems. Early research on
the problem of switching topologies [12] provided conditions
for consensusability with Markovian switching topologies. The
packet dropout phenomena for multi-agent systems was stud-
ied in the i.i.d. sense [7] which was then extended to the less
restrictive Markovian packet loss model [8]. Additional work
provides conditions for consensusability for systems subject
to communication delays as well as packet dropouts [13] and
suggests a predictor-like protocol to achieve consensus [14].

Several interesting investigations of alternative control
strategies to compensate for packet dropouts have been done
for the first-order consensus problem. Identical i.i.d. packet
dropouts were studied and control protocols with and without
memory were compared. With memory, if a dropout occurred
agents would act on the last sent state; without they would not
apply input [15]. A more sophisticated memory-based method
using Taylor series prediction of neighbors’ states showed
increases in convergence rate compared to previously analysed
methods [16]. In fact, memory protocols [15], [16] are shown
to outperform typically analysed memoryless protocols [7],
[8]. The memoryless strategy, which we refer to as the standard
strategy, can result in large changes in inputs that may be
unrealizable or safe for practical actuators. Memory-based
protocols [16] can provide benefits and result in more real-
izable actuation, however the proposed control strategy uses
substantial memory to store multiple past states of neighbors.

In this letter, we propose a compensation mechanism to esti-
mate an agent’s neighbor’s information when packet dropouts
occur. Our algorithm uses memory and is easy to implement.
It allows for mean square consensusability of multi-agent
systems over a wider range of dropout values than previous
methods. Necessary and sufficient conditions are presented
for mean square consensusability of the modified system in
the case of identical and nonidentical Markovian dropouts for
general directed graphs.

Section II presents the consensus problem, introduces the
problem of consensus with packet dropouts, and describes the
network model used. Section III details the system modelling
of the local averaging strategy. In Section IV, we analyse the
local averaging compensation method, providing consensus-
ability conditions for the case of nonidentical packet dropouts
and the special case of identical dropouts. Simulations are pre-
sented in Section V to compare to standard practice methods.
Section VI draws conclusions.



II. CONSENSUS WITH PACKET DROPOUTS

In this section, we outline the basic consensus problem and
introduce the consensus with packet dropouts problem. Then,
the method for network state modelling used in later portions
this work is described.

A. Consensus

We consider homogeneous agents. Each individual agent’s
dynamics is assumed to be linear and noise-free such that

xi(t+ 1) = Axi(t) +Bui(t) (1)

where A ∈ Rn×n and B ∈ Rn×m represent the state transition
and input matrix, and xi ∈ Rn and ui ∈ Rm represent the state
and control input vectors of agent i respectively at time t.

The consensus problem may be trivially solved for stable
systems by applying no input, which is of limited practical
relevance. As such, we make the following assumption:

Assumption 1. Eigenvalues of agent state transition matrix
A are assumed to be on or outside the unit disk.

For consensus, multiple individual agents interact aiming
to achieve the same value. These interactions occur over a
communication network. The network may be described by
a graph (Laplacian) which describes connectivity of agents,
denoted L ∈ RN×N , where N is the number of agents in the
system. The Laplacian L , D−A is formed by an adjacency
matrix A ∈ RN×N where each value aij ∈ {0, 1} denotes a
connection between agent i and j, and a degree matrix D,
which is a diagonal matrix D , diag{d1, . . . , dN} where
di ,

∑N
j=1 aij . Each agent implements a control law of the

following form, using a given gain K ∈ Rm×n:

ui =

N∑
j=1

Kaij(xj − xi) (2)

The Laplacian matrix L and Kronecker product ⊗ allow for
an expression of the controlled system (2) in global form:

X(t+ 1) = (I ⊗A+ L ⊗BK)X(t) (3)

where X = [x1 . . . xi . . . xN ]T . The objective of this control
system is to drive the difference between the states of agents
to zero, thus achieving consensus:

lim
t→∞

||xj(t)− xi(t)|| = 0 ∀i, j ∈ 1, . . . , N (4)

It is convenient to introduce the consensus error of (3) as:

δi(t) , xi(t)− x1(t) (5)

noting that:

lim
t→∞

||δi(t)|| = 0 ∀i = 1, . . . , N (6)

is equivalent to (4). This formulation of consensus error allows
for the global form of the system (3) to be redefined in terms
of consensus error, with the control objective of driving this
error system to zero thus being equivalent to consensus.

B. Packet Dropouts in Consensus

As in similar work in the literature (e.g. [7], [8]), we first
consider the special case of identical packet dropouts in con-
sensus, where packet dropouts are common across the entire
network. The packet dropout process γ(t) is modelled as a
two-state Markov process where state 1 means all connections
are active (γ(t) = 1) and state 2 models a packet dropout
(γ(t) = 0). This identical packet dropout process γ(t) results
in the following modification to global dynamics (3):

X(t+ 1) = (I ⊗A+ γ(t)L ⊗BK)X(t) (7)

This packet dropout process has a transition probability
matrix Q defined as follows:

Q =

[
1− q q
p 1− p

]
(8)

where 0 < p < 1 and 0 < q < 1 are the recovery and
failure rates of the communication network respectively. This
allows one to model wireless communication channels, where
for example connections are unlikely to fail (e.g. q = 0.05),
but if they do they may not recover quickly (e.g. p = 0.5).

Now that the consensus system is impacted by the Marko-
vian dropout process γ(t), we are interested in consensusabil-
ity in the stochastic sense. Instead of a deterministic definition
of consensusability as in (4), we adopt the following definition
of mean-square consensusability:

Definition 1. A multi-agent system is said to be mean-square
consensusable if the following holds:

lim
t→∞

E{||xj(t)− xi(t)||2} = 0, ∀i, j ∈ V (9)

For multi-agent systems with dropouts, we are concerned
with ensuring mean-square consensus in the sense of Defini-
tion 1 for all agents. This has been shown for systems with
i.i.d dropout models [7] and extended to show consensusability
conditions for Markovian dropout models [8, Thm. 10].

We now consider the general case of nonidentical packet
dropouts, which may occur over individual communication
links rather than the whole network at the same time. In this
work, instead of modelling dropouts over individual links as
done in [8], we model the global network state as a Markov
process [17]. Thus, the dropout problem is considered as a
time-varying global network topology of the form:

X(t+ 1) = (I ⊗A+ L(t)⊗BK)X(t) (10)

Due to packet dropouts, the communication topology de-
scribed by L(t) is time-varying (unlike the models described
in Section II-B). More specifically, it depends on a process ζ(t)
such that L(t) = L(ζ(t)), where ζ(t) is a Markov process:

Assumption 2. Time-homogeneous Markov process ζ(t) with
l states has a transition probability matrix Qij = [pij ].

The global system (10) then becomes:

X(t+ 1) = (I ⊗A+ L(ζ(t))⊗BK)X(t) (11)

where we are interested in ensuring mean-square consensus-
abilty as in Definition 1.



Fig. 1. Example network state graphs L(1) (left) and L(2) (right) and
associated transition probabilities

Consider for example the two graph topologies shown in
Figure 1. A practical interpretation of this configuration would
be that the information flow between agent 1 and both others is
reliable, whereas the connection between 2 and 3 is unreliable.
The two possible network states result in a 2-state Markov
process ζ(t). Instead of describing each edge in L(1) as having
an individual dropout process, under Assumption 2 the Markov
process ζ(t) is associated with the graph L(1) itself.

Remark 1. Assumption 2 allows for any combination of
packet dropouts over all edges on a communication graph
to be modelled as part of the network state Markov process
ζ(t). The ideal network state of a multi-agent system may not
be a complete graph as depicted in L(1). Hence it is unlikely
that the cardinality of the set describing the global network
state would be as large as the possible 2e states, where e is
the number of edges in the graph.

III. LOCAL AVERAGING FOR CONSENSUS WITH PACKET
DROPOUTS

A common assumption for multi-agent systems with
dropouts in the form (7) is that no input is applied to an
agent in the case that a packet dropout occurs, see Section II-
B and [8]. In this work, we propose a strategy for consensus
in the case of packet dropouts where instead of a zero input
being applied in the case of a packet dropout, agents act on
an estimate of its neighbors’ states. The agent, instead of
only applying an input when it is connected to its neighbors
directly, acts on its locally stored information of its neighbors.
This information may or may not be updated through a lossy
communication network as depicted in Figure 2.

It is assumed that an agent i is always able to act on
estimations of its neighbors’ states x̂j|i, where neighbors are a
set of other agents Ni which ideally have a direct connection
to agent i, that is aij = 1. It is also assumed that agents
have access to their own state xi. This information is used in
calculation of the control action for agent i:

ui(t) =

N∑
j=1

Kaij(x̂j|i(t)− xi(t)) (12)

Input (12) depends on an estimate of neighboring agents’
states x̂j|i. Local averaging control can be applied to estimate
this state in the case of a packet dropout:

x̂j|i(t) =

{
xj(t) if connected
Ax̂j|i(t− 1) +Bûj|i(t− 1) if dropout at time t

(13)

Fig. 2. Individual Agent Diagram

Further explanation of how to estimate a neighbor’s input
ûj|i is given in Section IV-B. The data available in agent i’s
neighbor estimation depicted in Figure 2 is a collection of
its estimations of the state of its neighbors. We denote the
augmented state zi to be the information in the neighborhood
estimation of agent i:

zi =
[
xi x̂j|i . . . x̂j|i

]T ∀j ∈ Ni (14)

Information at agent i, encapsulated by augmented state ma-
trix zi, involves all of the states used in calculation of control
input (12). The consensus-like feedback control proposed in
(12) is not dependent on updates from the external network,
and is always performed at agent i. This results in the state of
agent i, and its augmented state zi, taking the following form:

xi(t+1) =
[
A− diBK aijBK . . . aijBK

]
zi(t) (15)

where di denotes the degree of agent i. While it is sufficient
to model the evolution of agent i’s state xi using this form of
difference equation that exclusively uses information locally
available at agent i, it is worth noting that the information en-
capsulated in agent i’s estimates of neighbors x̂j|i constitutes
global information coming from a network connection. Thus,
it is necessary to consider a full (global) system describing the
state of all agents and all estimates when describing the state
evolution of an agent’s estimates of its neighbors.

IV. CONSENSUSABILITY ANALYSIS WITH LOCAL
AVERAGING

This section analyses the proposed local averaging mecha-
nism to determine consensusability properties of the resulting
multi-agent system. A suitable state transformation is pre-
sented which allows for analysis of a lower-order, transformed
system matrix to determine consensusability properties, which
are derived for the case of nonidentical Markovian dropouts.

A. System Transformation

As shown in [3, Lemma 4.2] it is convenient to analyse a
multi-agent system as a problem of simultaneous stability via
a state transformation. This transformation aims to express a
multi-agent system with a consensus error state (5) where we
may show that the mean-square stability of consensus error
states δi(t) is equivalent to mean-square consensusability in
the sense of Definition 1. Inspired by [3], [12], we introduce
the following lemma:

Lemma IV.1. Suppose that W ∈ RN×N is a matrix with the
constraint that each row sum is equal to some constant c ∈ R.



There exists a matrix M with the following structure:

M ,

[
1
N

~1
N

−1 IN−1

]
(16)

M−1 =


1 − 1

N . . . − 1
N

1 1− 1
N . . . − 1

N
...

...
. . .

...
1 − 1

N . . . 1− 1
N

 (17)

The following statements hold:

c ∈ Λ(W) (18)

W̃ ,MWM−1, Λ(W̃) = Λ(W) (19)

W̃ =

[
c ~W

01×(N−1) We

]
(20)

Λ(We) = Λ(W) \ {c} (21)

where ~W ∈ R(N−1)×1 is a vector of possibly nonzero num-
bers, and Λ is the spectrum operator denoting all eigenvalues
of a matrix. The eigenvalue c is isolated in the upper left block
of (20), and dynamics We associated with other eigenvalues
are linearly independent from those associated with c.

Proof: As (19) constitutes an invertible state transforma-
tion, the equivalence of the spectrum Λ of the original and
transformed matrices is evident. We may show the validity of
(18) by observing that multiplication of W by a row vector
of 1T = (1, 1, . . . , 1) results in the following:

W1T =


∑N

j=1W1j

...∑N
j=1WNj

 = c1T (22)

Where the third equality of (22) follows noting the constraint
that rows of W all have a row sum equal to c. Thus 1T is an
eigenvector and c is an eigenvalue of W .

We may prove that the first column of W̃ is equal to a zero
vector with c in the first row by examining properties of (17)
and the state transformation (19). Consider WM−1 and the
results of each value j of the first column (WM−1)j1:

(WM−1)j1 =

N∑
j=1

WijM
−1
j1 = c1T (23)

Since 1T is an eigenvector of matrixW and the first column
of M−1, the first column of WM−1 equals c1T as in (22).
Due to the choice of the first row of (16), properties of the
first column of W̃ ,MWM−1 are straightforward:

W̃11 =

N∑
j=1

1

N
c = c W̃i1 = 0, i = 2 . . . N (24)

(24) holds due to the specific choice of 1
N in (17), and

construction of M and (23). As it is clear that the eigenvalue
corresponding to the row sum of W is isolated in the first
column of W̃ , (21) follows. �

Suppose we have a global system of agents implementing
local averaging, with augmented state zi for each agent i as

in (14). We may stack the state information of every agent to
create a global state matrix Z as follows:

Z(t) =
[
z1 . . . zi . . . zN

]T
(25)

Application of the state transformation matrix M as de-
scribed in Lemma IV.1 results in an augmented error state.
It contains both an average of all states x̄ and the difference
between all states and the state of the first agent, following
the definition of consensus error given in (6):

MZ(t) =


x̄

x̂j|1 − x1
...

x̂j|N − x1

 =


x̄

ηj|1,1
...

ηj|N,1

 =

[
x̄

Ẽ

]
(26)

where ηj|N,1 denotes the error between estimate x̂N |1 and
the state of agent 1, and x̄ denotes the average state of the
MAS. Application of Lemma IV.1 allows for consideration of
a consensus error system evaluating the difference between
every estimate x̂j|i or state of other agents xj and the state of
the first agent x1. By forming a difference equation describing
the state transition dynamics F of the global state matrix
(25) of a system using local averaging, we may then apply
the transformation in Lemma IV.1 to reduce the dynamics
resulting in the following random process:

Z(t+ 1) = FZ(t) (27)

E(t+ 1) = MFM−1
[
x̄

Ẽ

]
=

[
c ~F
0 Fe

] [
x̄

Ẽ

]
(28)

It follows that dynamics Fe are, as shown in Lemma
IV.1, independent from the value of the average state x̄. We
may then determine the mean-square consensusability of the
local averaging strategy by analysing the dynamics of the
augmented consensus error state Ẽ:

Ẽ(t+ 1) = FeẼ(t) (29)

B. Dropout Effects

Explicitly modelling the network state as a Markovian
process as in Section II-B allows for straightforward analysis
of nonidentical packet dropouts. As discussed in Section II-B,
nonidentical packet dropouts result in switching graph topolo-
gies. As the state transformation in Lemma IV.1 may apply
to all Laplacian-like matrices to achieve the same consensus
error description as in (28), we may model switching graph
topologies by applying this transform to each of the resulting
system matrices of the form (27).

The single-agent control problem and consensus problem
have fundamental differences. We aim to exploit these differ-
ences and propose a method to estimate the input applied at
an agent’s neighbors, thus providing an estimate of their state
in the case that a packet dropout occurs (13). This results in
a difference equation of the following form:

x̂j|i(t+ 1) = Ax̂j|i(t) +Bûj|i(t) (30)

A key difficulty in (30) is to find an appropriate estimate
for the input û applied at the neighbor j at time t when a



packet dropout occurs. We assume all neighbors of agent i are
aiming to achieve consensus within their local neighborhood.
As a result, estimated input ûj|i(t) is given by the following:

ûj|i(t) =

N∑
k=1

Kaik(x̂k|i − x̂j|i) +K(x̂j|i − xi) (31)

Note that the above assumes that consensus-like feed-
back occurs between agent j and all neighbors of agent i,
determined by agent i’s adjacency aik. It is assumed that
the neighborhood of agent i is always aiming to achieve
consensus, and as such estimated inputs ûj|i assume that all
agents in that neighborhood form a complete graph [3]. As a
result, the neighbor estimates x̂j|i evolve either directly via the
dynamics at the neighbor xj if there is not a packet dropout,
or by (30) applying estimated input (31) if a dropout occurs.

This formulation of the dynamics of agents themselves, pre-
sented in Section III, and the estimation mechanism proposed
above may be used to create the state transition matrix F (ζi)
associated with the network state i of the Markov process.
These matrices can be associated with the difference equation
(27) for the local averaging method to form the following:

Z(t+ 1) = F (ζ(t))Z(t) (32)

It is clear that (32) is a Markov jump linear system. As
such, we may present the following theorem:

Theorem IV.2. Consider a multi-agent system applying local
averaging subject to random packet dropouts. The system is
mean-square consensusable iff the following condition holds:

Γ̄ , ρ(((QT ⊗ I)diag(Γ̃(ζ1), Γ̃(ζ2) . . . Γ̃(ζl)) < 1 (33)

where ρ(·) is the maximum eigenvalue of the matrix. Each
state transition matrix Γ̃(ζi) is defined by:

Γ̃(ζi) , F̃e(ζi)⊗ F̃e(ζi) (34)

F̃ (ζi) ,

[
f ~F

0 F̃e(ζi)

]
= MF (ζi)M

−1 (35)

In (35), F (ζi) is the state transition matrix of the system given
the inputs (12) and (31) and transition equations (15) and (30).

Proof: Suppose a multi-agent system engaging in local
averaging has states which can be described by (32). We
denote the state transition matrix, which includes consensus
feedback as described in Section III and neighbor estimation
in the form (30), as F (ζi). By Lemma IV.1, transformation
matrix M exists such that the following statement holds for
all modelled network states associated with jump variable ζ(t).
The resulting transformed system matrix F̃ (ζi) is comprised
of the following blocks:

F̃ (ζi) = MF (ζi)M
−1 =

[
f ~F

0 F̃e(ζi)

]
(36)

where the dynamics associated with lower right block F̃e(ζi)
are independent from those related to f . The state transfor-
mation applied to Z applying local averaging results in states
described by (26). The state transformation M may be applied
to all dynamics associated with the time-varying network state

dynamics F (ζi). We define the set of switching consensus
error dynamics associated with the consensus error state Ẽ:

F̃e = {F̃e(ζ1), F̃e(ζ2), . . . , F̃e(ζl)} (37)

This allows us to construct the switching consensus error state
using the transformed consensus error dynamics (37):

Ẽ(t+ 1) = F̃e(ζi(t))Ẽ(t) (38)

It is clear that (38) is a Markov jump linear system. Condition
(33) follows from [9, Theorem 3.9]. �

This result gives a general condition for consensusability
of multi-agent systems engaged in local averaging subject to
packet dropouts described with the network state model of
Section II-B. We provide the condition for consensusability of
local averaging in the special case of identical i.i.d. dropouts:

Corollary IV.2.1. Consider a multi-agent system using local
averaging with identical i.i.d. packet dropouts occurring with
probability 0 < p < 1. It is mean-square consensusable iff:

ρ(p(F̃e(0)⊗ F̃e(0)) + (1− p)F̃e(1)⊗ F̃e(1)) < 1 (39)

where F̃e(0) is the transition matrix associated with local
averaging, and F̃e(1) is the transition matrix associated with
the system operating without packet dropouts.

Remark 2. Note that conditions (33) and (39) include the
global network state for analysis purposes, in order to verify
consensusability of the MAS. As a result, for systems with large
numbers of agents (thus large numbers of neighbor estimates)
these conditions are computationally difficult to evaluate.

V. SIMULATION RESULTS

In this section, we show that a multi-agent system using
local averaging allows for consensusability of a wider class of
multi-agent systems than standard methods as in [8] allow.

A. Identical Dropouts

We utilize system, input, and calculated gain matrices from
[8] for identical dropouts, and switching parameters p = 0.2,
q = 0.7. Construction of F (0) and F (1) using (13) and
(15), and resulting transformation to F̃e(0) and F̃e(1) using
Lemma IV.1 results in mean square consensusability with
ρ(Γ̄) = 0.9502.

To show the advantages of local averaging, we lower
recovery rate q substantially from 0.7 to 0.05. The resulting
evaluations of mean square consensusability are ρ(Γ̄) =
1.0139 > 1 with the standard system, which does not apply
input when dropouts occur, by [8, Thm. 10] which is not mean-
square consensusable. The proposed system is evaluated by
Theorem IV.2 and ρ(Γ̄) = 0.9956 < 1, ensuring mean square
consensusability when using local averaging.

Mean-square consensusability of the averaging method sub-
ject to the identical packet dropouts as described above can
be empirically investigated by the sum of the squared con-
sensus error Ẽ(t)T Ẽ(t). Figure 3 shows the system using
local averaging is able to achieve mean square consensus
with the modified recovery rate while the standard system,



Fig. 3. Maximum empirical evaluation of sum of squared consensus
error over 1000 trials with standard (−) and proposed (−) methods

which applies no input when a packet dropout occurs, shows
unbounded error.

For ease of comparison the standard and proposed sys-
tems were tested for mean-square consensusability subject to
identical i.i.d. dropouts by evaluating [8, Thm. 10] and (39)
respectively. It is shown in Figure 4 that the proposed local
averaging strategy is able to achieve consensus in the mean
square sense for networks with a dropout probability of less
than 94%, while the standard strategy is only able to do so
until a dropout rate of 87%. Note that the Laplacian in [8]
has many undirected links between agents. For systems which
are more sparsely connected, local averaging would not be
expected to provide such substantial benefit.

B. Nonidentical Dropouts
To show the accuracy of Theorem IV.2 at handling general

directed graphs, we randomly generate new system matrices,
choose three graph topologies to switch between, and choose
a probability transition matrix Q as follows:

L(1) =

0 0 0
0 0 0
0 0 0

 L(2) =

 1 −1 0
−1 1 0
0 −1 1


L(3) =

 1 −1 0
−1 2 −1
0 −1 1

 Q =

 r 1−r
2

1−r
2

0.4 0.5 0.1
0.2 0.3 0.5

 (40)

An arbitrary control gain which satisfies [3, Thm. 4.1] for
L(2) was selected. We use the variable r to illustrate how
the system behaves when it is more likely to stay in a failure
state, which increases as r approaches 1. Evaluation of (33)
of Theorem IV.2 for 0 < r < 1 was used to compare con-
sensusability of MASs using the standard approach and local
averaging. It was found that using standard methods, mean-
square consensusability was ensured until r = 0.74, while
using local averaging allows for mean-square consensusability
until r = 0.83.

VI. CONCLUSION

This letter proposed a compensation scheme to achieve
consensusability of multi-agent systems over communication
channels subject to packet dropouts. The consensus problem
is first transformed to a lower-order system. Neccessary and
sufficient conditions are given for mean-square consensusabil-
ity of multi-agent systems using local averaging compensation
in both the case of identical Markovian dropouts as well as

Fig. 4. Consensusability condition using standard (−) and proposed
(−) methods subject to identical i.i.d. dropouts

nonidentical dropouts. Simulations show the improved perfor-
mance of the proposed method when compared to standard
alternatives and verify the accuracy of the proposed theorems.
Controller design methods and analysis using mean-field meth-
ods (e.g. [18]) to improve scalability are left for future work.
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